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Profitability and Market Quality of High Frequency Market 

Makers : An Empirical Investigation 

Abstract 

Financial markets in contemporary regulatory settings require the presence of high-frequency 

liquidity providers. We present an applied study of the profitability and the impact on market 

quality of an individual high-frequency trader acting as a market-maker. Using a sample of sixty 

stocks over a six-month period, we implement the optimal quoting policy (OQP) of liquidity 

provision from Ait-Sahalia and Saglam (2014) dynamic inventory management model. The OQP 

allows the high-frequency trader to extract a constant annuity from the market but its profitability 

is insufficient to cover the costs of market-making activities. The OQP is embedded in a trading 

strategy that relaxes the model’s constraint on the quantity traded. Circuit-breakers are 

implemented and market imperfections are considered. Profits excluding maker-fees and 

considering transaction fees are economically significant. We propose a methodology to adjust the 

returns for asynchronous trading and varying leverage levels associated with dynamic inventory 

management. This allows us to qualify high trade volume as a proxy of informed trading. The 

high-frequency trader behaves as a constant liquidity provider and has a positive effect on market 

quality even in periods of market stress.   

Keywords: algorithmic trading, electronic markets, high-frequency trading, limit order book, 

liquidity, market-making, market efficiency, market microstructure 

JEL classification : G10, G12, G14 
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1. Introduction 

Most stock exchanges have removed or have diluted the formal obligation to maintain an orderly 

market once imposed on human market-makers: high-frequency liquidity suppliers are major 

participants in electronic markets (Anand and Venkataraman (2013); Menkveld (2013)). Jones 

(2013) explains the increase in high-frequency market making by lower cost structures and more 

adequate responses to adverse selection. 

Notwithstanding the importance of high-frequency market-making, very little is known about the 

profitability and individual behavior of high-frequency liquidity providers. Menkveld (2013) 

describes and evaluates the activities of a large high-frequency market maker (HFMM) who uses 

spatial arbitrage as the core of his market-making strategy. He asserts that fees are a substantial 

part of the HFMM’s profit and loss account. Serbera and Paumard (2016) argue that maker-fees 

represent the core profitability of high-frequency market-making. Popper (2012) states that profits 

in American stocks from high-speed trading in 2012 are down 74 percent from the peak of $4.9 

billion in 2009. This can be linked to a decrease in commission and rebates, reported by Malinova 

and Park (2015). 

To deal with this trend, we assess the economic viability, excluding maker fees, of a typical HFMM 

in two steps: first, we emulate the behavior of an HFMM using Ait-Sahalia and Saglam (2014) 

dynamic inventory management model (the model hereafter). Their model mimics the high 

frequency trading stylized facts. Their setup differs from the classical dynamic inventory models 

(Grossman and Stiglitz (1980); Roll (1984); Glosten and Milgrom (1985); Kyle (1985)) in that the 

strategic variable is whether or not to quote rather than change the supply curve. It yields to an 

optimal quoting policy (OQP) of liquidity provision that drives the HFMM’s trading decisions. 

Second, we embed the OQP in a trading strategy that relaxes some of the model’s assumptions and 

adds risk management features.  

Market-making implies asynchronous trades and varying market risk related to the dynamic 

leverage from the model’s OQP and the liquidity demanders’ needs. These factors affect the 

HFMM’s trading performance. We propose a measure, the time-volume weighted average return 

(TVWAR), to cope with both phenomena. It allows us to analyze a single stock performance 
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incurring different phases of trading activities and/or liquidity depth, and to compare returns of 

stocks with different idiosyncratic characteristics. 

The emulation provides insights into the implications of high-frequency market-making on market 

quality, a matter that has raised much concern. Duffie (2010) describes the importance of 

monitoring the pattern of response to supply and demand shocks for asset pricing dynamics. 

Foucault, Kadan, and Kandel (2013) develop a model based on an endogenous reaction time to 

trading activities, and find that algorithmic trading plays an important role in monitoring the state 

of liquidity cycles. Biais, Foucault, and Moinas (2015) and Pagnotta and Philippon (2015) analyze 

competition on speed. They argue that competition should have a positive effect on the price 

discovery process. Finally, market stability is documented using Johnson et al. (2013) ultrafast 

extreme events (UEEs). 

The paper is organized as follows. Section 2 presents the dynamic inventory management model 

of Ait-Sahalia and Saglam (2014) and its optimal quoting policy. Section 3 introduces the 

empirical investigation. Section 4 presents the data. Section 5 proposes a measure to determine the 

returns in a context of asynchronous data and dynamic inventory management. Section 6 sets out 

and discusses the results. Section 7 presents robustness tests, and Section 8 concludes the paper.  

2. Optimal Quoting Policy of Liquidity Provision 

Ait-Sahalia and Saglam (2014) refer to two types of agents: low-frequency traders (LFTs), who 

use market orders only, and a sole HFMM who has exclusive access to the limit order book (LOB). 

The HFMM trades limit orders (LOs) only, and exhibits inventory aversion. The bid-ask spread is 

exogenous. This setup differs from the classical dynamic inventory models in that the strategic 

variable is whether or not to quote and not to change the HFMM’s supply curve. The HFMM’s 

revenue depends on the trade-off between the inflows from the bid-ask spread and the outflows 

from the inventory cost as depicted in the following equation: 
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𝐸(𝜋) =

𝐶

2
∑𝑒−𝐷𝑠𝑚𝑜𝑡 𝐼(𝑙𝑠𝑚𝑜𝑡

𝑏 = 1)

∞

𝑡=1

+
𝐶

2
∑𝑒−𝐷𝑏𝑚𝑜𝑡 𝐼(𝑙𝑏𝑚𝑜𝑡

𝑎 = 1)

∞

𝑡=1

− 𝛤∫ 𝑒−𝐷𝑡|𝑥𝑡|
∞

0

𝑑𝑡, 
(1) 

where: 

𝐸(𝜋): Quoting policy expected reward. 

𝐶: Bid-ask spread. 

𝐷: Constant discount factor > 0. 

𝑠𝑚𝑜𝑡 (𝑏𝑚𝑜𝑡): Sell (buy) market order by LFTs at time t. 

𝐼: Indicator function. 

𝑏: HFMM bid limit order. 

𝑎: HFMM ask limit order. 

𝑙𝑠𝑚𝑜𝑡|𝑏𝑚𝑜𝑡
𝑏|𝑎

: Equals 1 if the HFMM is quoting a bid (𝑏) or an ask (𝑎) limit order when a LFT sell 

(buy) market order arrives, 0 otherwise. 

 𝛤: Inventory aversion coefficient. 

𝑥𝑡: Inventory position at time t. 

 

The first term to the right of equation (1) is the discounted value of the HFMM’s revenue (
𝐶

2
) 

earned when an incoming LFT’s sell market order hits the HFMM’s limit order while he is bidding 

(𝐼(𝑙𝑠𝑚𝑜𝑡
𝑏 = 1)). The second term is the discounted revenue associated with an incoming LFT’s bid 

market order, and the third term is the discounted value of the HFMM’s inventory costs over the 

period 𝑑𝑡. To keep the model tractable, the HFMM always places his LOs at the best bid and/or 

ask price and does not issue orders larger than one contract. 

Apart from observing the arrival of market orders, the HFMM receives a signal 𝑠 about the likely 

side of the next incoming market order: 𝑠 ∈ {1,−1}, where 1 predicts an incoming LFT’s buy 

market order and -1 an incoming LFT’s sell market order. 𝑃 quantifies the informational quality 

of the HFMM’s signal. It varies from 0.5 (no prior knowledge about the side of the next incoming 

LFT’s market order) to 1.0 (perfect knowledge). In Ait-Sahalia and Saglam (2014) setup, the next 

event is either 1: the arrival of a signal with probability (
𝜇 2⁄

𝜆+𝜇
), μ being the arrival rate of a Poisson 

distribution of the HFMM’s signals and λ the arrival rate of a Poisson distribution of the incoming 

LFTs’ market orders; 2: the arrival of a market order in the direction of the last signal with 

probability 
𝑃𝜆

𝜆+𝜇
; or 3: the arrival of a market order in the opposite direction of the last signal with 
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probability 
(1−𝑃)𝜆

𝜆+𝜇
. The value of market-making activities for any given event assuming an 

inventory position of 𝑥 (𝑥 ∈ {⋯ ,−2,−1, 0, 1, 2,⋯ })  and a sell signal (-1) is: 

 𝑣(𝑥,−1) =  

−𝛾|𝑥|

+ 𝛿

{
 
 

 
 (

𝜇 2⁄

𝜆 + 𝜇
) (𝑣(𝑥, 1) + 𝑣(𝑥, −1)) +

𝑃𝜆

𝜆 + 𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 − 1,−1), 𝑣(𝑥, −1)) +

(1 − 𝑃)𝜆

𝜆 + 𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 + 1, −1), 𝑣(𝑥, −1))

}
 
 

 
 

, 

(2) 

where: 

𝛾 =
𝛤

𝜆+𝜇+𝐷
;  𝛿 =  

𝜆+𝜇

𝜆+𝜇+𝐷
 ; 𝑐 = 𝛿𝐶;  

Equation (2) quantifies the market-making value function. The first term to the right is the 

discounted inventory cost (−𝛾|𝑥| ). The second term is the discounted value of the three possible 

events: the value of the arrival of a signal ((
𝜇 2⁄

𝜆+𝜇
) (𝑣(𝑥, 1) + 𝑣(𝑥,−1)) ), the value of the arrival 

of a market order in the direction of the signal (
𝑃𝜆

𝜆+𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+ 𝑣(𝑥 − 1, −1), 𝑣(𝑥, −1))), and the 

value of the arrival of a market order in the opposite direction of the signal (
(1−𝑃)𝜆

𝜆+𝜇
𝑚𝑎𝑥 (

𝑐

2𝛿
+

𝑣(𝑥 + 1,−1), 𝑣(𝑥, −1)) ). 

