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Valuing Credit Derivatives Using Gaussian Quadrature: 
A Stochastic Volatility Framework 

 
Abstract 
 
This paper proposes semi-closed-form solutions to value derivatives on mean reverting assets. A 
very general mean reverting process for the state variable and two stochastic volatility processes, 
the square-root process and the Ornstein-Uhlenbeck process, are considered. For both models, 
semi-closed-form solutions for characteristic functions are derived and then inverted using the 
Gauss-Laguerre quadrature rule so as to recover the cumulative probabilities. As benchmarks, 
European call options are valued within the following frameworks: Black and Scholes (1973) 
(represents constant volatility and no mean reversion), Longstaff and Schwartz (1995) (represents 
constant volatility and mean reversion), Heston (1993) and Zhu (2000) (represent stochastic 
volatility and no mean reversion). These comparisons show that numerical prices converge 
rapidly to the exact price. When applied to the general models proposed (represent stochastic 
volatility and mean reversion), the Gauss-Laguerre rule proves very efficient and very accurate. 
As applications, pricing formulas for credit spread options, caps, floors and swaps are derived. It 
is also shown that even weak mean reversion can have a major impact on option prices. 
 
Keywords: Mean reversion, stochastic volatility, Gaussian quadrature, inverse Fourier transform, 
Feynman-Kac theorem, credit spread options, caps, floors, swaps. 
 
JEL Classification: G13, C63. 
 
Résumé 
 
Cet article propose des solutions semi fermées pour évaluer des produits dérivés sur les actifs 
présentant un retour à la moyenne. On considère un processus très général avec retour à la 
moyenne pour la variable d’état ainsi que deux processus pour la volatilité stochastique: le 
processus racine carrée et le processus Ornstein-Uhlenbeck. Pour les deux modèles, on dérive des 
solutions semi fermées pour les fonctions caractéristiques et on calcule leurs transformées 
inverses de Fourier avec la quadrature Gauss-Laguerre afin de récupérer les probabilités 
cumulatives. Comme benchmarks, on évalue des options européennes d’achat dans les modèles 
suivants: Black et Scholes (1973) (représente une volatilité constante et aucun retour à la 
moyenne), Longstaff et Schwartz (1995) (représente une volatilité constante et un retour à la 
moyenne), Heston (1993) et Zhu (2000) (représentent une volatilité stochastique et aucun retour à 
la moyenne). Ces comparaisons permettent de voir que les prix semi analytiques convergent 
rapidement vers les prix exacts. Utilisée dans le cadre des nos modèles généraux (représentent 
une volatilité stochastique et un retour à la moyenne), la quadrature Gauss-Laguerre est très 
efficace et très précise. Comme applications directes, on propose des formules d’évaluation pour 
les options, les caps, les floors et les swaps sur écarts de crédit. On montre aussi que même un 
faible coefficient de retour à la moyenne peut avoir un grand impact sur les prix d’options. 
 
Mots clés : Retour à la moyenne, volatilité stochastique, quadrature gaussienne, inversion de la 
transformée de Fourier, théorème de Feynman-Kac, options sur écarts de crédit, caps, floors, 
swaps. 
 
Classification JEL : G13, C63. 
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Introduction 
Several papers provide empirical evidence showing that mean reversion occurs 

naturally in interest rates and commodity markets and is therefore important in modeling and 

pricing derivatives. Longstaff and Schwartz (1995) show that log-credit spreads are mean 

reverting and derive a simple closed-form solution for European credit spread options. 

Schwartz (1997) also finds strong and significant mean reversion for oil and copper prices 

and proposes valuation formulas for some contingent claims. In more theoretical papers, 

Vasicek (1977) develops a continuous-time model of interest rates that incorporates mean 

reversion, while Cox, Ingersoll and Ross (1995) propose a general equilibrium model from 

which they derive the square-root interest rate diffusion,1 the discount bond price as well as 

the bond option pricing formula. However, all these models assume a non-stochastic 

volatility, a strong simplification that can lead to unrealistic option prices.  

Substantial progress has been made in developing more realistic option pricing 

models by incorporating stochastic volatility and jumps. Heston (1993) prices European 

options on stocks, bonds and currencies under a square-root volatility process. In the same 

way, Bakshi, Cao and Chen (1997) combine stochastic volatility and jumps to test the 

empirical performance of some alternative option pricing models. Schöbel and Zhu (1999) 

and Zhu (2000) propose a more elegant method to derive option prices under the square-root 

and the Ornstein-Uhlenbeck volatility models. While all these papers propose simple and 

easy-to-use closed-form solutions for derivatives on non-mean reverting assets under a 

stochastic volatility assumption, there is little literature for mean reverting assets within a 

stochastic volatility framework. 

Assuming a square-root volatility and Vasicek’s (1977) interest rate process, Fong 

and Vasicek (1992) develop the fundamental partial differential equation for interest rate 

contingent claims but derive a closed-form solution only for discount bonds. This solution 

requires a heavy computation of the confluent hypergeometric function within the complex 

numbers algebra. To override this difficulty, Selby and Strickland (1995) propose a series 

solution for the discount bond price that is very efficient. In addition, Clewlow and 

Strickland (1997) develop a Monte Carlo valuation of other interest rate derivatives under 

the Fong and Vasicek (1992) model.  
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In a discrete-time GARCH framework, Tahani (2000) confirms the empirical mean 

reversion for log-credit spreads reported by Longstaff and Schwartz (1995). Furthermore, he 

finds that the Heston and Nandi (2000) GARCH process fits the data better than the 

Gaussian process, and proposes a closed-form valuation formula for credit spread options. 

He also shows that the GARCH process used has the square-root mean reverting diffusion as 

a continuous-time limit.  

This paper derives pricing formulas for options on mean reverting assets within two 

stochastic volatility frameworks: the square-root and the Ornstein-Uhlenbeck processes. We 

generalize the Longstaff and Schwartz (1995) constant volatility model, as well as the 

Heston (1993) and Zhu (2000) models by incorporating a mean reverting component. We 

also extend the Fong and Vasicek (1992) work by proposing a semi-analytic valuation 

framework for derivatives on general mean reverting assets, as an alternative to the Monte 

Carlo valuation presented by Clewlow and Strickland (1997). It is known that Monte Carlo 

methods require the simulation of a large number of paths, which makes semi-analytic 

valuation (when possible) much more efficient.  

For both stochastic volatility models considered in this paper, we derive semi-closed-

form characteristic functions for which simple ordinary differential equations (ODEs) must 

be solved. In the square-root case, even though a complete closed-form solution (involving 

the Whittaker functions linked to the hypergeometric functions) is derived, the numerical 

resolution of the ODEs provides very accurate solutions in much less time. In fact, when 

dealing with complex functions that can only be computed approximately as a series 

expansion, one is faced with time-consuming computation and frequent overflow errors 

even with mathematical softwares.  

