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Résumé L’ppro u prmr orr, qu onsst  rmplr l ontrnt ’ntton

 l’nt  prour un ort ́qut pr s onton  prmr orr, st trs souvnt

utlś ns ls prolms ’n pour lsquls l prnpl n put osrvr l nvu

’ort  l’nt. Ctt susttuton n rmt ps n us ls ontons susnts 

l’optmston s l struton s rvnus, ou  l prt, stst l propŕt́  mono-

tont́ u rto  vrsmln ns qu l onton  onvxt́ ns l’ort. Ml-

urusmnt, trs pu  strutons s rvnus stsont  l os s ux propŕt́s.

Nous n proposons ux xmpls ns tt not t nous onnons lur ́quvlnt n trms

 prts.

Mots clés : prnpl-nt, rsqu morl, struton, rto  vrsmln monoton,

onvxt́ ns l’ort.

Abstract T rst-orr ppro, w onssts n rpln t nntv omptl

onstrnt y t nt’s rst orr onton, s wly us n ny prolms wr

t prnpl nnot osrv t lvl o ort osn y t nt. Ts susttuton s

vl wt t Monoton Lkloo Rto Proprty n t Convx Dstruton Funton

Conton. Unortuntly, rvnu strutons slom prsnt ot proprts. In ts not,

w prov two xmpls o rvnu strutons tt stsy MLRP n CDFC. W lso

v tr ountrprt n trms o loss strutons.

Keywords: Prnpl-nt, morl zr, struton, monoton lkloo rto, onvx-

ty n ort.
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1 Introduction

One main feature in agency problems is that the principal and the agent do not have

the same information about the action chosen by the agent. If one thinks about prot

maximization, the level of eort that maximizes the expected prot of the principal

may be dierent from the one adopted by the agent. If eort is not veriable by the

principal it is not contractible1. Accordingly, the principal has to take into account

the fact that the agent privately chooses the action that maximizes her own expected

revenue (or utility). This can be done by letting one constraint of his optimization

program be the rst order condition of the agent’s one. This so-called rst-order

approach is widely used in agency problems despite the fact that it is not always valid.

Indeed, the rst-order condition of the agent refers to stationary points that may be

local minima, saddle-points or local but not global maxima if one does not check

that the sucient conditions are satised. Because of the convenience of the rst-order

approach, its validity is often assumed ad hoc. Mirrlees (1975) and also Rogerson (1985)

show that it is valid when the revenue distribution satises the Monotone Likelihood

Ratio Property (MLRP) and the Convex Distribution Function Condition (CDFC).

MLRP states that the likelihood ratio is non-decreasing in output, while CDFC deals

with the convexity of the distribution in eort. In a more intuitive way, MLRP permits

to get a positive relationship between eort and expected gross revenues. With CDFC,

it also permits to derive a positive relationship between the observed output and the

agent’s payo. But, as mentioned by Jewitt (1988), only a few distributions display

both properties.

In this note we build two examples of revenue distributions that display MLRP

and CDFC. We also focus on loss distributions in accordance with MLRP and CDFC,

which can be used to illustrate many problems where eort aects losses or risks of

accident.

Section 2 briey recalls the rst-order approach. Section 3 provides two distribu-

tions of gross revenues consistent with MLRP and CDFC and also their counterpart

in terms of losses. Section 4 concludes this note.

1I t prnpl n nr som normton out t nt’s ort, tnks or nstn to n
mprt snl, t ontrt my pn on tt snl  t s  sunt sttst o t lvl o
ort (Holmström, 1979; Jwtt, 1988). It s wort notn tt t lvl o ort s not  rnom
vrl n usn t trm sunt sttst only rvs t  tt t snl rrs vlul
normton out ort.
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2 The rst-order approach

Consider a principal-agent relationship where the agent privately chooses a level of

eort to perform a task delegated by the principal. This eort coupled with Nature

yields some random gross revenues that have to be optimally shared between both

participants. Eort aects output2 in the sense of the rst order stochastic dominance.

The principal’s objective is to maximize his expected utility (1) knowing that the payo

to the agent must give her3 sucient utility to participate (participation constraint

(2.i)) and to adopt the adequate action (incentive constraint (2.ii)).

In this note we focus on the case where no information on action is available to the

principal.

The optimization program is as follows:

max
w(π),a

EF [V (π̃ − w(π̃))] (1)

st



(i) EF [U(w(π̃))]− a ≥ U0

(ii) a ∈ arg max
a∈[a,a]

(EF [U(w(π̃))]− a)
(2)

With:

π̃ the gross revenue: π ∈ [π, π], π ≥ 0.

F (πa) the distribution of π̃.

a the level of eort: a ∈ [a, a], a ≥ 0.

U() the agent’s VNM utility : U ′() > 0, U ′′() < 0.

V () the principal’s VNM utility : V ′() > 0, V ′′() ≤ 0.

E the expectation operator.