Solving equation (2) by backward induction using the Hamilton-Jacobi-Belman optimality method 

leads to the optimization of the expected reward trade-off. 

2.1 OQP determination 

Theorem 1 of Ait-Sahalia and Saglam (2014) states that there is an optimal quoting policy of 

liquidity provision, based on the expected reward trade-off: 
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Theorem 1: The optimal quoting policy of the HFMM consists in quoting at the best bid and the 

best ask according to a threshold policy, i.e., there exists 𝐿∗ < 0 < 𝑈∗ ≤ |𝐿∗| , such that: 

𝑙𝑏(𝑥, 1) = {
1 𝑤ℎ𝑒𝑛 𝑥 < 𝑈∗

0 𝑤ℎ𝑒𝑛 𝑥 ≥ 𝑈∗
𝑙𝑎(𝑥, 1) = {

1 𝑤ℎ𝑒𝑛 𝑥 > 𝐿∗

0 𝑤ℎ𝑒𝑛 𝑥 ≤ 𝐿∗

𝑙𝑏(𝑥, −1) = {
1 𝑤ℎ𝑒𝑛 𝑥 < −𝐿∗

0 𝑤ℎ𝑒𝑛 𝑥 ≥ −𝐿∗
𝑙𝑎(𝑥, −1) = {

1 𝑤ℎ𝑒𝑛 𝑥 > −𝑈∗

0 𝑤ℎ𝑒𝑛 𝑥 ≤ −𝑈∗

 

Theorem 1 can be interpreted as follows: Suppose the HFMM receives a “buy” signal (𝑠 = 1) 

while being long (𝑥 > 1). He is going to act upon it (𝑙𝑏 = 1) as long as his current inventory is not 

already too high (𝑥 < 𝑈∗). If (𝑥 ≥ 𝑈∗), the HFMM will not quote because this could increase his 

long inventory position beyond the optimal threshold 𝑈∗. Symmetrically, if the HFMM receives a 

“sell” signal (𝑠 = −1), he will quote on the ask side (𝑙𝑎 = 1) as long as his inventory position is 

not already too short (𝑥 > −𝑈∗). 

An algorithm proposed by Ait-Sahalia and Saglam (2014) presented in the Appendix allows us to 

determine the thresholds based on the expected reward trade-off and Theorem 1.  

2.2 Emulation and OQP 

To determine an optimal quoting policy of liquidity provision, the model requires six parameters: 

𝐷, 𝛤, 𝜆, 𝜇, 𝐶, 𝑃. All financial instruments use the same and constant parameters 𝐷, the discount rate, 

and 𝛤, the coefficient of inventory aversion. 

The four remaining parameters depend on the idiosyncratic behaviors of the stocks. 𝐶 is the 

observed bid-ask spread and λ, the observed arrival rate of marketable orders. We define 𝜇, the 

HFMM’s arrival rate of signals, as the number of creations, updates, and cancellations at the LOB 

level 1. We constrain the HFMM to react to other market participants’ actions. He does not use 

any private information to modify the observed price discovery process and/or the bid-ask spread. 

The parameter 𝑃 is fixed at 0.50. 

For any given combination of the six input parameters, we obtain an ex-ante OQP of liquidity 

provision based on the algorithm described in the Appendix. The algorithm stipulates the sides 

(bid and/or ask) and respective quantities to quote, i.e. the thresholds. 
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3. Empirical investigation 

We aim to provide an empirical investigation of the profitability and the impact on market quality 

of an individual high-frequency trader acting as a liquidity provider. The decision to quote or to 

trade, the timing and the management of positions are totally driven by our fully automated 

algorithm. Our approach is fundamentally different from the traditional trading strategy 

approaches such as Fibonacci ratios, golden ratio, oscillators and pivot point strategies that try to 

forecast the future value of a financial instrument. Our method involves using the optimal quoting 

policy from Ait-Sahalia and Saglam (2014) as a kernel. The OQP is independent from the market 

states and does not require any prediction of prices. 

 Data mining and data snooping have been analyzed extensively (Wasserstein and Lazar (2016), 

Bailey et al. (2015), Kim and Ji (2015), and Bailey et al. (2014)). Multiple-testing increases the 

probability of a false discovery drastically because it takes on average as few as 1 𝛼⁄  independent 

iterations to produce a false discovery (Lopez De Prado (2015)). Our results are obtained following 

a single set of parameter values designed ex-ante and therefore do not imply any data mining or 

data snooping. 

First, we assess the performance of the optimal quoting policy from Ait-Sahalia and Saglam 

(2014). However, we impose the closing of all positions by issuing market orders at the end of the 

day (EOD); the procedure is launched at the beginning of the last three minutes of trading.  The 

appraisal thus represents the results of “pure” market-making as accurately as possible. 

Second, we embed the OQP in a trading strategy that considers market imperfections: limit orders 

are not uniquely identified in our database. Usually we cannot know with certainty who holds time 

priority. We apply the worst-case scenario to the HFMM: time priority is given to the total quantity 

available at the best bid (ask), excluding the HFMM limit order, one microsecond (μS) before the 

arrival of a market order. In this way, we depart from Ait-Sahalia and Saglam (2014), who assume 

that the HFMM is the fastest trader. 

In practice, trading firms monitor market conditions and integrate pauses in their algorithms 

(Kelejian and Mukerji (2016)). Events like the flash crash of May 2010 and the Knight Capital’s 
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algorithm glitch of August 20122 prompted regulators such as the Commodity Futures Trading 

Commission (2013), the U.S. Securities and Exchange Commission (2016), and tThe Government 

Office for Science (2012)) to make the use of circuit-breakers mandatory. We enforce circuit-

breakers by monitoring market conditions associated with three of the OQP’s parameters: λ and 𝜇 

have an upper bound corresponding to 95% of the ranges of values from the reference time interval 

of one minute. 𝐶, the bid-ask spread, has an upper bound of 99% of the reference range. When a 

parameter’s value exceeds its upper bound, we cancel all the quotes on the stock and we send a 

marketable order to liquidate the position. Parameter values are reset to zero at the beginning of 

the next time interval. This induces regular quoting and trading activities. This behavior is in line 

with Chordia et al. (2013), who note that market-makers are also liquidity takers in their regular 

activities. 

Within the model of Ait-Sahalia and Saglam (2014), the quantity of each order is fixed at one lot. 

To relax the constraint imposed on profits, we generalize this concept by defining κ, a constant 

quantity. κ is similar in nature to the trading unit of an option contract, e.g. 100 stocks, and is 

defined as the maximum quantity from the five most frequently traded quantities of a given stock. 

The fragmentation of orders is a well-established concept (Almgren and Chriss (2001); Almgren 

(2003); Obizhaeva and Wang (2013); Markov (2014); Jingle and Phadnis (2013); among others). 

Choosing κ with the suggested methodology reflects the fact that market participants want to 

mitigate their impact on the price discovery process. This is supported by the statistics of Table 2, 

which demonstrate that 47.6% (41.2%) of all trades in the DAX (MDAX) do not consume the 

available quantity at level one. 

Trading a quantity larger than 1 could cause a price impact if the available quantity at level one is 

insufficient to liquidate the HFMM’s position. This would force the HFMM to walk into the limit 

order book. Empirical investigations of trading strategies are vulnerable to biases if they exhibit 

price impacts. This could be an indication of an undue influence on the price discovery process 

and it could lead real-time trading results to differ significantly from expectations. To avoid 

HFMM’s market orders and the implied illiquidity cost transfer to other market participants that 

                                                 

2 http://www.bloomberg.com/bw/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes 
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affect prices, the HFMM incurs market risk instead of walking up (down) the LOB. The HFMM 

trades up to the available quantity at level one and waits for the next incoming limit order(s) at that 

level in order to fully liquidate his position if necessary. This amounts to controlling for the 

instantaneous price impact (Cont, Kukanov, and Stoikov (2014); Bouchaud, Farmer, and Lillo 

(2009)). Estimating the permanent impact of market orders (Hautsch and Huang (2012); Huh 

(2014); Zhou (2012)) becomes unnecessary. We apply to κ the OQP thresholds associated with 

the contemporary model’s parameters. In case of partial execution of a limit order, we cancel the 

order(s) and submit a new order(s) with the required adjusted quantity(ies). Time priority is 

amended accordingly. 

Speed is important to gain time priority and to avoid being picked up (sniped) while displaying 

stale quotes, so we take into consideration the effect of latency on the trading results. We use the 

latency of 150 μS. This value is representative of the time required by our infrastructure and our 

algorithm to receive, analyze, react to, and send new orders following the arrival of new 

information. We can compete on speed with the other co-location firms, and we are significantly 

faster than buy-side investors. 