Once the characteristic function is derived in a semi-closed-form way, the inverse 

Fourier transform technique is applied to obtain the associated cumulative probabilities, 

using numerical integration based on the Gauss-Laguerre quadrature rule. The Gaussian 

integration technique has proved very efficient and very accurate in many papers including 

Bates (1996), who prices currency options within a stochastic volatility and jumps 

framework, and Sullivan (2000, 2001), who proposes an approximation to American 

options. In our frameworks, the Gauss-Laguerre quadrature rule is shown to be very accurate 

and convergent even with small polynomial degrees.  
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The contribution of this article is twofold. First, semi-analytic valuation formulas for 

derivatives on very general mean reverting underlying assets under a stochastic volatility 

assumption are proposed. As applications, solutions for credit spread options, caps, floors 

and swaps are derived. Second, it is shown that even weak mean reversion can have a large 

impact on option prices.  

The next section presents a general mean reverting framework and shows how to 

compute the characteristic function. Section II derives semi-closed-form solutions for 

characteristic functions under both the square-root and the Ornstein-Uhlenbeck volatility 

assumptions. Section III presents the numerical integration procedure using Gaussian 

quadrature rules to recover the cumulative probabilities. Section IV derives valuation 

formulas for some credit spread derivatives as well as their Greeks as particular applications. 

Section V presents some empirical results on convergence and efficiency. Section VI will 

conclude.  

 

I   General mean reverting framework and characteristic functions 
We consider a more general model for the state variable given under the historical measure P 

by: 

 ( ) )()( 1 tdZVbdtXdX ttt +−= αµ  (1) 

where X denotes any general mean reverting process such as log-credit spreads in Longstaff 

and Schwartz (1995) and Tahani (2000), or log-commodities in Schwartz (1997). For the 

volatility, we consider the following general diffusion:  

 ( ) ( ) )()(')()( 2 tdZVbdtVaVad ttt +−= θκ  (2) 

where ·)(a , )·(b  and )(·'b  are real-valued functions of the squared volatility V and will be 

specified later. The parameters µ, α, κ and θ are constant. Z1 and Z2 are two correlated 

Brownian motions under the historical measure P .  

As in Heston (1993), the volatility risk-premium is taken proportional to )(Va  and the risk-

premium for the state variable proportional to )(2 Vb , such that the two diffusions under a 

risk-neutral measure Q become: 

 )()()]([ 1
2 tdWVbdtVbXdX tttt +−−= γαµ  (3) 
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 ( ) [ ] )()(')()()( 2 tdWVbdtVaVad ttt ++−= πκκθ  (4) 

where γ and π denote the unit risk-premiums and W1 and W2 are two correlated Brownian 

motions under Q. This modeling nests some special cases such as log-stock or log-currency 

diffusions (if 0=α ). To value option-like derivatives2 with a time horizon T and a strike K, 

we must compute the following types of expectations under Q at time t: 
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and  
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∫− > )ln(1)(exp KX
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dssrE  (6) 

where Q
tE  denotes mathematical expectation taken under the probability measure Q 

conditioned on the information up to time t and r is the risk-free rate. In order to obtain 

simpler expressions for these expectations, we consider two probability measures Q1 and Q2 

equivalent to Q and defined by their Radon-Nikodym derivatives: 
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Note that Q2 is simply the so-called T-forward measure. Equations (5) and (7) give: 
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while Equations (6) and (8) give: 
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where )(·1
tQ , )(·2

tQ  denote the probabilities conditioned on the information up to time t and 

( )TtP ,  is the zero-coupon bond maturing at T. We also define the time-t conditioned 

characteristic functions of TX under Q1 and Q2 by: 

 ( )[ ] 2,1forexp)( =≡ jXiEf T
Q
tj

j φφ  (11) 

Expressed under the risk-neutral measure Q, the characteristic function 1f  becomes: 

 ( )[ ]T
Q
t XiTtgEf φφ exp),()( 11 ≡
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and 2f  becomes: 

 ( )[ ]T
Q
t XiTtgEf φφ exp),()( 22 ≡  
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These expressions will be derived dependently on the risk-free rate specification. However, if 

we define an “actualized characteristic function”3 of TX  under Q by: 

 ( )













∫−≡ T

T

t

Q
t XdssrEf ψψ exp)(exp)(  (14) 

we can simplify (12) and (13) as: 

 ( )
( )1

1)(1 f
iff φφ +=  (15) 

 ( )
( )0

)(2 f
iff φφ =  (16) 

Under our stochastic volatility and mean reverting models, we will show that these 

characteristic functions can be expressed as log-linear combinations of some functions that 

solve simple ODEs. 
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To recover the cumulative probabilities in Equations (9) and (10), we apply the Fourier 

inversion transform (see Kendall and Stuart, 1977) to obtain:  

 ( ) φ
φ

φ
π

φ dK
fi

ifKXQ i
T ∫

+∞
−



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 ++=>
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1)ln(   (17) 

and 
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T ∫
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


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0
2 )0(

)(Re1
2
1)ln(   (18) 

where Re(·) denotes the real part of a complex number. It is straightforward to show that the 

integrands in Equations (17) and (18) are well defined for all [ )+∞∈ ,0φ  and that the integrals 

are convergent (see Appendix C for details). Although they cannot be computed analytically, 

numerical techniques such as the Gaussian quadrature rule can be used to approximate these 

integrals.  

The next section will consider two different stochastic volatility models by choosing 

appropriate ·)(a , )·(b  and )(·'b  functions according to Equations (3) and (4), and will derive 

the corresponding characteristic functions.  

 

II   Stochastic volatility models  

II.1   Square-root mean reverting model 
 In this subsection, we generalize the Heston (1993) model by considering a mean 

reverting process tX  with a square-root stochastic volatility tV . The model is given under 

the risk-neutral measure Q by: 

 ( ) )(1 tdWVdtVXdX tttt +−−= γαµ  (19) 

 ( ) )(2 tdWVdtVdV ttt σλκθ +−=  (20) 

where dtWWd
t

ρ=21 , . For all models, we assume a constant risk-free rate denoted by r. 

