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Abstract 

 

We study regime switching features of liquidity risk in corporate bond premiums. Within 

a sample period ranging from July 2002 to April 2015, we first compute a liquidity risk 

index for BBB bonds, which considers various liquidity risk facets based on principal 

component analysis. Second, we identify two liquidity regimes in our sample using a 

Markov switching regime model that highlights the dynamic characteristics of this risk and 

its behavior before, during and after the last financial crisis. We observe that the liquidity 

risk index improved after the financial crisis. It seems that the recent Volcker Rule did not 

affect the liquidity of BBB bonds during our sample period.  

 

Keywords: Liquidity risk, corporate bonds, financial crisis, regime change, Markov 

model, principal component analysis.  
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1. Introduction 

The recent financial crisis of 2007-2009 was one of the most consequential events of the 

past decade in the financial world.  The ensuing subprime crisis was caused by various 

events linked to that phenomenon. The year 2007 was marked by a crisis in asset-backed 

commercial paper (ABCP), along with the sharp downgrading of collateralized debt 

obligations (CDOs). Subsequently, several large financial institutions sustained serious 

damage in 2008, including the collapse of Bear Stearns in March, problems at IndyMac, 

Fannie Mae and Freddie Mae, and the Lehman Brothers bankruptcy in September. Other 

financial institutions like AIG had to be rescued by the US Government to avert a possible 

collapse of the financial system. In October 2008, the American government signed an 

asset rescue program called the Troubled Asset Relief Program (TARP). This program 

consisted of buying risky assets from financial institutions in order to inject liquidity in the 

economy.   

Many observers claim that the recent financial crisis had two components: 1) a default 

crisis, and 2) a liquidity crisis, notably on the bond market. The magnitude of the latter 

crisis was almost unprecedented. Saunders and Allen (2010) identify the liquidity crisis as 

extending from July 2007 to August 2008, and the default crisis from September 2008 to 

March 2009. Dionne and Maalaoui Chun (2013) show that the liquidity crisis began in July 

2007 and ended in March 2009, and the default crisis covered June 2008 to January 2009 

(Table 1). 

During the recent crisis, liquidity risk reached record levels. The US government’s decision 

to implement the TARP illustrates the gravity of the situation. International financial 

regulators thus decided to focus on liquidity risk, previously a minor concern. The result 

was the publication of the Basel III Accords in 2010. The implementation of these accords 

continues until 2019, and is designed to improve management of liquidity risk of financial 

institutions, notably by defining the regulatory capital that banks must set aside to hedge 

this risk. In addition, the Dodd-Frank Act was implemented in the United States in 2010. 

Its main objective was to reduce banks’ speculative activities. It may have generated side 
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effects on bonds’ liquidity. However, liquidity risk is not yet well defined, and very few 

studies have examined its cyclical evolution. 

In this research, we are particularly interested in liquidity risk present in the US bond 

market. We gather data from TRACE (Trade Reporting And Compliance Engine) to obtain 

information on intraday bond trading on the US market during the July 2002 to April 2015 

period. We concentrate our analysis on the BBB corporate bond market. 

In the first step, we apply the methodology of Dick-Nielsen et al. (2012) to measure this 

risk by performing a principal component analysis (CPA) on eight predetermined 

measures. Second, we seek to identify the properties of liquidity risk present in bonds by 

analyzing the dynamic behavior of this risk in our sample, using a Markov switching 

regime model. Our main motivation for the use of a Markov model is to analyze the cycles 

of this risk. If the liquidity risk cycles are important, their presence may modify the 

calculation of the average capital of financial institutions over a period of several cycles, 

as has been demonstrated for default and operational risk (Chen, 2010; Bhamra et al., 2010; 

Dionne and Saissi Hassani, 2017). 

The paper is organized as follows. Section 2 presents a review of the literature on liquidity 

risk in bond premiums.  Section 3 specifies the details of the data used in our study. We 

then build our illiquidity index. Section 5 discusses the methodology of the regime change 

model that lets us identify the liquidity regimes within our sample. Lastly, we analyze the 

results obtained to determine whether or not cyclical variation of liquidity risk must be 

taken into account when managing optimal capital. 

 

2. Literature 

2.1 Context 

The emergence of liquidity risk in the last financial crisis has underlined the importance of 

better understanding this risk. This risk prompted the changes to the risk management 

regulation of banks in 2010. Specifically, under Basel III, regulated banks must now 

calculate two ratios to demonstrate their protection from liquidity risk: 
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- The Liquidity Coverage Ratio (LCR) 

- The Net Stable Funding Ratio (NSFR) 

The objective of the LCR is to allow financial institutions to prove that they can withstand 

liquidity risk. It is a means for the regulators to ensure that banks have enough highly liquid 

assets to face a stress scenario for one month. The NSFR encourages banks to prove their 

long-term robustness by using more stable sources of financing in their operations (Gomes 

and Khan, 2011). Banks are asked to set aside more capital, especially better quality capital. 

In addition, the capital standards are more flexible and the requirements also concern 

banks’ leverage (Gauthier and Tomura, 2011; Bao et al., 2016; Anderson and Stulz, 2017). 

Our study period covers the introduction of the Dodd-Frank Act in the United States. The 

Act includes the Volcker Rule, designed to reduce banks’ speculative activities. According 

to Duffie (2012), the Rule could have side effects on bond liquidity that are attributable to 

a reduction in banks’ market activities. Recent studies of bond liquidity after the financial 

crisis diverge regarding the evolution of bond liquidity risk (Trebbi and Xiao, 2016; Dick-

Nielsen et al., 2012; Bessembinder et al., 2016; Bao et al., 2016). Given that our data period 

partly covers the post-crisis period, we will see how the Volcker Rule affected the cyclical 

variation of BBB liquidity risk.1 

We concentrate our study on liquidity risk in bond premiums because it is possible to access 

high-quality data on this asset class, and because the risk of these financial assets was 

relatively important during the last financial crisis (Dick-Nielsen et al., 2012). In fact, 

because bonds are not traded on an exchange but rather on the over-the-counter market, 

information on these transactions has been very opaque for many years. However, since 

January 2001, members of the Financial Industry Regulatory Authority (FINRA) have 

been required to report their secondary market of over-the-counter bond transactions to the 

TRACE database. This has increased transparency on the bond market since the launch of 

                                                           
1 These studies are discussed in the articles by Bao et al. (2016) and Anderson and Stulz (2017). Anderson 

and Stulz (2017) find a drop in bond turnover after the financial crisis explained by the trading of smaller 

quantities, yet traders continued to trade as often as in the period preceding the financial crisis. We will see 

that bond turnover explains only 12.5% of BBB bond total variance. 
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TRACE on July 1, 2002, which has shed more light on this financial asset traditionally 

known for its illiquidity.  