4. Data 

The data come from Xetra, the fully electronic trading platform of the Frankfurt Stock Exchange. 

The raw dataset contains all events (deltas and snapshots) sent through the Enhanced Broadcast 

System, a data feed used by high-frequency traders. Deltas track all possible events in the LOB 

whereas snapshots convey information about the state of a given LOB at a specific time. Xetra 

Parser, developed by Bilodeau (2013), is used to reconstruct the real-time order book sequence 

using Xetra protocol and Enhanced Broadcast. Liquidity is provided by market participants posting 

limit orders in the LOB. The stocks of our sample have LOB with twenty levels on both sides of 

the market. The state of the LOB and the arrival of marketable orders (the trades) can be observed 

by the subscribers to the data feed. Time stamps are in μS, trading is anonymous and specific order 

identification is nonexistent.  
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Our data set consists of sixty stocks from the DAX index family: thirty stocks in each of the DAX 

and the MDAX. DAX indexes are indicators for the German equity market. The DAX 

characterizes the blue chip segment. Its components are the largest and most actively traded 

German companies. The MDAX is composed of mid-capitalization issues from traditional sectors, 

excluding technology, that rank immediately below the DAX stocks. The ultra-high-frequency 

data cover six months from February 1, 2013 to July 31, 2013. The sample covers different market 

phases as depicted by Figure 1: a trading range for the entire month of February, a bull trend from 

the last week of April to mid-May, 2 bear trends (mid-March to mid-April and the last week of 

May to the last week of June) and high volatility periods: the third week of April and the third 

week of June.  Figure 1 displays the DAX daily chart for this period. 

---------- insert ---------- 

Figure 1 DAX daily quotes - February to July 2013 

---------- here ---------- 

Table 1 presents the summary statistics from trading and LOB level one quoting activities. In Panel 

A, the DAX largely dominates the MDAX with a market value traded of €398.5b (92.57% of total 

activities) and 17.6 m of transactions (79.47%). Panel B exhibits even stronger statistics for the 

DAX. Quoting based exclusively on level one activity overwhelms trading as depicted by the ratio 

of the number of updates to the number of trades (# UTDs/# trades) that is higher than 10 for both 

indexes. This ratio is followed by the SEC (MIDAS, Security and Exchange Commission at 

http://www.sec.gov/marketstructure/midas.html) to monitor high-frequency trading activities. 

---------- insert ---------- 

Table 1 Market summary statistics, trades and LOB1 

---------- here ---------- 

Table 2 illustrates the price discovery process. Price impact minimization is the dominant trading 

phenomenon, with 47.6% (DAX) and 41.2% (MDAX) of all trades executed at the last tick price. 

This includes combinations (0,0), (+,0), and (-,0). Aggressive orders (+,+ and -,-) induce positive 

autocorrelations in the price discovery process. They represent 14.3% (DAX) and 18.4% (MDAX) 

of all price moves, less than bid-ask bounce trades (+,- and -,+), which are respectively 18.1% 

(DAX) and 21.0% (MDAX). 

---------- insert ---------- 

http://www.sec.gov/marketstructure/midas.html
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Table 2 Two-way classification of price movements in consecutive intraday trades: 

Summary (,000) 

---------- here ---------- 

Table 3 exhibits the two-way classification for the thirty stocks from the DAX index. The 

directional trading maxima (+,+ and -,-) are respectively 10.72% and 11.04% for the unique 

identifier (isix) 1634, and the other aggregated results are representative of all stocks. 

---------- insert ---------- 

Table 3 Two-way classification of price movements in consecutive intraday trades DAX 

(%) 

---------- here ---------- 

Results for the thirty stocks from the MDAX are not qualitatively different. They are not presented 

due to space considerations, but are available upon request. 

Johnson et al. (2013) proposed the concept of ultrafast extreme events (UEEs). UEEs can shed 

light on the price discovery process and the instabilities of financial markets, and help one appraise 

the HFMM’s risk exposure, and stress-test trading algorithms. We define UEEs as an occurrence 

of a stock price ticking down (up) at least five times before ticking up (down), having a price 

change of at least 0.5% within a duration of 1500 milliseconds. We can interpret UEEs as surges 

for up ticks and mini crashes for down ticks. As depicted in Table 4, three hundred and thirty-nine 

UEEs have been observed (85 in the DAX and 254 in the MDAX) during the 125 trading days of 

our sample (2.7 events on average per day). The number of events is significantly higher in the 

MDAX. This is consistent with the differences in liquidity and trading interest exhibited in Table 

2. The difference in trading intensity between the DAX and the MDAX is also reflected in the 

higher average repetitions (7.918 vs 6.519).  

---------- insert ---------- 

Table 4 Ultrafast extreme events (UEEs) summary 

---------- here ----------  

Figure 2 shows the number of UEE occurrences per day. Extreme events happened in 102 out of 

125 trading days (84.30%). UEEs have occurred on the DAX (MDAX) during 40 (94) days. The 

higher number of daily UEE occurrences in the MDAX reflects its thinner trading and its shallower 

depth of LOB level one compared to the DAX. Spikes in the number of UEEs do not happen 
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simultaneously in both indexes. This suggests that their causes are idiosyncratic rather than 

systematic. 

---------- insert ---------- 

Figure 2 Number of UEEs per day: DAX - MDAX 

---------- here ---------- 

Figure 3 displays the number of UEE occurrences per minute, considering the 510 minutes of 

trading on regular days. UEEs exhibit a tendency to occur around the open and the close of the day 

as the documented smile in trading volume (Hanif and Smith (2012), Madhavan (2002)). UEEs 

can result from induced uncertainty by the market model that imposes long lasting suspension of 

trading. 

---------- insert ---------- 

Figure 3 Number of UEEs per minute: DAX - MDAX 

---------- here ---------- 

The assumption of independent arrivals of HFMM signals and LFTs market orders is implicit in 

the Poisson distributions used by Ait-Sahalia and Saglam (2014). The HFMM decision follows the 

arrival of new information (LFTs marketable orders or signals), so we test the independence 

assumption on the aggregated information. Table 5 shows that one cannot reject this assumption 

for any stock in our sample. 

---------- insert ---------- 

Table 5 Signal and trade independence: chi-square tests 

---------- here ---------- 

5. TVWAR: a time- and volume-weighted average return 

Data emulation replicates the stock behavior. The model adapts the OQP dynamically to the stock's 

states by tracking the parameters λ (the arrival rate of LFTs’ market orders), μ (the arrival rate of 

HFMM’s signals), and 𝐶 (the bid-ask spread). This induces dynamic management of positions. To 

evaluate the HFMM’s performance, we propose a measure based on realized PnL, which considers 

the impacts of leverage and asynchronous data. Both factors affect the holding period and the 

discrete time returns. 
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Equations (3) to (6) define the variables required to determine the holding period return of a 

sequence of 𝐸 events. A profit (loss) is realized when an existing position (long or short) is 

unwound. The unwinding quantity comes from two sources: the HFMM’s marketable orders due 

to risk management features and incoming market orders executed against the HFMM’s LOs. The 

unwinding quantity refers to a traded quantity that partially or totally offsets a position. 

The unwinding quantity is:  

 
𝑈𝑄𝑒 = 

𝑖𝑓 𝑃𝑜𝑠𝑒−1 > 0 𝑎𝑛𝑑  𝑃𝑜𝑠𝑒−1 > 𝑃𝑜𝑠𝑒 −𝑚𝑖𝑛(𝑃𝑜𝑠𝑒−1 − 𝑃𝑜𝑠𝑒 , 𝑃𝑜𝑠𝑒−1)

𝑖𝑓 𝑃𝑜𝑠𝑒−1 < 0 𝑎𝑛𝑑  𝑃𝑜𝑠𝑒−1 < 𝑃1𝑜𝑠𝑒 −𝑚𝑎𝑥(𝑃𝑜𝑠𝑒−1 − 𝑃𝑜𝑠𝑒 , 𝑃𝑜𝑠𝑒−1)

𝑒𝑙𝑠𝑒 0

, 
 (3)

 

where: 

𝑈𝑄𝑒: unwinding quantity for event e, negative (positive) for buys (sells). 

𝑃𝑜𝑠𝑒: quantity long, short or flat for event e. 

𝑒: event number (an event = a trade). 

𝑒 ∈ [1,2, … , 𝐸]. 

Maximum leverage ensues from two factors: the OQP, which depends on the parameters (Γ, D, λ, 

μ, C, P) of Ait-Sahalia and Saglam (2014) and κ, the reference quantity defined in Section 3. 

Effective leverage, with an upper bound equal to the maximum leverage, is influenced by speed 

(latency, time priority, and market-making competition), HFMM LOs, and incoming market orders 

(quantity and serial correlation). 

The effective leverage value is: 

 
𝛷𝑒 = (

𝑈𝑄𝑒
κ 2⁄

), 
(4) 

where 𝛷𝑒 is based on the required capital to trade κ shares considering standard margin 

requirements. An unwinding trade for the HFMM resulting in a partial execution of the reference 

quantity κ has a leverage value smaller than the leverage value of an unwinding trade that closes 

the HFMM position of 2κ. 2κ is possible when the OQP threshold is 2 and the HFMM carries the 

maximum inventory. 

The holding period return of event 𝑒 is: 
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𝑟𝑒 = 𝑙𝑛 (

𝑃𝑒
𝑃𝑒−1

) ∙ 𝛷, 
(5) 

where 𝑃𝑒 is the trade price for event e. 