The characteristic function can be expressed by (see Appendix A.1 for the derivation 

details): 
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where 
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Putting α = 0 leads obviously to the corresponding equations in Zhu (2000). The expectation 

term in the right-hand side of Equation (21) will be computed using the Feynman-Kac 

theorem as given in Karatzas and Shreve (1991) (see Appendix D for details). Indeed, let 

),( VtF  be defined by: 
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then ),( VtF  must satisfy the following partial differential equation (PDE): 
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Assuming that ),( VtF  is log-linear and given by: 

 [ ])()(exp),( tTCVtTDVtF −+−=  (25) 

yields that )(·D  and )(·C , expressed as functions of the time variable tT −=τ , must satisfy 

the following ODEs: 
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Solving these ODEs will give the unique solution to the PDE (24) and then to the actualized 

characteristic function )(ψf . Although the ODE (26) is of Riccati type, there is no simple 

analytic solution as in Heston (1993) and Zhu (2000)4 (see Appendix A.2 for details). 

Because of the mean reverting feature, the function )(1 τε  in Equation (22) is of an 

exponential type, whereas it is a constant parameter independent of the time variable τ in 

Heston (1993) and Zhu (2000). However, these first-degree ODEs can be solved easily using 

numerical methods such as the Runge-Kutta formula or the Adams-Bashforth-Moulton 

method. For details about these methods, refer to Dormand and Prince (1980), Shampine 

(1994) or Shampine and Gordon (1975).  

The actualized characteristic function )(ψf  for the square-root mean reverting 

model is then given by: 
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Now that we can evaluate numerically expressions like )( φif  and )1( φif +  for all 

[ )+∞∈ ,0φ , we are able to compute cumulative probabilities under measures 1Q  and 2Q  by 

inverting their Fourier transforms. We use the Gaussian quadrature rule with Laguerre 

polynomials so as to evaluate the integrals given in Equations (17) and (18). Section III will 

describe this method and show how it applies to our models. 
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II.2   Ornstein-Uhlenbeck mean reverting model 
A.  Risk-premium for the state variable is proportional to the squared volatility 

In this subsection, we use an Ornstein-Uhlenbeck model for the volatility tσ  and a 

mean reverting process tX . The risk-premium is assumed to be proportional to the squared 

volatility 2
tσ . The model is then given under the risk-neutral measure Q  by: 

 ( ) )(1
2 tdWdtXdX tttt σγσαµ +−−=  (29) 

 ( ) )(2 tdWdtd tt βλσκθσ +−=  (30) 

where dtWWd
t

ρ=21 , . The characteristic function is given by (see Appendix B.1 for the 

derivation details): 
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where 
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Again, putting 0=α  leads to the corresponding equations in Zhu (2000). As before, let 

),( σtG  be defined by: 
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Then according to the Feynman-Kac theorem, ),( σtG  must satisfy the following PDE: 
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Assuming that ),( σtG  is log-linear and given by: 
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yields that )(·E , )(·D  and )(·C  expressed as functions of the time variable tT −=τ  must 

satisfy the following ODEs: 

 










==

=++−

ψ
β
ρη

τητλτβτ

3

1
22

2)0(

0)()()(
2
1)('

2
1

E

EEE
 (36) 

 








=

=+−+−

0)0(

0)()()()()()(' 2
2

D

EDDED τητκθτλττβτ
 (37) 

and 
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Although the Riccati-type ODE (36) has an exact analytic solution (see Appendix B.2 for 

details), the ODEs (37) and (38) don’t have closed-form solutions. As discussed earlier, all 

these ODEs will be solved numerically. The actualized characteristic function )(ψf  for the 

Ornstein-Uhlenbeck mean reverting model is then given by: 
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B.  Risk-premium for the state variable is proportional to the volatility 

If the risk-premium for the state variable is proportional to the volatility instead of its 

square, then the model’s equations become: 

 ( ) )(1 tdWdtXdX tttt σγσαµ +−−=  (40)

 ( ) )(2 tdWdtd tt βλσκθσ +−=  (41) 

With the same calculations as before, the characteristic function is obtained as:  
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where 
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Using the Feynman-Kac theorem gives for the actualized characteristic function: 
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 (44) 

where )(·E , )(·D  and )(·C  solve the same ODEs (36)-(38) by replacing )·(),(· 21 ηη  and 3η  

respectively by )·(),(· 21 ωω  and 3ω . 

 

III   Numerical integration using Gaussian quadrature 
 In general, a quadrature rule allows to approximate an integral of a weighted 

function, )(·g , over a given interval [ ]ba,  with a linear combination of function values in 

the same interval. After specifying a set of abscissas ( )
njj ,...,1=

φ and their corresponding 

weights ( )
njj ,...,1=

ω , the integral is then approximated by: 

 ∫ ∑
=

≅
b

a

n

j
jj gdgw

1

)()()( φωφφφ  (45) 

where )(·w  is a weight function to be specified depending on the rule used. The abscissas 

and the weights are specified such that this approximation is exact for any given polynomial 

function with a maximum degree. The highest degree is called the order of the quadrature 

rule. While rules such as the trapezoidal and the Simpson’s specify a set of equally spaced 

abscissas and choose the weights to maximize the order, Gaussian rules determine both 

abscissas and weights to maximize the order. For n abscissas and n weights, the highest 

order is 12 −n . Furthermore, in many studies, Gaussian rules are shown to converge faster 

than the classic trapezoidal and Simpson’s rules and give greater accuracy even for small n 

(see Sullivan, 2000 and 2001).  

 The Gauss-Laguerre quadrature rule over the interval [ )+∞,0  has the following 

weight function )exp()( φφ −=w . The abscissas and the weights solve the following n2  

equations: 
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for 12,,0 −= nq L . These abscissas and weights can also be determined using some 

properties of Laguerre polynomials. They are tabulated in Abramowitz and Stegun (1968). 

The next subsection gives a brief overview of these polynomials and shows how to specify 

the rule. The one after will apply this quadrature rule to invert the characteristic functions to 

recover cumulative probabilities. 

 

III.1   A brief overview of Laguerre polynomials 

 The n-th Laguerre polynomial is defined by: 
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 (47) 

These polynomials have many characteristics, among which their “orthonormality” with 

respect to the weight function: 
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where npδ  is the Kronecker’s symbol. It is also known that the n-th Lageurre polynomial has 

exactly n real zeros over the interval ( )+∞,0 . These zeros are the abscissas ( )
njj ,...,1=

φ  needed 

for the Gauss-Laguerre quadrature rule of order n. The associated weights ( )
njj ,...,1=

ω  are 

given by: 

 ( ) nj
Ln jn

j
j ,...,1

)(
1

2
1

2 ==
− φ
φ

ω  (49) 

In order to apply this integration method to our models, we need to modify the weights to 

take into account the function to be integrated. As seen in the previous sections, we have to 

value this type of integral: 
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When n increases, the sum converges to the true value of the integral if the function 

)()exp( φφ g  satisfies certain assumptions, as discussed in Davis and Rabinowitz (1984).  