2.2 Credit spread puzzle 

The study by Huang and Huang (2012, first version in 2002) traces the origin of the credit 

spread puzzle, namely that structural models of default can explain only a portion of the 

bond premiums of bond yield spreads. Bond premiums are therefore no longer based on 

default risk alone. Huang and Huang (2012) found a proportion of default risk of about 

20% for top-quality bonds. 

Eom, Helwege and Huang (2004) tested five default structural models and concluded that 

such models do not explain total bond spreads. They find that the five studied structural 

models underestimate the total spread of the least risky bonds, namely those issued by firms 

that have little leverage or asset volatility, and they observe an overestimation of total 

spreads in the riskiest firms. 

Elton et al. (2001) also sought to explain the composition of bond premiums using a 

statistical model. Their research rests on the premise that bond premiums are explained by 

an unexpected default risk, a tax premium and a market risk premium. To determine the 

portion of the spread due to default risk, the authors use a model where the marginal default 

probabilities are computed using a transition matrix. With a sample ranging from 1987 to 

1996, the authors find that default risk explains only about 25% of bond spreads, a result 

similar to that obtained by Huang and Huang (2012) and Collin-Dufresne et al. (2001). 

Dionne et al. (2010) report a higher proportion for default risk (about 50%) by considering 

different transition matrices from 1987 to 1996.  

Given the questions raised by the credit spread puzzle, new techniques were developed to 

estimate the default risk inherent in bond premiums. Longstaff et al. (2005) explain the 

composition of bond spread by using CDS premiums to measure default risk. Their main 

hypothesis is that CDS premiums are composed solely of the default risk of bonds on which 

the contract is written. CDS buyers want a contract to protect themselves from a possible 

default by the bond-issuing firm. In exchange for payments of quarterly premiums to CDS 

sellers, buyers obtain the face value of the bond if the bond issuer defaults before the expiry 
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of the hedging contract. With a sample ranging from 2001 to 2002, Longstaff et al.’s (2005) 

results imply that default risk represents about 53% of premiums of superior quality bonds, 

and that the lower the bond’s credit rating, the greater the proportion of default risk in the 

spread. They assert that default risk represents most of the bond spread for different credit 

ratings, contrary to previous studies. However, their sample covers only a short period with 

few observations. Further, Longstaff et al. (2005) studied the non-default component of 

yield spreads. They found little evidence that this component is influenced by taxes, in 

contrast with the study by Elton et al. (2001). In addition, they affirm that the non-default 

portion is linked to illiquidity measures specific to bonds and to macroeconomic measures 

of bond market liquidity. Lin, Wang and Wu (2011) and Chen, Lesmond and Wei (2007) 

also confirm a non-negligible presence of liquidity risk in bond premiums.  

2.3 Liquidity risk in bond premiums 

Different types of modelling of liquidity risk have been developed in response to the credit 

spread puzzle. It is important to identify the factors that may determine the magnitude of 

this risk. Some studies assert that the differences found between higher-quality versus 

lower-quality bonds can be explained by macroeconomic factors. Also, a flight to quality 

was observed during the financial crisis for high-quality bonds that are less subject to 

liquidity risk (Dick-Nielsen et al., 2012).  

Han and Zhou (2008) analyze the effect of liquidity on the non-default component of bond 

yields. Their study builds on that of Longstaff et al. (2005), although they specifically 

assess the importance of liquidity risk in bond spreads. To measure the default component, 

Han and Zhou (2008) also use CDS premiums. They supplement their analysis with 

different measures of liquidity risk. Notably, after doing regressions on all of these 

measures and by controlling for other factors, the authors find a link between liquidity and 

the non-default component of higher-quality bonds, but not for speculative bonds. In 

addition, the non-default component seems to be greater for BBB bonds. It may reach up 

to 50% of the total spread. Bao, Pan and Wang (2011) observed that liquidity risk played 

a greater role in explaining temporal variations in bond premiums than did default risk in 

the case of higher-quality bonds (ratings between AAA and A) compared with other bonds. 
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A link between liquidity risk and the macroeconomic environment was observed by Dionne 

and Maalaoui Chun (2013), who, using a regime shift detection model, established a 

correspondence between the persistence of bond spreads and their power to predict 

economic cycles. Specifically, they affirmed that the liquidity regime has predictive power 

over bonds’ total yield spread, whereas default risk seems to be more associated with the 

persistent nature of the spread. They conclude that the last financial crisis began with an 

increase in liquidity risk in bond premiums followed by a persistent increase in default risk. 

In this study, we use a Markov regime switching model instead of a regime shift detection 

model. To our knowledge, this is the first time that the Markov model is applied to liquidity 

risk. 

Dick-Nielsen, Feldhütter and Lando (2012) observed an increase in the liquidity risk 

component of premiums of all bonds except for AAA bonds, at the start of the last financial 

crisis. Whereas they observed an increase of 5 basis points in AAA bond premiums, 

liquidity rose by 93 basis points for BBB bonds and between 58 and 197 basis points for 

speculative bonds. Friewald, Jankowitsch and Subrahmanyam (2012) obtained similar 

results concerning this flight-to-quality phenomenon. With a sample ranging from October 

2004 to December 2008, they analyzed two crisis periods: the General Motors (GM)/Ford 

crisis and the subprime crisis. Their results are interesting in that the comparison of the two 

crises shows that the flight to quality seems to be more evident during the subprime crisis 

than the GM/Ford crisis. Accordingly, they observe a decline in the number of bonds traded 

and in transactions on speculative bonds during the subprime crisis, whereas for higher-

quality bonds the number of bonds traded remained the same, while the number of 

transactions increased. This clearly reflects the flight-to-quality phenomenon that occurred 

during this crisis. However, for the GM/Ford crisis, the authors observed, in contrast, an 

increase in speculative bond trading. Finally, Maalaoui Chun et al. (2014) broke down bond 

spreads into three important components: default risk, liquidity risk and general market 

risk. They concluded that liquidity risk represents about 20% of BBB bond spreads whereas 

the default risk factor represents 18% and the market risk factor 28%. 
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3. Data  

We use the intraday data of US BBB corporate bonds in a sample that extends from July 

1, 2002 to March 31, 2015. The data come from TRACE. The Dick-Nielsen (2009) filter 

lets us eliminate transactions between clients and brokers, which are agency transactions. 