Returns are directly impacted by the relative importance of the unwinding trades. All else being 

equal, there is a linear relationship between the leverage measure and the holding period return of 

an event. 

The cumulated return over 𝐸 events is: 

 

𝑟𝐸 =∑𝑟𝑒

𝐸

𝑒=1

. 
(6) 

Asynchronous events are the norm in microsecond trading environments. Significant differences 

exist in stocks' behavior due to their liquidity and depth, and to the trading interest. To facilitate 

comparison, we use discrete time intervals where the returns are time-weighted and volume-

weighted within the interval. Equations (7) to (14) define the variables required to determine the 

discrete time return over 𝐷 time intervals. 

 If a position overlaps two or more time intervals, the return is evenly spread out over the holding 

period. The number of time intervals in a trading day is equal to: 

 𝐷 = ⌈(𝜇𝑆𝑒𝑜𝑑 − 𝜇𝑆𝑏𝑜𝑑) 𝜇𝑆𝑏𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙⁄ ⌉, (7) 

where: 

𝑑 ∈ [1,2, … , 𝐷].  
𝜇𝑆𝑒𝑜𝑑: time stamp of the end of the day in μS. 

𝜇𝑆𝑏𝑜𝑑: time stamp of the beginning of the day in μS. 

𝜇𝑆𝑏𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙: number of μS in a one-time interval. 

The reference time stamp at the beginning of period 𝑑 is given by: 

 𝜇𝑆𝐵𝑒𝑔𝑅𝑒𝑓𝑑 = 𝜇𝑆𝑏𝑜𝑑 + (𝑑 − 1) ∙ 𝜇𝑆𝑏𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙. (8) 

The reference time stamp at the end of period 𝑑 equals: 
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 𝜇𝑆𝐸𝑛𝑑𝑅𝑒𝑓𝑑 = min(𝜇𝑆𝑏𝑜𝑑 + 𝑑 ∙ 𝜇𝑆𝑏𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝜇𝑆𝑒𝑜𝑑). (9) 

The reference time stamp at the beginning of period 𝑑 for event e solves: 

 μS𝐵𝑒𝑔𝑑,𝑒 = 𝑚𝑎𝑥(𝜇𝑆𝑑,𝑒 , 𝜇𝑆𝐵𝑒𝑔𝑅𝑒𝑓𝑑), (10) 

where:  

𝜇𝑆𝑑,𝑒: time stamp of event 𝑒 in time interval 𝑑. 

The reference time stamp of period d for event e is bounded by the end of the time interval d, so 

the reference time stamp at the end of period 𝑑 for event e is: 

 μS𝐸𝑛𝑑𝑑,𝑒 = 𝑚𝑖𝑛(𝜇𝑆𝑑,𝑒 , 𝜇𝑆𝐸𝑛𝑑𝑅𝑒𝑓𝑑). (11) 

Our procedure allows us to consider both the leverage (
𝑈𝑄𝑑,𝑒

κ 2⁄
) and the holding period 

(
μSEnd𝑑,𝑒−μSBeg𝑑,𝑒

𝜇𝑆𝐵𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
) of positions. The time- and volume-weighted return of event 𝑒 during time 

interval 𝑑 is: 

 
𝑟𝑑,𝑒 = ln (

𝑃𝑑,𝑒
𝑃𝑑,𝑒−1

) ∙
𝑈𝑄𝑑,𝑒
κ 2⁄

∙ (
μSEnd𝑑,𝑒 − μSBeg𝑑,𝑒
𝜇𝑆𝐵𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

). 
(12) 

The return for time interval 𝑑 is the sum of the time- and volume-weighted returns of the E events 

of period d:  

 

𝑟𝑑 =∑𝑟𝑑,𝑒 .

𝐸

𝑒=1

 
(13) 

The cumulated return over 𝐷 time intervals adjusted for leverage and holding periods equals: 

 

𝑟𝐷 =∑𝑟𝑑

𝐷

𝑑=1

. 
(14) 
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6. Results 

We emulate the trading and quoting activities of an HFMM under two scenarios: Section 6.1 

implements the OQP designed by Ait-Sahalia and Saglam (2014) dynamic inventory model. In 

contrast, we close all positions by issuing market orders before the end of the day. In that way, the 

results are as representative as possible of “pure” market-making activities. Whereas Ait-Sahalia 

and Saglam (2014) show that an HFMM who holds private information can exploit it to his 

advantage, we do not consider this opportunity because we do not want to interfere in the price 

discovery process. A latency of 150 microseconds is applied to take into account the cycle of 

reception, analysis and response from our infrastructure. The worst-case scenario is applied to the 

HFMM time priority as defined in Section 3. In Section 6.2, we relax the constraint on the quantity 

of each order fixed at 1 by using κ.  The HFMM does not optimize on the quantity in each trade 

because κ is constant. The management of positions considers the dynamic nature of the OQP, the 

trading intensity and the liquidity needs of the market participants. Circuit-breakers are 

implemented and are based on the monitoring of market characteristics summarized by the arrival 

rates of new information (trades and quotes) and the behavior of the bid-ask spread. They involve 

the use of market orders. We avoid price impacts by restricting the quantity of market orders to 

the available quantity at level one. This forces the HFMM to incur market risk instead of 

transferring the liquidity risk to the other market participants by walking into the LOB. We analyze 

the impact of circuit-breakers on profitability and market quality. Profitability measures are from 

the Profit and Loss (PnL) report, which is calculated from all HFMM orders (limit and market). 

The approach to assess the PnL meets the requirements of the Basel Committee on Banking 

Supervision (2013). 

6.1 Ait-Sahalia and Saglam (2014)  

Figure 4 displays the aggregated cumulative Profit and loss from the quoting and trading activities 

based on Ait-Sahalia and Saglam (2014) dynamic inventory model. Both indexes exhibit an 

upward trend over the entire period without significant drawdowns. The OQP allows the HFMM 

to extract a constant annuity from both indexes. 

 



 

17 

 

---------- insert ---------- 

Figure 4 DAX - MDAX Cumulative P&L: OQP 

---------- here ---------- 

Daily and intraday statistics are presented in Table 6. Total profits for the six-month period are 

3,412 € (2,999 €) in the DAX (MDAX). Total profits are 14.8% higher in the DAX than in the 

MDAX. This is the result of a higher number of trades, 181,594 vs 86,199 for the DAX vs. the 

MDAX combined with a tiny average profit per trade of 0.019 € vs 0.034 €. This is characteristic 

of high-frequency trading (Jones (2013)). Total profits are insufficient to maintain the 

infrastructure costs required by market-making activities. 

 --------- insert ---------- 

Table 6 Daily and intraday profitability – OQP 

---------- here ---------- 

6.2 Trading strategy 

The dynamic management of the OQP thresholds coupled with the use of κ based on the 

idiosyncratic characteristics of the stocks expose the HFMM’s LOs to partial executions. Table 7 

illustrates the way partial execution of the HFMM’s limit orders against marketable orders are 

handled. The example comes from the emulation of Deutsche Bank data from February 1, 2013. 

It illustrates the way partial executions of the HFMM’s limit orders against marketable orders are 

handled. It works as follow: One μS before ….054552, the HFMM is short 500 shares. At 

….054552, a bid limit order creation for 1,000 shares at 42.910 is sent to the Exchange. We identify 

this order with the internal id 41. Internal ids refer to emulated orders from the trading strategy. At 

….139361, an incoming market order hits the HFMM bid for a quantity of 169 (internal id 7). 

---------- insert ---------- 

Table 7 Orders and positions: an example 

---------- here ---------- 

The HFMM position is short 331 shares. This trade is immediately followed by the cancellation 

of the LO with id 41, a creation (id 42) of a bid LO at 42.910 for 831 shares and a creation of an 

ask LO at 42.950 for 169 shares. Considering the HFMM’s position (short 331) and his LO 

quantity of 831 (169) on the bid (ask), a full execution of one of his LOs will lead to the HFMM’s 
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κ of 500 shares for Deutsche Bank. This quantity is the maximum of the five most traded quantities 

of Deutsche Bank as defined in Section 3. 

The profitability of the strategy is displayed in Table 8. Panel A indicates that total profits are 

strongly positive. The average daily profits are economically significant, the standard deviations 

low, and no daily loss has occurred over the 125-day period even if the sample includes different 

kinds of market moods, including some high stress periods (See Figure 1 DAX daily quotes - 

February to July 2013).  

---------- insert ---------- 

Table 8 Daily and intraday profitability 

---------- here ---------- 

Panel B shows an average profit per trade of 2.32€ (1.73€) for the DAX (MDAX). When coupled 

with the total number of trades of Panel C, we obtain results typical of high-frequency trading: a 

high number of trades (1.1m for the DAX and 355.5k for the MDAX) paired with a small profit 

per trade. This highlights the fact that the HFMM is not a directional trader. Using hard 

information, he benefits from the bid-ask bounces and the variability of bid-ask spreads due to 

varying liquidity levels without assuming the use of valuable private information. The lowest part 

of Panel C displays the distribution of trade profit per transaction. Whereas flat trades represent 

20.53% (15.75%) of the 1.1 million (350k) trades, both distributions are skewed to the right. An 

HFMM acting as a designated sponsor and using the strategy has his transaction fees waived 

because he fulfills the Deutsche Boerse (2015) requirements. 