 

III.2   Recovering cumulative probabilities 

 For a given order n, we set up the abscissas ( )
njj ,...,1=

φ  and the modified weights 

( )
njjj ,...,1

)exp(
=

φω  as shown before. All the model’s parameters must be fixed, as well as the 

time t, the maturity T, the strike K, the initial underlying asset log-value tX  and the initial 

value of the volatility tσ  or the squared volatility tV  depending on the model. For every 

abscissa jφ  or equivalently jψ  as defined earlier by jj iφψ +=1  or jj iφψ = , we solve the 

ODEs (26) and (27) for the square-root model and Equations (36)-(38) for the Ornstein-

Uhlenbeck model to get the function values );( jtTE ψ− , );( jtTD ψ−  and );( jtTC ψ−  

defined in Section II for every nj ,...,1= . The actualized characteristic function values 

)( jf ψ  can then be computed at the needed points jψ  and the cumulative probabilities can 

be approximated by: 
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and   
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Theoretically, as n becomes large, these approximations converge to the true probability 

values. As it will be shown with many valuation examples, a fast convergence and a good 

accuracy can be achieved even with small n. 

 

IV   Credit spread option, cap, floor and swap valuation 
IV.1   Credit spread option 

 A credit spread option gives the right to buy or sell the credit at the strike price until 

or at the expiration date depending on whether the option is American or European. One 

could buy a credit spread option for hedging its credit risk exposures against up or down 

movements in a credit value as well as for speculative purposes. For an exhaustive credit 

derivatives overview, see Howard (1995). 

More specifically, denoting the maturity date by T and the strike by K, under the 

models studied in earlier sections, the European call premium is given by: 

 ( ) ( ))ln()0;,()ln()1;,(),( ,
2
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Tt >−>=  (53) 

where the actualized characteristic function );,( ψTtf  and the cumulative probabilities are 

defined as before by: 
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The European put can be derived using the call-put parity: 

 ( ) ( ))ln()1;,()ln()0;,(),( ,
1

,
2 KXQTtfKXQKTtfTtPut T
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T

Tt <−<=  (57) 

In order to hedge options against changes in the underlying asset and in the volatility, the 

sensitivities (i.e. the Greeks) must be derived (see Appendix E for details). For both stochastic 
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volatility models presented in Section II, a straightforward calculation shows that the Delta is 

given by: 
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and the Gamma by: 
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The derivation of the Vega depends on the stochastic volatility model that is used. For the 

square-root model, the Vega is given by: 
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while for the Ornstein-Uhlenbeck model, it is expressed as: 
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IV.2   Credit spread cap and floor 

 A credit spread cap or floor provides the right to get payoffs at periodic dates called 

the reset dates. At each reset date, the cap/floor payoff is the same as for a call/put. In this, 

the cap/floor can be seen as a sequence of many calls/puts called caplets or floorlets. The 

illustration below shows the reset dates and the associated payoffs for a credit spread cap 

with a maturity T and different strike jK  corresponding to the n periods.  

 

 

 

 

 

The cap/floor premium is then equal to the sum of the corresponding caplets/floorlets 

premia. The cap premium is given by: 
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where );,( ψjttf , ( ))ln()(1 jj
j KtXQ >  and ( ))ln()(2 jj

j KtXQ >  are defined for each reset 

date as for the call in Equations (54)-(56). The floor premium can also be valued by: 
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as well as the Delta by: 
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IV.3   Credit spread swap 

 A credit spread swap is an obligation to get payoffs at periodic reset dates. At each 

reset date, the swap payoff is the same as for a forward contract. In this, the swap can be 

seen as a sequence of many forward contracts called swaplets. The illustration below shows 
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the reset dates and the associated payoffs for a credit spread swap with maturity T and a 

constant strike K. 

 

The swap value is then equal to the difference between the cap and the floor values with the 

same strike at the reset dates. By analogy with interest rate swaps, we can derive the value of 

the strike that makes the swap value equal to 0 at time t: 
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where );,( ψjttf  is defined for each reset date as in Equation (54).  

 

V   Empirical results on convergence and the impact of mean reversion 
To assess the accuracy and the efficiency of our procedure, we price many European 

call options within different frameworks: Black and Scholes (1973) (B&S hereafter), 

Longstaff and Schwartz (1995) (L&S hereafter) and Zhu (2000).5  

For different parameters settings, we try to converge to the exact price given by the 

corresponding simple analytic formulas for the B&S and L&S frameworks and by the 

Matlab® numerical integration routine for the Zhu framework. Tables 1 to 4 present the call 

prices for different maturities and quadrature orders. It is shown that a good accuracy is 

achieved even with small rule orders, between 10 and 15 depending on which model is used 

and within which framework. 

 

[Insert tables 1 to 4 here] 

 

We also compute the relative pricing errors between the exact call price and that 

obtained by the semi-analytic procedure. Figures 1 to 4 show that these errors are very small 
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and converge rapidly to 0. Notice that, in the Zhu (2000) framework, the square-root model 

converges faster than the Ornstein-Uhlenbeck model. 

 

[Insert Figures 1 to 4 here] 

 

The efficiency and the accuracy of our semi-analytic procedure within these exact 

frameworks are still true for the mean reverting framework. Indeed, for both the square-root 

and the Ornstein-Uhlenbeck mean reverting models, the “true” asymptotic price 6 is attained 

even with small rule orders, between 12 and 15. Tables 5 and 6 present these results on the 

convergence.  

 

[Insert Tables 5 and 6 here] 

 

The relative pricing errors in this case are computed with respect to the asymptotic 

price. Figures 5 and 6 show that these errors tend rapidly to 0. Again, the convergence is 

faster for the square-root mean reverting model than for the Ornstein-Uhlenbeck mean 

reverting model.  

 

[Insert Figures 5 and 6 here] 

 

It is also found that even weak mean reversion can have a major impact on option 

prices. The results presented in Tables 7 and 8 show that for a small mean reversion 

coefficient, � between 0.01 and 0.03, the relative difference with respect to the “no mean 

reversion option price” (i.e. 0=α ) ranges from 4% to 66%, depending on the moneyness 

and the maturity, which is substantial.  

 

[Insert Tables 7 and 8 here] 

 

VI   Conclusion 
In this paper, we propose semi-analytic pricing formulas for derivatives on mean 

reverting assets within two stochastic volatility frameworks. In this, we generalize Longstaff 
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and Schwartz (1995) by making the volatility stochastic, and Heston (1993) and Zhu (2000) 

by incorporating a mean reverting component in the underlying asset diffusion. This work 

also extends the Fong and Vasicek (1992) model, since a semi-analytic valuation of options 

on general mean reverting assets is proposed instead of a Monte Carlo simulation. 