We use the ratings provided by Moody’s to identify BBB bonds. When a bond changes 

rating and is no longer BBB, it is removed from our panel. Conversely, if it becomes a 

BBB bond we add it to the sample. We thus do not keep bonds in periods of stress, as Bao 

et al. (2016) did.  

Among the bonds rated BBB, we keep straight bonds. These bonds possess no options such 

as redemption, conversion or sinking fund provision. In addition, the bonds selected 

distribute only fixed coupons and are senior and unsecured. We used FISD (Fixed Income 

Securities Database) data to select the BBB bonds. After having applied these filters, we 

obtained a sample of 7,229 US corporate BBB bonds and 3,607,635 intra-day prices 

between July 1, 2002 and March 31, 2015. 

4. Construction of the illiquidity risk index 

4.1 Measures used 

To obtain our illiquidity risk index, we begin by calculating the eight measures of liquidity 

risk specified by Dick-Nielsen et al. (2012). Then we apply a PCA to quantify an index of 

illiquidity. This approach lets us capture different facets of liquidity risk inherent in bond 

premiums and retain the essential components in a single measure.   

Amihud 

Amihud’s measure (2002) is one of the most widely used measures of financial product 

illiquidity. Its initial purpose was to measure illiquidity in stock returns, but, as Dick-

Nielsen et al. (2012) and Dionne and Maalaoui Chun (2013) demonstrated, it can also be 

used for other financial products such as bonds. To affirm the hypothesis that bond returns 

must increase with illiquidity, we create a measure defined as the mean ratio of absolute 
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daily return on volume in dollars traded that day. This ratio thus gives the daily impact on 

bond prices of one dollar of volume traded. For each bond i, we calculate the Amihud daily 

measure such that: 

 𝐴𝑚𝑖ℎ𝑢𝑑𝑡
𝑖 =

1

𝑁𝑡
𝑖 ∑

1

𝑄𝑗,𝑡
𝑖

𝑁𝑡
𝑖

𝑗=1

|𝑃𝑗,𝑡
𝑖 − 𝑃𝑗−1,𝑡

𝑖 |

𝑃𝑗−1,𝑡
𝑖  (1) 

where: 

𝑁𝑡
𝑖 represents the number of transactions of bond i observed on day t; 

𝑃𝑗,𝑡
𝑖  corresponds to the price of the jth transaction of bond i on day t; 

𝑄𝑗,𝑡
𝑖  (in dollars) represents the jth trading volume of bond i on day t. 

To calculate this measure, we apply the filter of Han and Zhou (2008), as in the study by 

Dionne and Maalaoui Chun (2013). This consists in excluding the price of transactions 

below $1 and over $500, along with prices that are 20% higher than the median price of 

the same day or the previous day. To obtain the measure we must verify that we have at 

least three transactions for each bond during a given day. 

Roll 

Roll (1984) developed a measure of effective bond spread. He pointed out that obtaining 

the bid-ask spread is difficult because these data are rarely published, and measurement of 

transaction costs may lead to different types of errors due to the various factors that must 

be considered. He therefore proposes an easy and inexpensive way to approximate this 

valuable information. Note that since November 2008 it is possible to determine whether 

a transaction price concerns a purchase or a sale. Given that our sample ranges from July 

2002 to April 2015 we use the Roll measure to ensure uniformity throughout our period of 

analysis: 

 𝑅𝑜𝑙𝑙𝑡
𝑖 = 2√−𝑐𝑜𝑣(∆𝑃𝑡

𝑖 , ∆𝑃𝑡−1
𝑖 ) (2) 

where ΔP refers to changes in transaction prices around a mean. Accordingly, the two 

variations in price are of opposite signs, generating negative covariance. This measure is 

calculated using a rolling window of 21 trading days that include at least four transactions.   
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IRC (Imputed Roundtrip Cost) 

An Imputed Roundtrip Cost can be defined as the difference between the price at which a 

dealer sells a bond to a client and the price at which the dealer buys the bond from another 

client. Feldhütter (2012) builds on this notion by introducing the IRT (Imputed Roundtrip 

Trade). In the IRT, the highest price (max) corresponds to the investor’s purchases from 

the dealer, and the lowest price (min) is the price at which the investor sells to the dealer. 

The investor’s Imputed Roundtrip Cost (IRC) is the difference between these two prices. 

Given that the IRT reflects transaction costs, we can expect that the higher the IRT, the 

more illiquid the market. Therefore for each day, we calculate the mean estimates of daily 

IRC for different trading volumes. The measure is expressed as follows, with 𝑃𝑚𝑎𝑥
𝑖  and 

𝑃𝑚𝑖𝑛
𝑖  representing the maximum and minimum price in the round-trip cost for the same 

volume:  

 𝐼𝑅𝐶𝑡
𝑖 =

𝑃𝑚𝑎𝑥
𝑖 − 𝑃𝑚𝑖𝑛

𝑖  

𝑃𝑚𝑎𝑥
𝑖  (3) 

This is a pure price index of illiquidity, as it is for the Roll measure. 

Turnover 

The Turnover measure lets us calculate the daily turnover of a bond. The inverse of this 

measure indicates the average holding time of a bond. The longer a bond is held, the greater 

the inverse of the Turnover and the less liquid the bond.  

 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡
𝑖 =

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒𝑡
𝑖

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑖  (4) 

Zero bond  

Lesmond, Ogden and Trzcinka (1999) analyze another measure of illiquidity based on 

transaction costs: the zero-return measure. They thus propose an alternative to the usual 

yield spread by using time series of daily returns of a financial asset. This measure is the 

number of zero trading days for a given asset during a given period. If it costs too much 

for dealers to carry out a transaction by considering the value of their information signal, 

they will reduce their trading or not trade at all, which would translate into a zero return. 
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Therefore, the higher the number of zero trades during a period, the more illiquid the bond. 

We obtain the zero bond measure by using a rolling window of 21 trading days:  

 𝑧𝑒𝑟𝑜 𝑏𝑜𝑛𝑑𝑡
𝑖 =

number of zero bond 𝑖 trades within the rolling window

number of days in the rolling window
. (5) 

Zero firm  

The zero firm measure is very similar to the zero bond measure. It measures the number of 

days in which none of a firm’s bond issues is traded. As above, we obtain a measure for 

bond i of firm j by using a rolling window of 21 trading days:  

 𝑧𝑒𝑟𝑜 𝑓𝑖𝑟𝑚𝑡
𝑖𝑗

=
number of zero firm 𝑗 trades within the rolling window

number of days in the rolling window
 (6) 

Amihud Risk and IRC Risk 

The daily measures Amihud Risk and IRC Risk refer to the standard deviation of the 

Amihud and IRC measure respectively. These two measures thus capture the variability in 

bond illiquidity. They are constructed using a rolling window of 21 trading days.  