---------- insert ---------- 

Table 9 HFMM’s Trade origins 

---------- here ---------- 

Looking at Table 9, a total of 1.1m (357k) trades have been executed in the DAX (MDAX) 

segment. 94.54% (89.13%) of these originate from HFMM LOs, which have been executed against 

incoming marketable orders from LFTs and other high-frequency traders, thus providing 15.3b € 

(1.6b €) in liquidity over the period. This confirms the capacity of the trading algorithm to act as 

a market maker. 
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Circuit-breakers (C.B.) are important components of the strategy. They have been activated a daily 

average of 14.5 (7.7) times per stock (𝐷𝐴𝑋: 54,462 ÷ 125 ÷ 30). Looking at the DAX 

components, market orders triggered by the circuit-breakers represent 4.87% of total trades and 

they account for 9.94% of the total PnL. Results are even more striking when looking at the 

MDAX: 8.07% of the trades come from the circuit-breakers for a contribution exceeding 30% of 

the total PnL. Avoiding overnight positions comes at a cost: respectively 135,334 € and 15,086 € 

for the DAX and MDAX components. 

Traditionally, informed traders are associated with high-volume transactions: Blume, Easley, and 

O'Hara (1994) show that volume provides information on information quality. Wang (1994) finds 

that volume is positively correlated with absolute changes in prices and dividends. Chakravarty, 

Gulen, and Mayhew (2004) relate informed trading in both stock and option markets to trading 

volume. However, developments in market structure and technological advances led to evidence 

of dynamic use of limit order strategies by which traders manage their positions: Bloomfield, 

O’Hara, and Saar (2005) use experimental asset markets to analyze make-take decisions in an 

electronic market. They note that informed traders’ aggressive orders are replaced by limit orders 

as prices move toward fundamental values. Hasbrouck and Saar (2009) find evidence consistent 

with the use of a dynamic limit order strategy by which traders manage their positions on INET. 

To investigate the impact of informed traders on HFMM’s performance in this context, we 

compare the returns using a constant leverage to the discrete time returns adjusted for leverage and 

asynchronous trades using Equations (7) to (14). If large trades convey private information, the 

HFMM’s performance adjusted for leverage should decline to reflect the permanent impact on 

fundamental value of the private information. The results in Table 10 mitigate this conclusion. In 

the DAX, the cumulated leveraged return is 99.9% higher than the cumulated constant return. This 

can be the result of mixed strategies using market and limit orders described by Easley, de Prado, 

and O'Hara (2016). This casts doubts on the quality of information obtained from trade volume 

alone. A contrario, the difference between the leveraged and constant return is –19.5% in the 

MDAX. The trade-off between market risk and liquidity risk in this segment could explain this 

phenomenon. 
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---------- insert ---------- 

Table 10 Impact of leverage on performance 

---------- here ---------- 

Figure 5 displays the discrete time returns per time interval adjusted for leverage and asynchronous 

trades using Equations (7) to (14). Dynamic management of positions is well suited to benefit from 

UEEs because the best discrete returns are obtained at the opening and the closing of the trading 

session, where the majority of UEEs happen. Moreover, time intervals 330-331 (327-329) and 

420-423 (417-418) in the DAX (MDAX) coincide with a larger than usual number of UEE 

occurrences. The Deutsche Boerse market model, implying midday auctions, imposes a transfer 

of wealth between LFTs toward the HFMM as seen during period 243 (13h03) in the DAX: it 

exhibits a significant increase in average leveraged return for the HFMM. The same phenomenon 

is observed in the minute following the midday auction in the MDAX (period 246 at 13h06).  

---------- insert ---------- 

Figure 5 DAX- MDAX Leveraged return per time interval 

---------- here ---------- 

The HFMM is a liquidity provider when he behaves as a market maker and issues market orders 

(consumes liquidity) for risk management purposes. Table 9 divides the HFMM’s trade origins 

into three categories: the execution of the HFMM’s LOs against incoming LFTs’ marketable 

orders (LOB); the intraday liquidation of the HFMM’s positions due to circuit-breakers (C.B.); 

and the closing of positions at the end of the day (O/N). This disentangles the liquidity-providing 

activities (LOB) from the liquidity-consuming ones (C.B. and O/N).  

More than 94% (89%) of trades in the DAX (MDAX) originate from LOs. This confirms the 

HFMM’s role as a liquidity provider. The monitoring of market condition has triggered 54.4k 

(28.9k) market orders in the DAX (MDAX). Nevertheless, the average profit per trade in both 

indexes is more than twice that obtained by LOB activities. An explanation is linked to the bid-

ask spread: as volatility increases with extreme market conditions, the bid-ask spread widens. This 

has a direct and positive impact on the profitability of liquidated positions. Closing positions at the 

end of the day required an average of 1.75 (2.0) trades in the DAX (MDAX).  

---------- insert ---------- 

Table 11 Participation in trades 
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---------- here ---------- 

As depicted in Table 11, the HFMM would have had a positive impact on the market. He has 

traded €17.7b of market value, more than 90% of which comes from limit orders. 

7. Robustness tests 

7.1 Speed’s impact on performance 

Latency, the required time to receive, process, and react to new information, is considered crucial 

to the HFMM. Short latencies allow to limit being sniped on stale quotes, to aggregate new 

information rapidly and to gain access to market orders via time priority.  Testing the effect of 

latency on performance is equivalent to quantify the impact of investments in technological 

infrastructures and softwares. It can serve as benchmark either to compare traders which differ 

solely by their speed or for capital budgeting decisions.  

The treatment time of new information by the HFMM’s strategy is 104 μS. The lower bound of 

the latencies analyzed is 150 μS to allow for order transmissions to the Exchange. We consider 

that the reference HFMM is using colocation facilities. To test for the impact of latency on the 

stragegy, we use latencies of 150, 500, 1 500, 5 000, and 10 000 μS.  For the sixty stocks over the 

six-month period, we emulate real-time trading to obtain all limit and market orders. We calculate 

intraday and daily PnL. Finally, we aggregate the statistics by index. Results are presented in Table 

12. 

---------- insert ---------- 

Table 12 Impact of Latency on Performance 

---------- here ---------- 

For the DAX, decreasing latency does not influence the relative risk: 

𝜎(𝝅) 𝝅⁄  is constant throughout all level of latencies. The investment in colocation services is fully 
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justified by the augmentation of € 342 000 in total profits generated by the strategy between 10 

000 μS and 150 μS latencies3.  

7.2 Strategy’s features 

Financial engineering is needed when designing a trading algorithm. Table 13 presents the results 

obtained by emulating the HFMM’s market-making activities for the thirty DAX`s components 

during February to July 2013. The results of each column differ by the algorithm’s features. The 

OQP from Ait-Sahalia and Saglam (2014) is the kernel of the HFMM's quoting decisions. It allows 

the obtaining of positive cash flows throughout the analyzed samples (ref. Section 6.1). However, 

their model of dynamic inventory management uses a quantity of one. This imposes a constraint 

on the profitability which is insufficient to cover the infrastructure costs required by the market-

making activities. Setup 1 relaxes this constraint using the kappa concept defined in Section 3. It 

does not consider circuit-breakers or closing positions at the end of the day. The profitability of 

the period reached almost € 2.7 million and the average daily profit was € 21,569. However, the 

largest daily loss is € 853,324 and the daily volatility is excessively high (€ 235,856). Moreover, 

the distribution of profit and loss by transactions is highly leptokurtic. These characteristics are 

inconsistent with those expected from a market-maker (Brogaard et al. (2016)).  Setup 2 adds the 

circuit-breakers.  

---------- insert ---------- 

Table 13 Impact from strategy's features 

---------- here ---------- 

It results in a substantial increase in profitability (to € 3.2 million). The maximum daily loss, 

volatility and distribution of PnL per transaction still do not match the behavior of a market-maker. 

Setup 3 requires the closing of positions at the end of the day without the inclusion of circuit 

breakers. Total profits are € 1.4 million and significant changes have occurred in risk features. The 

maximum daily loss drops to € 3,488 and volatility to € 5,260. Setup 4 which includes kappa, 

circuit-breakers and EOD liquidations is the proposed trading strategy from Section 3. Profitability 

                                                 

3 10 Gbits/s connections are available in data center in Frankfurt/Main, Germany for a monthly fee of € 4 500 ref: 

Deutsche Boerse (2015). 
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exceeds € 2.7 million, no daily loss is incurred, and the distribution of the PnL fits a market maker’s 

behavior. Results are qualitatively the same when analyzing the thirty components of the MDAX. 

8. Conclusion  

We have implemented the optimal quoting policy of liquidity provision of Ait-Sahalia and Saglam 

(2014) without the assumption of valuable private information. Profits in both DAX and MDAX 

over the six-month period exhibit an upward trend without significant drawdowns. The OQP 

allows the HFMM to extract a constant annuity from the market. However, total profits are 

insufficient to maintain the infrastructure required by market-making activities.  

We have embedded the OQP in a trading strategy. The trading strategy avoids data mining and 

data snooping. It considers latency and partial executions of limit and market orders. Special care 

has been taken to eliminate the price impact linked to the HFMM’s trading and quoting activities. 

Circuit-breakers have been implemented in response to regulators’ concerns. 