However, adding a mean reverting component to our models only allows access to 

semi-closed-form characteristic functions, in the sense that we need to solve some ODEs 

with numerical methods such as Runge-Kutta or Adams-Bashforth-Moulton. The numerical 

resolution is very accurate and takes much less time than the exact computation, since 

analytic solutions (when they exist) involve complex algebra with Whittaker functions and 

hypergeometric functions. A numerical integration method, such as the Gaussian quadrature, 

is needed to invert the characteristic function so as to recover the cumulative probabilities, 

and then to price derivatives. In our case, the Gauss-Laguerre rule proves very efficient and 

very accurate. As particular applications to this general valuation framework, we derive 

semi-closed-form pricing formulas for credit-spread European options, caps, floors, and 

swaps, as well as their Greeks.  

We also find that the impact of even weak mean reversion on option prices could be 

very large. This finding proves that the pricing of derivatives on mean reverting underlying 

assets is very sensitive to the strength of the reversion, which therefore has to be taken into 

account in financial modeling. 

The combination of numerical resolution of ODEs with numerical integration using 

Gaussian quadrature rules provides extremely accurate and efficient valuation of credit 

derivatives and thus may do well for derivatives on other mean reverting assets like interest 

rates and commodities. 
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Tables 

Table 1: Convergence to the Black-Scholes call price 

Maturity 3 months 6 months 9 months 1 year 
B&S price 4,614997 6,888729 8,772268 10,450584 

n     
7 4,576689 6,888989 8,772230 10,450610 
8 4,605435 6,888729 8,772276 10,450578 
9 4,613204 6,888726 8,772267 10,450584 

10 4,614770 6,888729 8,772268 10,450583 
11 4,614983 6,888729 8,772268 10,450584 
12 4,614998 6,888729 8,772268 10,450584 
13 4,614997 6,888729 8,772268 10,450584 
14 4,614997 6,888729 8,772268 10,450584 
15 4,614997 6,888729 8,772268 10,450584 
16 4,614997 6,888729 8,772268 10,450584 
17 4,614997 6,888729 8,772268 10,450584 
18 4,614997 6,888729 8,772268 10,450584 
19 4,614997 6,888729 8,772268 10,450584 
20 4,614997 6,888729 8,772268 10,450584 
21 4,614997 6,888729 8,772268 10,450584 
22 4,614997 6,888729 8,772268 10,450584 
23 4,614997 6,888729 8,772268 10,450584 
24 4,614997 6,888729 8,772268 10,450584 
25 4,614997 6,888729 8,772268 10,450584 

 
Table 1 pertains to the setup in Section II.1 and presents the results of the valuation of an at-

the-money call within the Black and Scholes (1973) (B&S) framework for different 

quadrature rule orders n. The true price is given by the B&S analytic formula. The option’s 

parameters are )100ln(=X ; 100=K ; 05.0=r  and 04.0=V . To match the B&S 

framework, the model’s parameters are r=µ ; 0=α ; 5.0=γ ; 0=ρ ; 0=σ ; 0=λ ; 0=κ  

and 0=θ .  
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Table 2: Convergence to the Longstaff-Schwartz call price 

Maturity 3 months 6 months 9 months 1 year 
L&S price 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 

n     
7 1,059709E-03 1,681586E-03 2,229965E-03 2,746012E-03 
8 1,064684E-03 1,681522E-03 2,229960E-03 2,746019E-03 
9 1,065903E-03 1,681529E-03 2,229959E-03 2,746018E-03 

10 1,066112E-03 1,681529E-03 2,229959E-03 2,746019E-03 
11 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
12 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
13 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
14 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
15 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
16 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
17 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
18 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
19 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
20 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
21 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
22 1,066132E-03 1,681529E-03 2,229959E-03 2,746019E-03 
23 1,066131E-03 1,681529E-03 2,229959E-03 2,746019E-03 
24 1,066131E-03 1,681529E-03 2,229959E-03 2,746019E-03 
25 1,066131E-03 1,681529E-03 2,229959E-03 2,746019E-03 

 

Table 2 pertains to the setup in Section II.1 and presents the results of the valuation of an at-

the-money call within the Longstaff and Schwartz (1995) (L&S) framework for different 

quadrature rule orders n. The true price is given by the L&S analytic formula. The option’s 

parameters are )02.0ln(=X ; 02.0=K ; 05.0=r  and 04.0=V . To match the L&S 

framework, the model’s parameters are 02.0=µ ; 015.0=α ; 0=γ ; 0=ρ ; 0=σ ; 0=λ ; 

0=κ  and 0=θ .  
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Table 3: Convergence to the Zhu square-root call price 

Maturity 3 months 6 months 9 months 1 year 
Zhu price 4,962005   7,620725   9,824956   11,766004   

n     
7 4,947824   7,620594   9,825099   11,765874   
8 4,961141   7,620671   9,824932   11,766032   
9 4,962557   7,620737   9,824959   11,765998   

10 4,962208   7,620725   9,824955   11,766006   
11 4,962029   7,620725   9,824956   11,766004   
12 4,962002   7,620725   9,824956   11,766004   
13 4,962004   7,620725   9,824956   11,766004   
14 4,962005   7,620725   9,824956   11,766004   
15 4,962005   7,620725   9,824956   11,766004   
16 4,962005   7,620725   9,824956   11,766004   
17 4,962005   7,620725   9,824956   11,766004   
18 4,962005   7,620725   9,824956   11,766004   
19 4,962005   7,620725   9,824956   11,766004   
20 4,962005   7,620725   9,824956   11,766004   
21 4,962005   7,620725   9,824956   11,766004   
22 4,962005   7,620725   9,824956   11,766004   
23 4,962005   7,620725   9,824956   11,766004   
24 4,962005   7,620725   9,824956   11,766004   
25 4,962005   7,620725   9,824956   11,766004   

 
Table 3 pertains to the setup in Section II.1 and presents the results of the valuation of an 

at-the-money call within the Zhu (2000) square-root framework for different quadrature 

rule orders n. The true price is given by the Zhu square-root semi-analytic formula. The 

option’s parameters are )100ln(=X ; 100=K ; 05.0=r  and 04.0=V . To match the Zhu 

square-root framework, the model’s parameters are r=µ ; 0=α ; 5.0=γ ; 5.0−=ρ ; 

1.0=σ ; 4=λ ; 4=κ  and 06.0=θ . 
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Table 4: Convergence to the Zhu Ornstein-Uhlenbeck call price 