4.2 Liquidity risk index 

After calculating the various measures, we can perform a principal component analysis 

(PCA) to obtain a liquidity risk index. Our illiquidity index therefore corresponds to a linear 

combination of the results obtained from the principal component analysis. Specifically, 

each measure selected by the PCA is defined by 𝑙𝑖𝑡
𝑘 ,  where i is for a bond, t is a measure 

of time, and k corresponds to a chosen measure of liquidity risk. Each measure is then 

standardized to obtain 𝑙𝑖̅𝑡
𝑘 =  

𝑙𝑖𝑡
𝑘 − 𝜇𝑘

𝜎𝑘
, where 𝜇𝑘 and 𝜎𝑘 correspond to the mean and standard 

deviation of the liquidity risk measure k. The daily measure of liquidity risk 𝜑𝑖𝑡 is then 

obtained by a linear combination of different standardized measures of liquidity: 

 𝜑𝑖𝑡 =  ∑  𝜆𝑘 𝑙𝑖̅𝑡
𝑘𝐾

𝑘=1  (7) 

where K is the number of liquidity measures retained from the principal component 

analysis and 𝜆𝑘represents their different weights. 
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5. Identification of liquidity regimes 

We assume that the data are part of a dynamic system of two possible states. At any time, 

the system can be in any state. Our objective is to distinguish high liquidity risk periods 

from low liquidity risk periods. We use information on the illiquidity index identified in 

the previous section exclusively. In Appendix A.1, we describe the Markov model in detail. 

We use a daily time series of our measure of liquidity risk. We estimate a dynamic 

regression model that best corresponds to daily data frequency. Our model can thus be 

described as follows: 

State 1: 𝑅𝑙𝑖𝑞𝑡 = 𝜇1 + 𝜀1 

State 2: 𝑅𝑙𝑖𝑞𝑡 = 𝜇2 + 𝜀2 

with 𝑅𝑙𝑖𝑞𝑡 as the liquidity risk measure. 

The transition probabilities 𝑝11, 𝑝12, 𝑝21 and 𝑝22 are estimated. Estimating the transition 

probabilities of our model leads us to calculate the ergodic probabilities of a two-state 

Markov chain. Specifically, we can detect an ergodic Markov chain. 

To better represent the two regimes identified in our sample, we will calculate the values 

predicted by our model. Note that in our model, 𝜇1 represents the mean of our measure of 

liquidity risk during regime 1, and 𝜇2 the mean during regime 2. We can then observe how 

our measure behaves over time, relative to economic events such as the last financial crisis, 

which ran from July 2007 to March 2009, and the last NBER recession, which ran from 

December 2007 until June 2009. 

6. Analysis of results 

6.1 Principal component analysis (PCA) 

The goal of a PCA is to transform a set of potential correlated variables into a set of linearly 

independent variables or principal components (PC). The first PC obtained is the 

component that explains most of the total illiquidity variance. This procedure is particularly 
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useful when we suspect strong correlation between the variables that we plan to use. 

Moreover, the methodology helps reduce model overfitting. 

To create our illiquidity risk index, we perform a principal component analysis that uses as 

inputs the eight measures proposed in Section 4. Given that these measures capture 

different facets of liquidity risk, we want to obtain a global measure that would represent 

a synthesis of the previous measures. First, we review the statistics for these measures in 

Tables 1 and 2. After having applied the filter of Han and Zhou (2008), we retained 

2,808,041 prices, which represent about 78% of our initial sample. This filter excludes 

irregularities in bond transaction prices. 

 Amihud 
Amihud 

Risk 
IRC 

IRC 

Risk 
Roll Turnover Zero Bond 

Zero 

Firm  

Mean 0.8461 0.9116 0.0073 0.0054 1.4692 0.2406 0.2293 0.0780 

Standard 

deviation 
1.8562 1.4977 0.0081 0.0043 1.2185 23.5365 0.2461 0.1761 

Table 1: Means and standard deviations of eight standardized illiquidity measures  

Table 1 indicates that the standardized measures with the highest standard deviations are 

Turnover, at 23.54, followed by the Amihud, Amihud Risk and Roll measures, at 1.86, 

1.50 and 1.22 respectively. Turnover is a liquidity measure, unlike the other illiquidity 

measures. Further, the measures with the lowest standard deviations are IRC and IRC Risk. 

These values are not directly comparable but may be useful when we look at the results of 

the PCA. 

 
IRC 
Risk 

Amihud 

Risk  

Zero 

Bond 
Turnover Roll Amihud IRC 

Zero 

Firm 

 

IRC Risk 1 0.3590 0.0557 0.0034 0.5254 0.2394 0.4594 0.0293 

Amihud Risk 0.3590 1 0.0307 0.0008 0.3114 0.4527 0.2007 0.0198 

Zero Bond 0.0557 0.0307 1 0.0148 0.0166 0.0297 0.0419 0.3945 

Turnover 0.0034 0.0008 0.0148 1 0.0046 -0.0014 0.0004 0.0063 

Roll 0.5254 0.3114 0.0166 0.0046 1 0.2098 0.3296 0.0139 

Amihud 0.2394 0.4527 0.0297 -0.0014 0.2098 1 0.3432 0.0138 

IRC 0.4594 0.2007 0.0419 0.0004 0.3296 0.3432 1 -0.0023 

Zero Firm 0.0293 0.0198 0.3945 0.0063 0.0139 0.0138 -0.0023 1 

Table 2: Correlation matrix of eight illiquidity measures 
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Table 2 shows that some measures seem to have a high correlation with the others. The 

measures with the strongest correlations are IRC Risk, Amihud Risk, Roll, Amihud and 

IRC. The Roll and IRC Risk measures demonstrate the strongest correlation, at 0.53. The 

IRC measure has a correlation of 0.46 with IRC Risk, followed closely behind by Amihud 

and Amihud Risk with 0.45. These correlations justify the use of a PCA. 

Table 3 shows the eigenvalues of the PCA, which indicate the percentage of total variance 

explained by each eigenvector chosen, whose details are presented in Table 4. Eight 

eigenvalues are calculated, and the proportion of the total variance explained in the last 

column depends on the eigenvector or principal component chosen. For example, the first 

eigenvector (PC1) explains 29.84% of the variance of our sample. By comparison, the 

second eigenvector (PC2) explains 17.37% of the total variance. The third principal 

component (PC3) explains 12.5% of the total illiquidity variance. 