The viability of the strategy has been established using an extensive dataset including sixty stocks 

in two market segments. It covers a six-month period where the market has encompassed 

drastically different phases. The strategy exhibits outstanding characteristics when risk and 

profitability are considered. Market-making activities in both indexes led to 3.45 million € in profit 

for the six-month period. This is realized through 1.5 million trades, and no daily loss is incurred 

for either of the indexes. These results are the lower bound of the potential HFMM’s performance 

considering: 1) the worst case scenario applied to his time priority, 2) the way partial executions 

are handled (loss of time priority, delay to cancel and re-enter quotes), 3) the constraint to incur 

market risk when using market orders implying quantities exceeding the available ones at level 1, 

4) no informational advantage, 5) no maker-fee revenues, and 6) no valuable private information. 

We have disentangled the liquidity-providing role from liquidity-consuming activities. Whereas 

the core of the profits comes from quoting activities, the implementation of circuit breakers adds 

to total profits. Avoiding overnight positions focuses the appraisal on market-making instead of 

on directional trading. 
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Ultrafast extreme events have been documented; they occur regularly. They are linked to 

idiosyncratic characteristics and do not exhibit systematic behavior. In a context where price 

impact minimization is a major concern for traders, the prevalence of UEEs deserves further 

research. These high-frequency events could be associated with elusive liquidity, predatory 

behaviors, algorithm glitches, and aggregation of information. 

Because partial executions of orders (limit and market) are possible, we have proposed a 

methodology to determine the returns that simultaneously take into consideration the varying 

leverage and the asynchronous nature of high-frequency trading. This procedure lets one quantify 

the impact of high volume trades often attributed to informed traders. The effect of high volume 

trades on the HFMM’s performance is inconclusive. Aggregated results show that the HFMM’s 

performance increases in the DAX and decreases in the MDAX. The HFMM behaves like a 

constant liquidity provider and has a positive effect on market quality. 

As expected, latency affects performance. Investments in infrastructure and softwares are 

warranted by the increase in profitability and the HFMM can exploit his speed’s advantage to 

economically significant levels. Empirical research must adress market imperfections as they have 

considerable impact on both risk and profitability. Implementing circuit-breakers and closing end 

of day positions are crucial to the economic viability of the HFMM. 

Ait-Sahalia and Sağlam (2016) have recently published an extension to the model analyzed in this 

paper. They endogenize the bid-ask spread which is a function of the HFMM’s quoting decisions. 

These decisions are driven by a signal about the likely type of trader (patient or impatient) who 

will send the next incoming marketable order. To test adequately this new setup, one has to quote 

and trade actively in live markets as it involves both liquidity provision and supply curve decisions 

which are modifying the state of the LOB and the price discovery process. No academic financial 

laboratory is available around the world (Lopez De Prado (2015)) to realize that kind of test.  
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9. Appendix Threshold calculation: An efficient algorithm 

Output: 𝐿∗, 𝑈∗ 

Initialize 𝐿 = 1 and 𝑓𝑙𝑎𝑔 = 0 

While 𝑓𝑙𝑎𝑔 = 0 do 

 𝑈 ← 1; 

 While 𝑈 ≤ −𝐿 do 

 Solve for 𝑣(𝐿 − 1,1), 𝑣(𝐿, 1),⋯ , 𝑣(−𝐿, 1), 𝑣(−𝐿 + 1,1); 

        if 

𝑣(𝐿, 1) − 𝑣(𝐿 − 1,1) >
𝑐

2𝛿
, 𝑣(𝐿 + 1,1) − 𝑣(𝐿, 1) ≤

𝑐

2𝛿
, 𝑣(𝑈, 1) − 𝑣(𝑈 + 1,1)

>
𝑐

2𝛿
 , 𝑣(𝑈 − 1,1) − 𝑣(𝑈, 1) ≤

𝑐

2𝛿
 

         Then 

        𝑓𝑙𝑎𝑔 ← 1, 𝐿∗ ← 𝐿 𝑎𝑛𝑑 𝑈∗ ← 𝑈 ; 

      Break; 

𝑈 ← 𝑈 + 1; 

𝐿 ← 𝐿 − 1; 

Where: 

𝐿: Lower bound threshold. 

𝑈: Upper bound threshold. 

𝑣(𝐿|𝑈, 𝑠): Value function at threshold 𝐿 or 𝑈, having a signal 𝑠 
𝑠 ∈ {1,−1}. 1 denotes a buy signal and − 1 denotes a sell signal.   
𝑐 = 𝛿𝐶. 

𝐶: Bid-ask spread. 

𝛿 =  
𝜆+𝜇

𝜆+𝜇+𝐷
. 

𝜆: Arrival rate of LFTs market orders 

𝜇: Arrival rate of HFMM signals 𝑠. 
𝐷: Constant discount factor > 0. 

𝛤: Inventory aversion coefficient. 
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Table 1 Market summary statistics, trades and LOB1 

Panel A      

Trades Market Value (MV) %  MV  # Trades  % Trades  

DAX (30) € 398,504,790,578  92.57%     17,637,381  79.47%  

MDAX (30) € 31,986,673,636  7.43%       4,557,183  20.53%  

Total € 430,491,464,214  100.00% 22,194,564  100.00%  

Panel B     # UTD/ 

LOB, level 1 Market Value (MV) %  MV # UTD % UTD # Trades 

DAX (30)  €   11,038,241,222,840  95.48%   207,225,811  80.96% 11.75 

MDAX (30)  €         522,821,561,308  4.52%     48,740,327  19.04% 10.70 

 € 11,561,062,784,148  100.00% 255,966,138  100.00% 11.53  
The data span is from February 2 to July 30,2013. #UTD/#Trades are used to monitor high frequency trading 

activities, as for MIDAS, Security and Exchange Commission (SEC) at 

http://www.sec.gov/marketstructure/midas.html. 
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Table 2 Two-way classification of price movements in consecutive 

intraday trades: Summary (,000) 

   +,+   +,0   +,-   0,+   0,0   0,-   -,+   -,0   -,-   Total  

 DAX  Occ. 
   
1,253.8  

   
1,776.1  

   
1,599.7  

   
1,781.8  

   
4,824.6  

   
1,770.0  

   
1,594.0  

   
1,775.7  

   
1,261.7  

   
17,637.4  

 % 7.1% 10.1% 9.1% 10.1% 27.4% 10.0% 9.0% 10.1% 7.2% 100.0% 

 MDAX  Occ.       418.0        445.0        478.6        443.9        988.7        442.3        479.6        441.2        420.0       4,557.2  

 % 9.2% 9.8% 10.5% 9.7% 21.7% 9.7% 10.5% 9.7% 9.2% 100.0% 

Price movements are classified into “up” (+), “unchanged” (0), and “down” (-). Price moves are represented 

by x,y where x is the ith-1 move and y the ith move. % is the relative occurrence of the column’s price movement.  
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Table 3 Two-way classification of price movements in consecutive 

intraday trades DAX (%) 

Isix  +,+   +,0   +,-   0,+   0,0   0,-   -,+   -,0   -,-  

22 8.36% 10.12% 9.63% 10.22% 23.33% 10.12% 9.53% 10.22% 8.47% 

24 8.90% 10.64% 8.81% 10.63% 22.20% 10.58% 8.82% 10.57% 8.86% 

32 9.51% 9.78% 9.47% 9.70% 23.74% 9.56% 9.55% 9.48% 9.23% 

49 7.22% 10.59% 8.80% 10.59% 24.94% 10.84% 8.79% 10.84% 7.38% 

58 8.61% 10.44% 9.40% 10.52% 22.47% 10.32% 9.32% 10.40% 8.53% 

60 9.72% 10.39% 10.17% 10.32% 19.36% 10.13% 10.24% 10.05% 9.63% 

80 3.23% 10.13% 6.04% 10.36% 40.89% 10.01% 5.80% 10.25% 3.28% 

85 3.92% 10.41% 5.97% 10.33% 38.66% 10.36% 6.05% 10.28% 4.02% 

106 5.94% 10.44% 8.16% 10.59% 29.99% 10.43% 8.02% 10.58% 5.85% 

130 4.06% 10.10% 6.98% 10.38% 37.63% 9.88% 6.70% 10.16% 4.11% 

138 2.14% 10.29% 7.66% 10.03% 39.89% 9.99% 7.93% 9.73% 2.34% 

143 5.01% 10.64% 6.83% 10.44% 33.72% 10.74% 7.03% 10.54% 5.06% 

146 1.97% 8.84% 5.42% 8.98% 49.76% 8.80% 5.28% 8.94% 2.02% 

151 3.45% 10.01% 6.25% 10.28% 40.55% 9.90% 5.97% 10.18% 3.41% 

266 7.55% 9.96% 10.34% 10.16% 24.34% 9.79% 10.14% 9.99% 7.74% 

829 8.96% 10.00% 10.11% 9.97% 22.06% 9.98% 10.14% 9.94% 8.83% 

1634 10.72% 9.95% 10.78% 10.01% 17.47% 9.63% 10.72% 9.69% 11.04% 

2451 8.99% 9.65% 10.76% 9.51% 21.45% 9.79% 10.91% 9.64% 9.30% 

2481 5.43% 10.45% 8.01% 10.49% 31.47% 10.37% 7.97% 10.41% 5.39% 

2807 7.30% 10.42% 9.36% 10.22% 25.09% 10.49% 9.56% 10.29% 7.28% 

2841 8.46% 9.92% 10.34% 9.89% 22.13% 10.14% 10.38% 10.10% 8.64% 

3446 8.71% 10.29% 9.63% 10.24% 22.51% 10.12% 9.67% 10.08% 8.74% 

3679 7.33% 9.79% 9.70% 9.75% 26.56% 9.92% 9.74% 9.87% 7.35% 

3744 2.65% 9.60% 6.44% 9.78% 43.44% 9.46% 6.26% 9.64% 2.74% 

4423 8.84% 10.13% 10.25% 10.30% 21.33% 10.03% 10.08% 10.20% 8.84% 

5830 8.86% 10.19% 10.21% 10.16% 21.35% 10.15% 10.24% 10.12% 8.72% 

8669 9.80% 9.92% 10.53% 9.87% 20.13% 9.83% 10.57% 9.78% 9.57% 

9633 7.72% 10.12% 9.98% 10.33% 23.91% 10.10% 9.78% 10.30% 7.77% 

11814 4.58% 10.34% 7.52% 10.40% 35.07% 10.00% 7.46% 10.07% 4.55% 

16753 7.21% 10.24% 9.24% 10.34% 26.09% 10.12% 9.14% 10.22% 7.40% 
Isix: unique stock identifier. Price movements are classified into “up” (+), “unchanged” (0), and “down” (-). 