Maturity 3 months 6 months 9 months 1 year 
Zhu price 3,692764   4,977335   6,056673   7,089761   

n     
7 3,524815   4,940583   6,081476   7,143954   
8 3,619622   4,985383   6,089360   7,124454   
9 3,668585   4,994529   6,077641   7,103581   

10 3,690008   4,990486   6,065813   7,092411   
11 3,696937   4,984396   6,059099   7,088899   
12 3,697505   4,980122   6,056573   7,088730   
13 3,696076   4,977996   6,056122   7,089273   
14 3,694563   4,977249   6,056309   7,089642   
15 3,693544   4,977128   6,056528   7,089772   
16 3,693010   4,977196   6,056643   7,089787   
17 3,692792   4,977273   6,056680   7,089775   
18 3,692731   4,977317   6,056683   7,089765   
19 3,692730   4,977335   6,056679   7,089761   
20 3,692744   4,977339   6,056676   7,089761   
21 3,692755   4,977338   6,056674   7,089761   
22 3,692761   4,977337   6,056674   7,089761   
23 3,692763   4,977336   6,056673   7,089761   
24 3,692764   4,977336   6,056673   7,089761   
25 3,692764   4,977335   6,056673   7,089761   

 
Table 4 pertains to the setup in Section II.2 and presents the results of the valuation of an 

at-the-money call within the Zhu Ornstein-Uhlenbeck (2000) framework for different 

quadrature rule orders n. The true price is given by the Zhu Ornstein-Uhlenbeck semi-

analytic formula. The option’s parameters are )100ln(=X ; 100=K ; 05.0=r  and 

2.0=σ . To match the Zhu Ornstein-Uhlenbeck framework, the model’s parameters are 

r=µ ; 0=α ; 5.0=γ ; 5.0−=ρ ; 1.0=β ; 4=λ ; 4=κ  and 06.0=θ . 
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Table 5: Convergence of a call price within our 
square-root mean reverting model 

Maturity 3 months 6 months 9 months 1 year 
n     
7 1,174022E-03 1,924637E-03 2,617826E-03 3,294297E-03 
8 1,176620E-03 1,921935E-03 2,618714E-03 3,294585E-03 
9 1,175539E-03 1,921684E-03 2,619036E-03 3,294459E-03 

10 1,174195E-03 1,921888E-03 2,619034E-03 3,294433E-03 
11 1,173450E-03 1,921994E-03 2,619009E-03 3,294439E-03 
12 1,173187E-03 1,922013E-03 2,619004E-03 3,294441E-03 
13 1,173142E-03 1,922009E-03 2,619005E-03 3,294441E-03 
14 1,173156E-03 1,922006E-03 2,619005E-03 3,294441E-03 
15 1,173171E-03 1,922005E-03 2,619006E-03 3,294441E-03 
16 1,173177E-03 1,922005E-03 2,619005E-03 3,294441E-03 
17 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 
18 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 
19 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 
20 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 
21 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 
22 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 
23 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 
24 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 
25 1,173179E-03 1,922005E-03 2,619005E-03 3,294441E-03 

 
Table 5 pertains to the setup in Section II.1 and presents the results of the valuation of an 

at-the-money call within our square-root mean reverting framework for different quadrature 

rule orders n. The option’s parameters are )02.0ln(=X ; 02.0=K ; 05.0=r  and 

04.0=V . The model’s parameters are 03.0=µ ; 02.0=α ; 0=γ ; 5.0−=ρ ; 2.0=σ ; 

1=λ ; 1=κ  and 05.0=θ . 
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Table 6: Convergence of a call price within our 
Ornstein-Uhlenbeck mean reverting model 

Maturity 3 months 6 months 9 months 1 year 
n     
7 1,124247E-03 1,824871E-03 2,439173E-03 3,024480E-03 
8 1,132712E-03 1,817122E-03 2,429618E-03 3,021436E-03 
9 1,134126E-03 1,810972E-03 2,426195E-03 3,022995E-03 

10 1,132717E-03 1,807384E-03 2,425925E-03 3,024767E-03 
11 1,130681E-03 1,805781E-03 2,426633E-03 3,025593E-03 
12 1,128934E-03 1,805327E-03 2,427299E-03 3,025725E-03 
13 1,127718E-03 1,805388E-03 2,427659E-03 3,025613E-03 
14 1,126987E-03 1,805596E-03 2,427775E-03 3,025504E-03 
15 1,126604E-03 1,805783E-03 2,427770E-03 3,025458E-03 
16 1,126439E-03 1,805904E-03 2,427732E-03 3,025453E-03 
17 1,126392E-03 1,805963E-03 2,427702E-03 3,025461E-03 
18 1,126401E-03 1,805983E-03 2,427688E-03 3,025468E-03 
19 1,126429E-03 1,805983E-03 2,427684E-03 3,025471E-03 
20 1,126458E-03 1,805976E-03 2,427685E-03 3,025471E-03 
21 1,126481E-03 1,805970E-03 2,427687E-03 3,025470E-03 
22 1,126496E-03 1,805965E-03 2,427688E-03 3,025470E-03 
23 1,126506E-03 1,805963E-03 2,427689E-03 3,025470E-03 
24 1,126511E-03 1,805962E-03 2,427689E-03 3,025470E-03 
25 1,126513E-03 1,805962E-03 2,427689E-03 3,025470E-03 

 
Table 6 pertains to the setup in Section II.2 and presents the results of the valuation of an 

at-the-money call within our Ornstein-Uhlenbeck mean reverting framework for different 

quadrature rule orders n. The option’s parameters are )02.0ln(=X ; 02.0=K ; 05.0=r  

and 2.0=σ . The model’s parameters are 03.0=µ ; 02.0=α ; 0=γ ; 5.0−=ρ ; 2.0=β ; 

1=λ ; 1=κ  and 05.0=θ . 
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Table 7: Impact of mean reversion on the call price within our 
square-root mean reverting model 

 
  Maturity 
  3 months 6 months 9 months 1 year 
 α      

OTM 0.01 19% 22% 25% 26% 
 0.02 34% 38% 42% 44% 
 0.03 45% 50% 54% 56% 
 α      

ATM 0.01 11% 15% 18% 20% 
 0.02 21% 28% 32% 35% 
 0.03 29% 37% 42% 46% 
 α      

ITM 0.01 4% 7% 10% 12% 
 0.02 8% 14% 18% 22% 
 0.03 12% 20% 25% 30% 

 
Table 7 pertains to the setup in Section II.1 and presents the impact of the mean reversion 

coefficient on the call price within our square-root mean reverting framework. The relative 

difference is computed with respect to the “no mean reversion call price” i.e. 0=α . The 

underlying asset log-values are )02.0ln(=X ; )025.0ln(=X  and )018.0ln(=X . The 

option’s parameters are 02.0=K ; 05.0=r  and 04.0=V . The model’s parameters are 

03.0=µ ; 0=γ ; 5.0−=ρ ; 2.0=σ ; 1=λ ; 1=κ  and 05.0=θ . 
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Table 8: Impact of mean reversion on the call price within our 
Ornstein-Uhlenbeck mean reverting model 