 Eigenvalue  Difference Proportion Cumulative 

PC1 2.38726873 0.99799498 0.2984 0.2984 

PC2 1.38927375 0.38937574 0.1737 0.4721 

PC3 0.99989801 0.04106077 0.1250 0.5971 

PC4 0.95883724 0.19952469 0.1199 0.7169 

PC5 0.75931255 0.15594887 0.0949 0.8118 

PC6 0.60336368 0.10195510 0.0754 0.8872 

PC7 0.50140857 0.10077111 0.0627 0.9499 

PC8 0.40063746  0.0501 1 

Table 3: Eigenvalues of the eight PCA measures  

Table 4 illustrates the composition of the different eigenvectors. All of the measures of 

illiquidity are represented therein. We can also observe their contributions to the 

eigenvectors, which lets us choose the measures to incorporate in our liquidity risk index.  

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

IRC Risk 0.5004 -0.0189 0.0335 -0.3758 -0.1124 -0.0396 -0.4127 -0.6499 

Amihud Risk 0.4284 -0.032 -0.0418 0.4955 -0.4561 -0.1019 -0.4334 0.4024 

Zero Bond 0.0695 0.7020 -0.0155 -0.008 0.0924 -0.6973 0.0848 0.0096 

Turnover 0.0036 0.0373 0.995 0.0915 0.0079 0.0154 -0.0029 -0.0004 

Roll 0.4520 -0.0518 0.0422 -0.4033 -0.4025 0.0240 0.6353 0.2497 
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Amihud 0.4046 -0.0364 -0.0603 0.6278 0.2865 0.0844 0.4431 -0.3895 

IRC 0.4372 -0.0432 0.0128 -0.2193 0.7205 0.0823 -0.1776 0.4486 

Zero Firm  0.0443 0.7061 -0.0374 0.0049 -0.0866 0.698 -0.0564 0.0171 

Table 4: Eigenvector composition 

From Tables 3 and 4, we conclude that the chosen illiquidity risk index is made up of the 

following five measures: IRC Risk, Roll, IRC, Amihud Risk and Amihud. These measures 

present the strongest coefficients in PC1, at 0.50, 0.45, 0.44, 0.43, and 0.40 respectively, 

and they explain almost 30% of the total variance. Note that the results observed with the 

correlation matrix in Table 2 already suggested this output because we previously noted 

that these measures had the strongest correlations. Given that the five coefficients are fairly 

similar, we opt to give them equivalent weight in constructing the index. In addition, no 

eigenvector is correlated to any other one, which implies that the compositions of the other 

eigenvectors are very different. For example, PC2 is highly influenced by Zero Bond and 

Zero Firm, whereas Turnover is almost the only variable that explains PC3.  

Our results are slightly different from those obtained by Dick-Nielsen et al. (2012) and 

Dionne and Maalaoui Chun (2013). In the first case, the authors obtained a composite index 

of the Amihud, Amihud Risk, IRC and IRC Risk measures. In the second case, they found 

a composite index of the IRC, IRC Risk and Roll measures. The differences may be 

explained by the analysis of different periods and by the composition of bonds used. 

Notably, Dick-Nielsen et al. (2012) worked with a sample that covered January 1, 2005 to 

June 30, 2009, whereas the sample examined by Dionne and Maalaoui Chun (2013) ranges 

from July 1, 2002 to December 31, 2012. In both cases, the authors studied a combination 

of bonds with different credit ratings, whereas our investigation focuses on BBB bonds. 

6.2 Analysis of the illiquidity index 

Figure 1 below shows a graphical representation of the median monthly values of our 

illiquidity risk measure (Rliq). The graphical representation of the five illiquidity measures 

retained in PC1 are presented in Appendix A.3. 
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Figure 1: Time series of the Rliq measure between July 2002 and April 2015  

We can see various spikes in the series. Notably, Figure 1 shows the spikes associated with 

the GM/Ford crisis that affected the US bond market in 2005-2006. This is reflected by the 

fact that Rliq approaches the value of zero, which is higher than the mean of around -0.2. 

The largest spikes observed are those that correspond to the recent financial crisis, which 

occurred in late 2008 and in 2009, with values that exceed 0.4. This clearly underlines the 

importance of liquidity risk on the US bond market during the last financial crisis. 

Following these spikes, our measure drops quickly in the second half of 2009, and then 

returns to precrisis levels followed by a gradual slight decline. Therefore, the measure 

drops below the -0.2 level in 2011 and continues this downward trend. These results clearly 

indicate that BBB bonds lose illiquidity after 2010. The TARP intervention started in 

October 2008, when illiquidity converged to its highest value. The TARP program thus 

seems to have restored liquidity in the market very efficiently, at least for BBB bonds. 
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Figure 2: Rliq measure observed relative to the NBER recession 

(December 2007-June 2009) 

 

 
Figure 3: Rliq measure observed relative to the last financial crisis 

(July 2007-March 2009) 

In Figures 2 and 3, we observe the evolution of our index relative to the last NBER 

recession (December 2007-June 2009) and the last financial crisis (July 2007-March 2009). 

These results are interesting because first we can see that the crisis indeed began with an 

immediate increase in liquidity risk in the bond market. We observe the first spike in the 

beginning of 2008. This main spike seems to correspond to the Lehman Brothers 

bankruptcy in September 2008. The crisis ends with a last spike in bond liquidity risk, and 

the index then rapidly decreases to precrisis levels in early 2010. By comparison, the NBER 

recession began with a increase in bond liquidity risk and ended in the middle of a slump 

in bond liquidity risk. We can compare these results more extensively with the regime 

detection model.  



 

18 

6.3 Identification of illiquidity regimes 

First, we apply the Markov model to the daily data of our measure Rliq, then to the monthly 

data to better represent the results graphically. We use the median of our daily data in order 

to obtain the monthly data. 

Liquidity Coefficient Standard error 

State1   𝜇1 -0.2359 0.0031 

State2   𝜇1 0.0672 0.0068 

Sigma  0.1416 0.0018 

p11 0.9988 0.0007 

p21 0.0047 0.0026 

Sample: 2002-07-01  ̶  2015-03-31 

Number of states = 2 

Log likelihood = -1692.7461 

Note: State 1: 𝑅𝑙𝑖𝑞𝑡 = 𝜇1 + 𝜀1; State 2: 𝑅𝑙𝑖𝑞𝑡 = 𝜇2 + 𝜀2. 