Price moves are represented by x,y where x is the ith-1 move and y the ith move. % is the relative occurrence of 

the column’s price movement. Each row sums to 1. The data span is from February 2, 2013 to July 30, 2013. 
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Table 4 Ultrafast extreme events (UEEs) summary 

  UEEs up    UEEs down   Total UEEs  

 # occ. # stocks avg. rep. # days # occ. # stocks avg. rep. # days # occ. # stocks avg. rep. # days 

DAX 33 18 8.333 23 52 23 7.654 32 85 26 7.918 40 

MDAX 133 28 6.436 72 121 27 6.653 64 254 30 6.519 94 

Total 166 46 6.813 82 173 50 6.954 76 339 56 6.885 102 

UEEs up: surges in price; UEEs down: mini crashes in price; # occ: number of UEE occurrences; # stocks: number of 

stocks that experienced at least one UEE over the sample; avg. rep.: average number of successive tick up (tick down) 

by UEE; # days: number of days with at least one UEE. 
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Table 5 Signal and trade independence: chi-square tests 

 DAX    MDAX   

Isix  𝜲𝟐  p_val #/μS  isix 𝜲𝟐 p_val #/μS 

22    203,937,984  0.496    999,696   39    15,329,466  0.499    851,637  

24    160,914,996  0.496    981,189   54    13,609,928  0.499    800,584  

32    173,733,875  0.496    992,765   63    14,478,948  0.499    804,386  

49    124,653,438  0.497    989,313   68    10,562,100  0.499    704,140  

58    139,181,664  0.497    987,104   86    15,369,156  0.499    853,842  

60    134,565,880  0.497    989,455   95      8,703,645  0.499    580,243  

80      84,408,825  0.497    993,045   98    15,138,738  0.499    841,041  

85      82,746,488  0.497    940,301   112      9,590,670  0.499    639,378  

106    104,942,040  0.497    999,448   117    19,692,002  0.499    895,091  

130    101,905,854  0.497    999,077   177      6,357,416  0.498    489,032  

138      57,920,763  0.497    864,489   661    17,147,576  0.499    902,504  

143    111,044,309  0.497    982,693   1131    10,887,405  0.499    725,827  

146    144,863,120  0.497    999,056   1415    13,654,791  0.499    803,223  

151      92,681,940  0.497    996,580   1429    14,507,892  0.499    805,994  

266      89,374,050  0.497    993,045   1457    15,034,662  0.499    835,259  

829    125,122,410  0.497    993,035   1468      7,207,956  0.498    514,854  

1634    125,912,901  0.497    976,069   1566    16,050,003  0.499    844,737  

2451    156,993,249  0.496    999,957   2323    15,455,538  0.499    858,641  

2481      98,013,663  0.497    990,037   3290      5,190,090  0.498    346,006  

2807      85,972,566  0.497    999,681   3849    11,741,355  0.499    782,757  

2841    143,999,856  0.497    999,999   4035    13,745,027  0.499    808,531  

3446    176,847,628  0.496    993,526   5566    10,716,976  0.499    669,811  

3679    144,857,175  0.497    999,015   8650    11,551,908  0.499    679,524  

3744    131,883,576  0.497    999,118   10658    10,201,716  0.499    728,694  

4423    115,978,239  0.497    991,267   10938    13,980,222  0.499    822,366  

5830    174,965,700  0.496    999,804   11426      9,910,173  0.499    762,321  

8669    131,157,551  0.497    986,147   11475    13,561,136  0.499    847,571  

9633    145,996,204  0.497    999,974   11607      7,284,465  0.498    485,631  

11814    105,096,684  0.497    982,212   11644      7,226,336  0.499    555,872  

16753    133,886,502  0.497    999,153   13469    16,029,576  0.499    890,532  

Isix: unique stock identifier; 𝛸2: chi-square test value; p_val: p_value; #/μS: number of microseconds with at 

least one signal.  
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Table 6 Daily and intraday profitability – OQP 

Panel A Daily Statistics 

 DAX (30) MDAX (30) 

Total  €          3,412   €             2,999  

 Avg   €          27.30   €             23.99  

Min  €        (33.49)  €           (29.62) 

Max  €        103.84   €           125.54  

Std. dev.  €          23.77   €             16.39  

Days 125 125 

Panel B Intraday Statistics 

 DAX (30) MDAX (30) 

# trades          181,594                86,199  

Avg π/trade  €          0.019   €             0.034  

Min  €        (13.35)  €           (14.00) 

Max  €            2.00   €             10.90  

 
Table encompasses results from February 2 to July 30 

2013; Total: Total profit; Avg: Average profit; Min: 

Minimum profit; Max: Maximum profit; Std. dev.: 

standard deviation of daily profit; Days: Number of 

trading days; Avg π/trade: Average profit per trade; # 

trades: Total number of executed trades by the 

HFMM.  
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Table 7 Orders and positions: an example 

Isix: 2481       

Date Time Type Price Q Id Pos 

. . .  .  . .   -500 

20130201 32901054552 1    42.910  1000 41   -500 

20130201 32901139361 3    42.910  169 7 -331 

20130201 32901139361 2    42.910  -1000 41 -331 

20130201 32901139361 1    42.910  831 42 -331 

20130201 32901139361 1    42.925  -169 -103 -331 

20130201 32907274679 2    42.910  -831 42 -331 

20130201 32907274679 1    42.890  831 43 -331 

20130201 32907276733 2    42.925  169 -103 -331 
Type: 1 = HFMM new limit order, 2 = HFMM limit order cancellation, 3 = 

incoming LFT market order executed against an HFMM limit order; Time 

stamps are in microseconds; q = order quantity; id: internal reference to 

algorithm activity; pos: HFMM position, negative values representing short 

positions.   
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Table 8 Daily and intraday profitability – Trading strategy 

Panel A Daily statistics   

  DAX (30)   MDAX (30)  

Total Profit  €    2,765,462   €   686,726  

Avg  €         22,124    €       5,494   

Min  €           7,396    €       1,035   

Max  €         48,035    €     13,805   

Std. Dev  €           8,314    €       2,349   

No. obs 125   €           125   

 Intraday statistics   

Panel B     

Avg π/trade  €             2.48    €          1.94   

Panel C Distribution of trades per profit  

 # trans % total # trans % total 

Total       1,113,352  100%       353,521  100.00% 

<= -20             34,064  3.06%         17,227  4.87% 

<-10 ; >= -20             51,135  4.59%         18,131  5.13% 

<0 ; <= -10           268,015  24.07%         92,404  26.14% 

0           228,603  20.53%         55,684  15.75% 

>0 ; <= 10           333,731  29.98%       114,007  32.25% 

> 10 ; <= 20           111,497  10.01%         28,545  8.07% 

>20             86,307  7.75%         27,523  7.79% 

 
Table encompasses results from February 2 to July 30 2013; Avg: Average daily 

profit; Min: Minimum daily profit; Max: Maximum daily profit; Std. dev.: 

standard deviation of daily profit; No. obs.: Number of trading days; Avg π/trade: 

Average profit per trade; Total: Total number of executed trades by the HFMM; 

<= -20, <-10 >-20, …, <=20: bins of number of trades with profit <= -20, <-10 >-

20, …, <=20.   
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Table 9 HFMM’s Trade origins   

   # trades  % trades  MV (000 €)  % MV  P&L  % PL 

DAX Total    1,117,499  100.00%  €   16,021,276  100.00%  €   2,765,462  100.00% 

 LOB    1,056,471  94.54%  €   15,311,005  95.57%  €   2,625,985  94.96% 

 C.B.          54,462  4.87%  €         642,880  4.01%  €      274,811  9.94% 

 O/N            6,566  0.59%  €           67,362  0.42%  €    (135,334) -4.89% 

 MDAX  Total       357,599  100.00%  €     1,696,227  100.00%  €      686,726  100.00% 