 
  Maturity 
  3 months 6 months 9 months 1 year 
 α      

OTM 0.01 22% 27% 31% 34% 
 0.02 38% 46% 50% 54% 
 0.03 50% 58% 63% 66% 
 α      

ATM 0.01 12% 18% 21% 24% 
 0.02 23% 31% 36% 40% 
 0.03 31% 41% 47% 52% 
 α      

ITM 0.01 4% 7% 10% 13% 
 0.02 8% 14% 19% 23% 
 0.03 12% 20% 26% 31% 

 
Table 8 pertains to the setup in Section II.2 and presents the impact of the mean reversion 

coefficient on the call price within our Ornstein-Uhlenbeck mean reverting framework. The 

relative difference is computed with respect to the “no mean reversion call price” i.e. 

0=α . The underlying asset log-values are )02.0ln(=X ; )025.0ln(=X  and 

)018.0ln(=X . The option’s parameters are 02.0=K ; 05.0=r  and 04.0=V . The 

model’s parameters are 03.0=µ ; 0=γ ; 5.0−=ρ ; 2.0=β ; 1=λ ; 1=κ  and 05.0=θ . 
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Figures 

Figure 1: Relative pricing error with respect to the Black-Scholes price 

 

Figure 1 shows the relative pricing error of a call within the Black and Scholes (1973) 

(B&S) framework. The true price is given by the B&S analytic formula. The relative pricing 

error is computed as 
price S&B

price S&Bprice Numerical −
. The underlying asset log-values are 

)100ln(=X ; )110ln(=X  and )90ln(=X . The option’s parameters are 100=K ; 5.0=T ; 

05.0=r  and 04.0=V . To match the B&S framework, the model’s parameters are r=µ ; 

0=α ; 5.0=γ ; 0=ρ ; 0=σ ; 0=λ ; 0=κ  and 0=θ . 
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Figure 2: Relative pricing error with respect to the Longstaff-Schwartz price 

 

Figure 2 shows the relative pricing error of a call within the Longstaff and Schwartz (1995) 

(L&S) framework. The true price is given by the L&S analytic formula. The relative pricing 

error is computed as 
price S&L

price S&Lprice Numerical −
. The underlying asset log-values are 

)02.0ln(=X ; )022.0ln(=X  and )018.0ln(=X . The option’s parameters are 02.0=K ; 

5.0=T ; 05.0=r  and 04.0=V . To match the L&S framework, the model’s parameters are 

02.0=µ ; 015.0=α ; 0=γ ; 0=ρ ; 0=σ ; 0=λ ; 0=κ  and 0=θ . 
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Figure 3: Relative pricing error with respect to the Zhu square-root price 

 

Figure 3 shows the relative pricing error of a call within the Zhu (2000) square-root 

framework. The true price is given by the Zhu square-root semi-analytic formula. The 

relative pricing error is computed as 
priceZhu 

priceZhu price Numerical −
. The underlying asset 

log-values are )100ln(=X ; )120ln(=X  and )80ln(=X . The option’s parameters are 

100=K ; 5.0=T ; 05.0=r  and 04.0=V . To match the Zhu square-root framework, the 

model’s parameters are 05.0=µ ; 0=α ; 5.0=γ ; 5.0−=ρ ; 1.0=σ ; 4=λ ; 4=κ  and 

06.0=θ . 
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Figure 4: Relative pricing error with respect to the Zhu Ornstein-Uhlenbeck price 

 

Figure 4 shows the relative pricing error of a call within the Zhu (2000) Ornstein-Uhlenbeck 

framework. The true price is given by the Zhu Ornstein-Uhlenbeck semi-analytic formula. 

The relative pricing error is computed as 
priceZhu 

priceZhu price Numerical −
. The underlying 

asset log-values are )100ln(=X ; )120ln(=X  and )80ln(=X . The option’s parameters are 

100=K ; 1=T ; 05.0=r  and 2.0=σ . To match the Zhu Ornstein-Uhlenbeck framework, 

the model’s parameters are 05.0=µ ; 0=α ; 5.0=γ ; 5.0−=ρ ; 1.0=β ; 4=λ ; 4=κ  and 

06.0=θ . To keep the same scale, the out-of-the-money pricing relative error is divided by 

50.  
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Figure 5: Relative pricing error within our square-root mean reverting model 

 

Figure 5 shows the relative pricing error of a call within our square-root mean                

reverting framework. The true price is the asymptotic price. The relative pricing error is 

computed as 
price Asymptotic

price Asymptoticprice Numerical −
. The underlying asset log-values are 

)02.0ln(=X ; )025.0ln(=X  and )018.0ln(=X . The option’s parameters are 02.0=K ; 

5.0=T ; 05.0=r  and 04.0=V . The model’s parameters are 03.0=µ ; 02,0=α ; 0=γ ; 

5.0−=ρ ; 2.0=σ ; 1=λ ; 1=κ  and 05.0=θ . 
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Figure 6: Relative pricing error within our Ornstein-Uhlenbeck mean reverting model 

 

Figure 6 shows the relative pricing error of a call within our Ornstein-Uhlenbeck mean 

reverting framework. The true price is the asymptotic price. The relative pricing error is 

computed as 
price Asymptotic

price Asymptoticprice Numerical −
. The underlying asset log-values are 

)02.0ln(=X ; )025.0ln(=X  and )018.0ln(=X . The option’s parameters are 02.0=K ; 

1=T ; 05.0=r  and 2.0=σ . The model’s parameters are 03.0=µ ; 02,0=α ; 0=γ ; 

5.0−=ρ ; 2.0=β ; 1=λ ; 1=κ  and 05.0=θ . 
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Appendix A.1: Derivation of the square-root mean-reverting characteristic function 

 Let W1 and W2 be two correlated Brownian motions under Q with dtWWd
t

ρ=21 , . 