Table 5: Results of daily data with Markov-switching dynamic regression 

Table 5 presents the results with the daily data. The table shows that 𝜇1= -0.2359. We can 

characterize Regime 1 as a low liquidity risk regime. In addition, 𝜇2 = 0.6722, which 

corresponds to the high liquidity risk regime. After evaluating the likelihood function, we 

can determine the transition probabilities. Table 5 shows that p11, which is the probability 

of being in the low liquidity risk regime and remaining there for the next period, is 0.9988. 

Therefore, the probability of being in a low liquidity risk regime and going to a high 

liquidity risk regime, which we call p12, is 0.0012. Further, p22, which is the probability 

of being in a high liquidity risk regime and staying there for the next period, is 0.9953. In 

addition, the probability p21, which is to go from regime 2 to regime 1, is 0.0047. It is not 

surprising to see that the probabilities of changing regimes are very low, which emphasizes 

that regime changes are rare events.  
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Liquidity Coefficient Standard error 

State1   𝜇1 -0.1974 0.0092 

State2   𝜇1 0.2945 0.0373 

Sigma  0.1090 0.0063 

p11 0.9934 0.0066 

p21 0.0967 0.0872 

Sample: 2002m7  ̶  2015m3 

Number of states = 2 

Log likelihood = -113.86842 

Table 6: Results of monthly data with Markov-switching dynamic regression 

The results of our monthly data, shown in Table 6, are similar to those of daily data. We 

observe that 𝜇1= -0.1974 in this case, which is close to the value found with the daily data. 

However, 𝜇2= 0.2945, which is far from the value found with the daily data, is probably 

explained by the use of monthly medians. Regarding the transition probabilities, p11 = 

0.9934, p12 = 0.0066, p21 =0.0967, and p22= 0.9033. Interestingly, even if the probability 

of remaining in a low liquidity risk regime is still as high as with daily data, the probability 

of remaining within a high liquidity risk regime is lower. Therefore, monthly data indicate 

that remaining in a high liquidity risk regime is less likely to persist than with daily data. 

However, the probability is over 90%, which is still high. 

6.4 Graphical representation of regimes 

We examine the graphical representation of these results to draw other conclusions on the 

links between illiquidity regimes and both the last NBER recession and the last financial 

crisis. Given the values obtained by applying the model, we can predict the current regime 

over time. Note that we used the monthly medians of our daily values in the charts below.  

Figure 4 shows the dates where the model allows us to predict a regime change. First, we 

can see that after a period of a low liquidity risk regime, the model predicts a change to a 

high liquidity risk regime in late 2008 at about the date of the Lehman bankruptcy. We thus 

switch from a regime where the liquidity risk of bond premiums is around -0.2 to one where 

it is around 0.2. Further, this high illiquidity risk regime ends in September 2009, and then 
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returns to a low liquidity risk regime until the end of the sample period. Also note that 

although our measure Rliq indicates an increase in liquidity risk linked to the GM/Ford 

crisis, it does not seem sufficiently strong to signal a regime change. This observation 

accentuates the fact that the financial crisis was characterized particularly by a rise in 

liquidity risk, relative to what was observed in recent years in the US corporate bond 

market. We can consequently put these regime changes into context compared with the last 

financial crisis, along with the NBER recession. 

 

Figure 4: Regime detection using Rliq 

Figure 5 shows that the bond regime changes more than a year after the crisis begins. 

Saunders and Allen (2010) and Dionne and Maalaoui Chun (2013) date the start of the 

crisis to July 2007. Dionne and Maalaoui Chun (2013) found that the last financial crisis 

began with a rise in liquidity risk, and hence observed the presence of a second regime 

starting in June 2008, which is not far from the date of September 2008.  

These differences may be due to the Markov model, which is limited to two states or 

regimes, or to the fact that our sample comprises BBB bonds exclusively. The data in the 
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study by Dionne et al. (2013) include B and BB bonds. In addition, the type of model 

detection regime in the study by Dionne and Maalaoui Chun (2013) differs from the 

Markov model. Those authors used a “regime shift” model, whereas our model is a Markov 

“regime switching” model.  

 

Figure 5: Illiquidity index during the financial crisis (July 2007-March 2009) 

We now look at our regimes during the NBER recession. Notably, we can observe that the 

NBER recession began about one year before the appearance of our high liquidity risk 

regime for BBB bonds, which is a significant lag. The predictive nature of liquidity risk on 

the economic recession is refuted with the Markov model. However the NBER recession 

ended in June 2009, and our high liquidity risk regime declined a few months later, which 

may reveal the persistence of illiquidity after the recession.  
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Figure 6: Illiquidity index during the NBER recession (December 2007-June 2009) 

In a recent study, Bao et al. (2016) analyzed the effect of the Volcker Rule on bond 

liquidity. The objective of the Rule included in the Dodd-Frank Act was to limit banks’ 

speculative activities. Using a difference-indifference analysis, Bao et al. (2016) studied 

whether illiquidity has become worse in periods of bond stress since the Volcker Rule 

(April 1, 2014). They also considered the new liquidity rules implemented by Basel III. 

They confirm that the introduction of the Volcker Rule reduced liquidity for BBB bonds 

exposed to stress events (downgraded from investment-grade BBB to speculative-grade 

BB), after the implementation of the Rule in April 2014. As Figure 6 indicates, we do not 

observe such an effect for the BBB bonds in our data probably because we did not keep 

downgraded BBB bonds in our sample. It seems that the Volker Rule did not affect the 

liquidity of non-stressed bonds significantly. 
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7. Conclusion 

We applied the methodology framework used by Dick-Nielsen et al. (2012) to measure the 

liquidity risk of corporate bonds. We obtained a compound index of the Amihud, Amihud 

Risk, Roll, IRC and IRC Risk measures. This result differs slightly from those obtained by 

Dick-Nielsen et al. (2012) and Dionne and Maalaoui Chun (2013). In the first case, the 

authors found an index made up of the Amihud, Amihud Risk, IRC and IRC Risk measures. 

The second set of authors found an index composed of Roll, IRC and IRC Risk.  