 LOB       321,175  89.81%  €     1,575,293  92.87%  €      493,181  71.82% 

 C.B.          28,860  8.07%  €           97,511  5.75%  €      208,631  30.38% 

 O/N            7,564  2.12%  €           23,399  1.38%  €      (15,086) -2.20% 

# trades: HFMM number of trades; MV (000€): € market value of HFMM trades (in thousands); P&L: Profit (loss); 

LOB: HFMM limit orders executed against incoming LFTs’ market orders; C.B.: circuit-breakers (HFMM market 

orders due to real-time monitoring of market conditions); O/N: HFMM market orders to flatten position overnight  
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Table 10 Impact of leverage on performance 

DAX Lev. Constant   MDAX Lev. Constant  

Avg 878.8% 778.9% 99.9%  Avg 557.2% 576.7% -19.5% 

Isix Cumul Cumul Diff  isix Cumul Cumul Diff 

22 968.4% 862.7% 105.7%  39  1034.4% 1003.9% 30.6% 

24 408.1% 481.1% -72.9%  54  172.6% 158.3% 14.3% 

32 723.2% 855.8% -132.6%  63  580.7% 542.8% 37.8% 

49 585.3% 552.2% 33.1%  68  381.6% 357.8% 23.9% 

58 690.5% 1053.0% -362.5%  86  380.3% 488.2% -107.9% 

60 625.2% 742.6% -117.4%  95  482.7% 231.6% 251.1% 

80 751.3% 725.5% 25.8%  98  703.5% 813.0% -109.6% 

85 557.4% 413.5% 143.9%  112  549.4% 545.2% 4.1% 

106 1327.3% 1191.0% 136.3%  117  719.9% 738.4% -18.5% 

130 1288.3% 1122.5% 165.8%  177  834.5% 522.9% 311.6% 

138 756.1% 590.4% 165.7%  661  756.6% 698.8% 57.8% 

143 712.4% 495.3% 217.1%  1131  686.9% 760.3% -73.3% 

146 1084.9% 786.9% 297.9%  1415  599.0% 644.5% -45.5% 

151 931.4% 731.3% 200.1%  1429  705.3% 653.2% 52.1% 

266 327.0% 347.1% -20.0%  1457  480.5% 487.4% -6.9% 

829 963.1% 636.5% 326.5%  1468  34.4% 47.3% -12.9% 

1634 520.9% 594.7% -73.8%  1566  874.9% 754.1% 120.8% 

2451 1357.5% 1462.5% -105.0%  2323  479.2% 424.9% 54.3% 

2481 96.7% 104.3% -7.6%  3290  349.5% 582.0% -232.4% 

2807 963.2% 873.6% 89.6%  3849  853.2% 1210.0% -356.8% 

2841 1721.7% 1490.5% 231.2%  4035  239.5% 236.4% 3.1% 

3446 829.4% 771.6% 57.8%  5566  700.3% 768.8% -68.6% 

3679 931.2% 716.5% 214.7%  8650  577.6% 616.9% -39.2% 

3744 1245.4% 834.7% 410.6%  10658  392.0% 288.6% 103.4% 

4423 857.7% 818.4% 39.3%  10938  534.5% 434.5% 100.0% 

5830 1171.5% 566.1% 605.4%  11426  704.9% 795.1% -90.2% 

8669 520.5% 617.9% -97.4%  11475  967.6% 1492.3% -524.6% 

9633 1313.6% 1118.9% 194.7%  11607  298.0% 367.0% -69.0% 

11814 867.9% 753.3% 114.6%  11644  256.9% 260.1% -3.2% 

16753 1266.6% 1057.2% 209.4%  13469  385.2% 375.7% 9.5% 

 
Lev. Cumul: cumulated return adjusted for leverage; Constant cumul: cumulated return with 

constant leverage.  
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Table 11 Participation in trades 

    HFMM/ 

  Realized HFMM Realized 

DAX (30) Market Value € 398,504,790,578 €   16,021,291,071 4.02% 

 # Trades 17,637,381 1,117,499 6.34% 

MDAX (30) Market Value € 31,986,673,636 €     1,696,246,094 5.30% 

 # Trades 4,557,183 357,599 7.85% 
Realized column presents the summary statistics of realized market activities over the sample 

period (February 2 to July 30 2013). HFMM column presents what would have been the 

HFMM’s activities over the same period. 
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Table 12 Impact of Latency on Performance 

 Latency             10,000                 5,000                 2,500                1,000                   500  150 

DAX 𝝅  €   2,578,400   €   2,784,300   €   2,860,600   €   2,898,200   €  2,913,199   €  2,765,462  

 𝝅̅  €         20,628   €         22,274   €         22,885   €         23,816   €        23,305   €        22,124  

 𝒎𝒊𝒏(𝝅)  €           8,182   €            9,239   €           8,799   €           8,987   €          8,952   €           7,396  

 𝝈(𝝅)  €           7,609   €            8,115   €           8,420   €           8,582   €          8,635   €           8,314  

 𝝈(𝝅) 𝝅̅⁄  0.37 0.36 0.37 0.36 0.37 0.37 

MDAX 𝝅  €      609,760   €       662,230   €       691,710   €      709,940   €      714,640   €      686,726  

 𝝅̅  €           4,878   €            5,298   €           5,534   €           5,680   €          5,717   €           5,494  

 𝒎𝒊𝒏(𝝅)  €           1,390   €            1,724   €           1,794   €           1,783   €          2,153   €           1,035  

 𝝈(𝝅)  €           1,715   €            1,787   €           1,850   €           1,893   €          1,906   €           2,349  

 𝝈(𝝅) 𝝅̅⁄  0.35 0.34 0.33 0.33 0.33 0.43 

        

π: total profit; 𝝅̅: average daily profit; 𝝈(𝝅): standard deviation of daily profit; 𝒎𝒊𝒏(𝝅): minimum daily profit 
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Table 13 Impact from strategy's features 

DAX (30)  Setup 1 Setup 2 Setup 3 Setup 4 

 tot profit  €    2,696,098  €    3,197,081  €    1,435,176  €    2,765,462 

daily avg  €          21,569  €          25,577  €          11,481  €          22,124 

 min  €      (853,324)  €      (787,719)  €          (3,488)  €             7,396 

 max  €        765,749  €        553,144  €          30,258  €          48,035 

 std dev  €        236,586  €        181,094  €             5,360  €             8,314 

 # of days 125 125 125 125 

trades  avg   €               3.92                   2.88  €               2.07  €               2.48 

 min  €      (162,443)  €        (85,678)  €          (2,610)  €          (1,160) 

 max  €          58,471  €          36,405  €             1,866  €             2,745 

 std dev  €       1,183.34  €          703.62  €             20.40  €             17.17 

 # trades            688,087         1,108,920            692,579         1,113,352 

  <= -20             218,133            343,244               22,045               34,064 

  <-10 ; >= -20                  6,593               16,591               33,741               51,135 

  <0 ; <= -10                29,582               59,467            177,390            268,015 

 0            122,962            194,065            118,308            228,603 

  >0 ; <= 10                30,986               61,595            217,977            333,731 

 > 10 ; <= 20                 8,399               20,469               71,408            111,497 

  >20             271,432            413,489               51,710               86,307 

  avg win   €          402.35  €                289  €             10.44  €             10.94 

  avg loss   €        (481.15)  €              (334)  €             (9.12)  €             (8.64) 

 avg w/l 0.84                   0.87                   1.15 1.27 

 # win            310,817            495,553            341,095            531,535 

  # loss             254,308            419,302            233,176            353,214 

 # w/l 1.22                   1.18                   1.46 1.5 

            Setup 1: Circuit-breakers: off ; EOD liquidation: off  ; Setup 2: Circuit-breakers: on ; EOD liquidation: off 

            Setup 3: Circuit-breakers: off ; EOD liquidation: on ; Setup 4: Circuit-breakers: on ; EOD liquidation: on  
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Figure 1 DAX daily quotes - February to July 2013 
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Figure 2 Number of UEEs per day: DAX - MDAX 

 
Horizontal axis: data sample of 125 trading days; vertical axis: number of occurrences of UEEs 

per day, DAX events are positive and MDAX events are negative for presentation purposes. 
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Figure 3 Number of UEEs per minute: DAX - MDAX 

 
Horizontal axis: data sample of 510 minutes of trading per day; vertical axis: number of 

occurrences of UEEs per minute, DAX events are positive and MDAX events are negative for 

presentation purposes. 
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Figure 4 DAX - MDAX Cumulative P&L: OQP 

 
Aggregated cumulative Profits & Losses obtained by Ait-Sahalia and Saglam (2014) Optimal Quoting Policy over 

the sample period (February 2 to July 30, 2013).  
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Figure 5 DAX- MDAX Leveraged return per time interval 

  
One-minute time-volume weighted average returns (TVWAR) obtained by the trading strategy.                                                                                                  

Returns are aggregated by market indexes. 
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List of abbreviations 

 AT algorithmic trading 

 DB Deutsche Boerse AG 

 EOD End of the day 

 HFMM high frequency market maker 

 HFTers high frequency traders 

 HFT high frequency trading 

 LO(s) limit order(s) 

 LOB limit order book 

 LFTs low frequency traders 

 MDP Markov decision process 

 μS microsecond 

 OQP optimal quoting policy 

 PnL Profit and Loss  

 TVWAR time-volume weighted average return 

 UEE(s) ultrafast extreme event(s) 

 UTD(s) Update(s) 

 

 