The model is given under the risk-neutral measure Q by: 

( ) )(1 tdWVdtVXdX tttt +−−= γαµ  

( ) )(2 tdWVdtVdV ttt σλκθ +−=  

If we define t
t

t XeY α= , by Ito’s lemma we have: 

( ) )(1 tdWVedtVedY t
t

t
t

t
αα γµ +−=  

Solving this SDE gives: 
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The process X is then expressed as: 
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Since W1 and W2 are correlated, we can write )(1)()( 2
21 sdWsdWsdW ρρ −+= , where W 

is a Brownian motion uncorrelated with W2. Let Q
tE  denote mathematical expectation taken 

under the probability measure Q conditioned on the information up to time t. We then 

obtain: 
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where ( )TstsW ≤≤:)(2  represents the filtration generated by ( )TstsW ≤≤:)(2 . Since W 

and W2 are independent, the equation becomes: 
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At this stage, we did not need the particular square-root specification of the volatility 

diffusion. These equations will be also valid for the Ornstein-Uhlenbeck volatility diffusion. 

For the square-root model, by Ito’s lemma we can write for the squared volatility: 
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Integrating this SDE and re-arranging it leads to: 
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We then obtain: 
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We can rewrite this equation as: 
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Define the function ),( VtF  by: 
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then by Feynman-Kac theorem (see Appendix D), we have that ),( VtF  must satisfy the 

following PDE: 
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Replacing the time variable t by tT −=τ , we can rewrite this PDE as (without ambiguity, 

we keep the same function’s name F): 
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If we assume that ),( VF τ  is log-linear and given by: 

   [ ])()(exp),( τττ CVDVF +=  
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The PDE for ),( VF τ  becomes: 
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After re-arranging it as a polynomial of V , we deduce the ODEs satisfied by )(τD : 
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and by )(τC : 
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The actualized characteristic function is then given by: 
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Appendix A.2: Exact resolution of the ODEs satisfied by D and C in the square-root 

framework 

 The ODEs satisfied by the functions D and C are: 
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Making the traditional (for Riccati-type ODEs) following transformation: 
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leads to the following linear homogeneous second-order ODE: 
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Under this transformation we recover the original functions D and C simply by: 



 42  

   

( )













−=

−=

)(ln2)(

)(
)('2)(

2

2

τ
σ
κθτ

τ
τ

σ
τ

UC

U
U

D

 

A further substitution ( ) )()exp()( τατ UVzV ≡−≡  reduces the ODE to: 
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where )()( 11 τε≡ze . We then only need to solve for the function V(z). Softwares like 

Maple® give the solution to this ODE in terms of special functions known as the Whittaker 

functions. These functions are linked to the well-known hypergeometric functions (see 

Abramowitz and Stegun, 1968). The solution U is given by: 
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where M(.) and W(.) are respectively the WhittakerM and the WhittakerW functions and: 
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Constants A and B are determined by writing down that ψ
σ
ρ=)0(D  and 0)0( =C . 

 

Appendix B.1: Derivation of the Ornstein-Uhlenbeck mean-reverting characteristic 

function 

Let W1 and W2 be two correlated Brownian motions under Q with dtWWd
t

ρ=21 , . 

The model is given under the risk-neutral measure Q by: 

( ) )(1
2 tdWdtXdX tttt σγσαµ +−−=      

( ) )(2 tdWdtd tt βλσκθσ +−=       

From Appendix A.1, we can write the characteristic function as: 
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For the Ornstein-Uhlenbeck model, we can solve for the volatility: 
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Integrating this SDE and re-arranging it leads to: 
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The characteristic function is then given by: 
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We can rewrite this equation as: 
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Define the function ),( σtG  as: 
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By Feynman-Kac theorem, we have that ),( σtG  must satisfy the following PDE: 
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Replacing the time variable t by tT −=τ as before, we can rewrite this PDE as (without 

ambiguity, we keep the same function’s name G): 
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Assuming that ),( στG  is log-linear and given by: 
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The PDE satisfied by ),( στG becomes: 
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After re-arranging it as a polynomial of σ, we deduce the ODEs satisfied by )(τE : 
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by )(τD : 
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The actualized characteristic function is then given by: 
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Appendix B.2: Exact resolution of the ODE satisfied by E in the Ornstein-Uhlenbeck 

framework 

 The ODEs satisfied by the functions E is: 
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As detailed in Appendix A.2, we use two transformations before getting the exact solution 

E. Making the first transformation: 
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where again M(.) and W(.) are respectively the WhittakerM and the WhittakerW functions 

and: 
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Constants A and B are determined by writing down that 1)0( =U  and βρψ−=)0('U . We 

recover the function E by: 
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To see that neither D (nor C) could be expressed in a closed-form way, we use a traditional 

technique to solve linear first-degree ODEs to find: 

   ( ) 







−+−= ∫ −

τ
λαλτ

λτ ρβψλτ
τβ

κθτ
0

2 )()(1
)(

1)( dssUeeUe
Ue

D ss  

This expression could not be simplified further. 

 

Appendix C: Proof of the well-definiteness of the integrands 

 For the purpose of integration, we must proof the well-definiteness of the function 

over the interval of integration, especially around the potential singularities. In particular, we 

have to value these two integrals: 
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where f  is a characteristic function, which is of class ( )),0[ +∞∞C , defined by: 
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Using a Taylor expansion around 0=φ , the two integrands tend respectively to: 
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Appendix D: Feynman-Kac theorem (Karatzas and Shreve 1991) 

 Under some regularity assumptions, if we suppose that ddTVtF ℜ→ℜ×],0[:),(  

is of class ( )dTC ℜ×],0[2,1  and satisfies the Cauchy problem: 
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where At is the second order differential operator, then ),( VtF  is unique and admits the 

stochastic representation: 
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Appendix E: Derivation of the Greeks  

 Recall that the Call premium is given by: 
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j >  by jQ . We need to 

compute the following derivatives: 
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By a “formal” change of variable, we can show that: 
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For the Vega, consider first the square-root model: 
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We now can write for the Vega: 
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For the Ornstein-Uhlenbeck model, define the Vega by: 
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The Vega can be written as: 
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Notes 
 
1 The square-root diffusion generalizes the traditional mean reverting process by not 

allowing the state variable to be negative. 
 

2 In this setting, only options on the true underlying asset Xe  are considered, but the 

methodology can easily handle options on the state variable X  itself. 

 
3 This can be seen as an “actualized moment generating function” of the true underlying 

asset Xe . 

 
4 The ODEs (26) and (27) have analytic solutions that involve the Whittaker functions. 

However, they need much more time to be computed for large values of φ  than solved 

numerically for the same order of accuracy. The series expansion for the Fong and Vasicek 

(1992) discount bond price in Selby and Strickland (1995) is efficient because this is 

equivalent to φ  being always equal to 1. 

 
5 Heston’s (1993) model is one of the models presented in Zhu (2000). 

 
6 This asymptotic price can be computed with a Monte Carlo simulation. 