We have identified two liquidity risk regimes in our sample by applying the Markov model 

(1994). The advantage of using the Markov chain model to detect regimes is mainly its 

flexibility and simplicity to model a time series made up of discrete variables. We find that 

our first regime, namely the low liquidity risk regime, extends initially from the start of our 

sample period in July 2002 until September 2008. It then reappears from September 2009 

until the end of our sample period in March 2015. The second regime therefore lasts from 

September 2008 to August 2009 and begins with the Lehman bankruptcy during the 

financial crisis and persists after the end of both the financial crisis and the NBER 

recession. These results do not affirm the predictive nature of liquidity risk regarding the 

NBER recession of 2007-2009, meaning that liquidity regimes must be distinguished from 

both economic regimes and default regimes. Therefore, capital management for liquidity 

risk must be based on liquidity risk per se. Moreover, regime detection techniques must be 

included in banks’ optimal capital management for both liquidity risk and credit risk. 
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Appendix 

A.1 Markov chains 

Let 𝑠𝑡 be a random variable that can take values in {1,2, …, N} only. We assume that the 

probability that the unobservable state variable 𝑠𝑡 is equal to j depends solely on the most 

recent value 𝑠𝑡−1. Therefore: 

 P{𝑠𝑡= j | 𝑠𝑡−1 = i, 𝑠𝑡−2 = k, …}= P{𝑠𝑡= j | 𝑠𝑡−1= i} = 𝑝𝑖𝑗.  (A1) 

𝑝𝑖𝑗 is defined by the probability that the state i is followed by the state j. 𝑝𝑖𝑗 is thus a 

transition probability from a Markov chain with N states and is between 0 and 1. One of 

the properties of transition probabilities is that: 

𝑝𝑖1+ 𝑝𝑖2 + … + 𝑝𝑖𝑁 = 1. 

In addition, these transition probabilities can be represented in a transition matrix (N x N): 

 P= [

𝑝𝑖1  𝑝21 ⋯ 𝑝𝑁1

 𝑝12  𝑝22 ⋯  𝑝𝑁2

⋮ ⋮ ⋯ ⋮
𝑝𝑖𝑁  𝑝2𝑁 ⋯ 𝑝𝑁𝑁

]. (A2) 

Another way to represent a Markov chain is to use the random vector (N x 1) for which the 

jth element is equal to 1 if 𝑠𝑡 = j and is equal to 0 otherwise. Consequently, we can represent 

the vector as follows: 

 𝝃𝑡 = {

(1, 0. 0. … , 0)′  𝑤ℎ𝑒𝑛  𝑠𝑡 = 1
(0. 1, 0. … , 0)′  𝑤ℎ𝑒𝑛  𝑠𝑡 = 2

⋮
 (0. 0. 0. … , 1)′  𝑤ℎ𝑒𝑛  𝑠𝑡 = 𝑁 

 (A3) 

 We can then see that when 𝑠𝑡 = 1, the vector 𝝃𝑡 is equal to the first column of the identity 

matrix 𝑰𝑁 (N x N) and so on.  

If  𝑠𝑡 = i, then the jth element of  𝝃𝑡+1 is a random variable that takes the value of 1 with 

the probability  𝑝𝑖𝑗 and is equal to 0 otherwise. The mean of this random variable is 

therefore 𝑝𝑖𝑗. Its conditional mean at 𝑠𝑡 = i is given by: 
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 E (𝝃𝑡+1| 𝑠𝑡 = i) = [

 𝑝𝑖1

 𝑝𝑖2

⋮
 𝑝𝑖𝑁

],  (A4) 

which is also the ith column of the P matrix. Further, given that the vector 𝝃𝒕 corresponds 

to the ith column of 𝑰𝑁 when  𝑠𝑡 = i, then (A4) can be written as: 

E(𝝃𝑡+1| 𝝃𝑡) = P 𝝃𝑡. 

In addition, owing to the Markov property we obtain: 

E(𝝃𝑡+1| 𝝃𝑡, 𝝃𝑡−1, …) = P 𝝃𝑡. 

The Markov chain can therefore be expressed by: 

 𝝃𝑡+1 = P 𝝃𝑡 +  𝒗𝑡+1  (A5) 

where 𝒗𝑡+1 =  𝝃𝑡+1 – E (𝝃𝑡+1| 𝝃𝑡, 𝝃𝑡−1,…). 

From expression (A5) we obtain: 

 𝝃𝑡+𝑚 = 𝒗𝑡+𝑚 + P 𝒗𝑡+𝑚−1 + 𝑷2𝒗𝑡+𝑚−2 + … + 𝑷𝑚−1𝒗𝑡+1 + 𝑷𝑚𝝃𝑡  (A6) 

where 𝑷𝑚indicates the transaction matrix multiplied by itself m times. Therefore, the 

prediction of a Markov chain in m periods can be obtained with: 

 E (𝝃𝑡+𝑚|𝝃𝑡, 𝝃𝑡−1, …) = 𝑷𝑚𝝃𝑡. (A7) 

Specifically, the probability that an observation of regime i is followed m periods later by 

an observation of regime j, P (𝑠𝑡+𝑚= j | 𝑠𝑡 = i), is given by line j and column i of the 𝑷𝑚 

matrix. 

An irreducible Markov chain with N states and a transition matrix P is called ergodic if 

one of the eigenvalues of P is 1 and all the other eigenvalues of P fall within the unit circle. 

The vector of (N x 1) of the ergodic probabilities of an ergodic chain is noted as π and 

satisfies: 

 Pπ = π (A8) 
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The vector π is defined as the eigenvector of P associated with a unitary eigenvalue. This 

eigenvector is unique and can be seen as indicating the unconditional probability of each 

different state N. It is also called the unconditional probability vector.  

A.2 Structure of Hamilton’s model (1994) 

We use a dynamic regression model representation. In the case of a dynamic regression, 

the model adjusts more quickly when the process changes regimes. It is also more suited 

to higher frequency data than an autoregressive model is. The general model using a 

dynamic regression can be represented as: 

 𝑦𝑡 = 𝜇𝑠 + 𝒙𝑡𝜸 +  𝒛𝑡𝜷𝑠 + 𝜀𝑠 (A9) 

where 𝑦𝑡 is the dependent variable, 𝜇𝑠 is the dependent intersection of the regime, 𝒙𝑡 is a 

vector of exogenous variables with parameters (𝜸) that do not depend on s, 𝒛𝑡 is another 

vector of exogenous variables with parameters (𝜷𝑠) that are a function of s, and 𝜀𝑠 is the 

normal error term i.i.d., with a mean of 0 and dependent variance of the regime is 𝜎𝑠
2. To 

estimate the model, we can use the Maximum Likelihood Method.   

We can write the conditional density function of 𝑦𝑡 as: 

 f (𝒚𝑡|𝑠𝑡 = 𝑗, 𝒙𝑡, 𝒀𝑡−1; 𝜶) for all j (A10) 

where 𝜶 is a vector of the parameters that characterize the conditional density function, 𝒚𝑡 

is a vector of the endogenous variables, and 𝒙𝑡 is a vector of the exogenous variables. 𝒀𝑡−1 

is a vector containing all past observations of 𝒚 and x. Therefore, the marginal density 

function of 𝑦𝑡is obtained by weighting the different conditional density functions by their 

respective probabilities. We obtain:  

 f (𝑦𝑡| α) = ∑ f(𝑦𝑡|𝑠𝑡 = 𝑗, 𝑥𝑡, 𝑌𝑡−1; 𝜶)𝑁
𝑗=1  Pr(𝑠𝑡 = 𝑗; α). (A11) 

The likelihood function requires us to estimate the probability that 𝑠𝑡 takes a specific value 

by observing the data until time t; we must also model the α parameters. 

Let Pr(𝑠𝑡 = 𝑗|𝑦𝑡; α) be the conditional probability of identifying 𝑠𝑡 = j by observing the 

data until time t. Therefore: 
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 Pr(𝑠𝑡 = 𝑗|𝑦𝑡; α) = 
f(𝑦𝑡|𝑠𝑡=𝑗,𝑥𝑡,𝑌𝑡−1;𝜶)Pr(𝑠𝑡=𝑗|𝑌𝑡−1; 𝛂)

f(𝑦𝑡|𝑥𝑡,𝑌𝑡−1;𝜶)
 (A12) 

where f (𝑦𝑡|𝑥𝑡, 𝑌𝑡−1; 𝜶) is the likelihood function of 𝑦𝑡 and Pr(𝑠𝑡 = 𝑗|𝑌𝑡−1;  𝛂) is the 

anticipated probability of  𝑠𝑡 = 𝑗 given the observations until time t-1. Consequently: 

 Pr(𝑠𝑡 = 𝑗|𝑦𝑡−1; α) =  ∑ Pr(𝑠𝑡 = 𝑖|𝑠𝑡−1 = 𝑗; 𝑦𝑡−1; 𝛂)Pr(𝑠𝑡−1 = 𝑗|𝑦𝑡−1;  𝛂)𝑁
𝑗=1 . (A13) 

We note as 𝝃𝑡|𝑡 and 𝝃𝑡|𝑡−1the vectors (k x 1) of conditional probabilities Pr(𝑠𝑡 = 𝑗|𝑦𝑡; α) 

and Pr(𝑠𝑡 = 𝑗|𝑦𝑡−1; α) respectively. The likelihood function is obtained by iteration.   

The maximum likelihood function can be written as: 

 L(α) = ∑ log 𝑓(𝒚𝑡 | 𝒙𝑡, 𝒀𝑡−1
𝑇
𝑡=1 ;  𝜶) (A14) 

where f (𝒚𝑡 | 𝒙𝑡, 𝒀𝑡−1 ; α) =  𝟏′ ( 𝝃𝑡|𝑡−1 ʘ 𝜼𝑡) 

and 𝜼𝑡 is the vector of conditional density functions. In our application, we do not use 

control variables and we assume there are only two states, so 𝑦𝑡 = 𝜇𝑠 + 𝜀𝑠, 𝑠 = 1,2. 

A.3 Retained components of the illiquidity index 

Amihud 

To obtain figures A.3.1 to A.3.5 in this section, we calculated the monthly median values 

of each measure.  
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Figure A.3.1: Time series of the Amihud measure between July 2002 and April 2015 

Figure A.3.1, which represents the Amihud measure in our sample, illustrates spikes in 

liquidity risk. The two highest spikes occurred in late 2008-2009 with a respective value 

of about 0.72 and 0.88, which would coincide with the last financial crisis. These results 

are therefore in line with previously reported observations by Dick-Nielsen et al. (2012) 

and Maalaoui Chun and Dionne (2013), which demonstrate an increase in liquidity risk 

during the financial crisis. In addition, we can see two other peaks of lesser amplitude 

between 2005 and 2006, with values of about 0.53 and 0.58. This period corresponds to 

the crisis that affected General Motors (GM) and Ford in 2005: their bonds were 

downgraded to junk status. The results of the Amihud measure suggest that this crisis 

indeed caused an increase in the liquidity risk on the US corporate bond market. Lastly, we 

can see that in late 2013, the Amihud measure fell to a lower level than previously 

observed, and decreases until the end of the sample period.    

Amihud Risk 

The Amihud Risk measure represents the standard deviation of the Amihud measure. As 

Figure A.3.2 indicates, two spikes occur during the financial crisis, with values 

approaching 1.2 and 1. The first peak is higher than the second, contrary to the pattern of 

the Amihud measure. Spikes also occur in 2005-2006, with values approaching 0.7 and 
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0.8, which corresponds to the GM/Ford crisis. Here again, we can see that after the financial 

crisis, the Amihud Risk gradually decreases until the end of the sample period.  

 

Figure A.3.2: Time series of the Amihud Risk measure between July 2002 and April 2015 
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IRC 

Figure A.3.3 illustrates the results produced by the IRC measure. The measure is slightly 

different in form from those of the previous charts. There are still spikes during the last 

financial crisis, but they seem to be represented by a single, longer lasting spike. The spikes 

of the GM/Ford crisis of 2005-2006 also seem to last longer. However, starting in late 

2011, we can also note a decline in the value of the IRC measure, which continues until 

the end of the sample period. It is therefore interesting to compare these results with those 

of the standard deviation of IRC. 

 

Figure A.3.3: Time series of the IRC measure between July 2002 and April 2015 

IRC Risk 

Figure A.3.4 presents the results of the calculations of the IRC Risk measure. It shows the 

spikes of the last financial crisis, with values close to 0.008 and 0.007. Here again, we 

observed the spikes of the GM/Ford crisis of 2005-2006, with values approaching 0.006 

and 0.007. However, the difference between the spikes of these two crises seems lesser 

than in the other risk measures. In addition, this risk stabilizes after the financial crisis 

instead of decreasing, as it does for the previous measures. 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

2
0

0
2

2
0

0
3

2
0

0
3

2
0

0
4

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
6

2
0

0
7

2
0

0
7

2
0

0
8

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
0

2
0

1
1

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
3

2
0

1
4

2
0

1
4

IRC



 

34 

 

Figure A.3.4: Time series of the IRC Risk measure between July 2002 and April 2015   

Roll 

The Roll measure produces results, shown in Figure A.3.5, that are consistent with those 

observed for the Amihud and IRC measures. We can see the spikes of 2008-2009 with 

values between 2.4 and 2.6, and those of the GM/Ford crisis in 2005-2006, whose 

amplitude seems similar to that of the previous spikes, at around 1.6-1.7. However, the 

spike in 2003 reaches a value of nearly 1.8, and is therefore higher than those of the 

GM/Ford crisis, for the first time. 

 

Figure A.3.5: Time series of the Roll measure between July 2002 and April 2015 
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