The cost of eort is identied to the level a chosen by the agent. Assume that

F (πa) is a distribution twice continuously dierentiable in its two arguments and

that its density is well-dened. Still assume a solution to (1)-(2.i)-(2.ii) exists and is

dierentiable4. When a is a continuous variable, the main problem in Program (1)-

(2.i)-(2.ii) is that constraint (2.ii) is not tractable such as it stands. An alternative

2W wll ntrnly us t xprssons output n (ross) rvnu.
3W us t msuln to not t prnpl n t mnn to not t nt.
4For  susson o ts sttmnts, t rr s rrr to Mrrls (1974).
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method, called the rst-order approach, consists in replacing constraint (2.ii) by the

rst order condition of the agent’s optimization program, namely by:

π∫

π

U(w(π))fa(πa)dπ = 1 (3)

Program (1)-(2.i)-(3) can be directly solved. Denote its solution (a∗∗, w∗∗(π)).

Without specic conditions on the revenue distribution, a∗∗ may not coincide with

solution a∗ of (1)-(2.i)-(2.ii), neither does w∗∗ with w∗. Indeed, Equation (3) may

yield local minima, saddle-points or local but not global maxima, while the initial pro-

gram implies that the optimal sharing rule w∗(π) must be such that the eort level

requested by the principal be the one that maximizes the agent’s expected utility.

Hence Problem (1)-(2.i)-(3) (called the relaxed Pareto-optimization program by Roger-

son, 1985) is dierent from (1)-(2.i)-(2.ii) without additional hypotheses. Actually, the

equivalence between both programs holds if the distribution of revenues conditional on

eort satises the Monotone Likelihood Ratio Property (MLRP) and also the Convex

Distribution Function Condition (CDFC).5 Since the settlement of these results, the

rst-order approach has been widely used in many agency problems.

MLRP states that the likelihood ratio fa(πa)f(πa) must be non-decreasing in

output π: it is more likely to observe large revenues for a high level of eort. This

property implies the rst order stochastic dominance (Fa(πa) < 0). (But the reverse is

not true). Statistics books display several kinds of density functions satisfying MLRP;

for instance the normal, the exponential, the Poisson, etc. (with the required mean).

CDFC implies the convexity of F (πa) in a: eort improves the distribution but at

a decreasing rate. Unfortunately very few distributions satisfying MLRP also present

a convex curve in eort. To our knowledge, the economic literature displays only one

example, due to Rogerson (1985):

F (πa) =
π
π

a−a

(4)

Let us notice that this distribution has no density function. Indeed, if the support

of the revenues is a strictly positive interval [π, π] then F is dened for any a and for

any π and it displays a mass point at π: F (πa) > 0. On the other hand, if one works

5Mrrls (1975) ws t rst vn pont out ts rsult. S lso Grossmn n Hrt (1983),
n Rorson (1985).
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on [0, π] then F (0a) equals zero for any a > a. But its derivative with respect to

π evaluated at π = 0 is no more dened. This specicity of F does not invalidate

Rogerson’s approach since the author works with discrete variables.

Section 3 presents two continuous revenue distributions that meet both MLRP and

CDFC, and for which a density function exists. We also present their counterpart

in terms of losses. In the framework of the rst-order approach, the latter distribu-

tions conditional on action must provide a non-increasing likelihood ratio and must be

concave in eort.

3 Two examples of distribution functions

Assume gross revenues are randomly distributed over [π, π]. π is zero in Example 1.a

and may be positive in Example 2.a. The level of eort a takes continuous values in

[a, a] with a ≥ 0.

Example 1.a

Consider the following function:

F 1(πa) =


1

(a+ 1)π
(π − π) + 1



π

π
(5)

This function is twice continuously dierentiable over [0, π] and over [a, a]. It is

equal to zero at π = 0, strictly positive for any value in ]0, π[, and equal to one at

π = π, whatever the value of a. Also it is increasing in π:

d

dπ
F 1(πa) = f 1(πa) =


1

(a+ 1)π
(π − 2π) + 1



1

π
≥ 0 (6)

Due to these properties, F 1 is a distribution of π conditional on the eort level a

and f 1 is the associated density. Let us look at the rst and second derivatives of F 1

with respect to a. We have

F 1
a (πa) =

−π

(a+ 1)2π2 (π − π) ,

with

{
(i) F 1

a (πa) < 0, ∀π ∈]0, π[
(ii) F 1

a (0a) = Fa(πa) = 0
(7)
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Property (7.i) refers to the rst order stochastic dominance, which is implied by

MLRP. But since the reverse is not true we still have to show that F 1 does satisfy

MLRP. By calculating the likelihood ratio f 1
a (πa)f

1(πa) (for a > 0) and by dif-

ferentiating it with respect to π, one can show that it is increasing in π, so that F 1

satises MLRP. This is demonstrated in section A of Appendix 1. Function (5) also

satises CDFC. Indeed:

F 1
aa(πa) =

2π

(a+ 1)3π2 (π − π) > 0, ∀a, ∀π ∈ ]0, π[ (8)

Hence F 1 satises MLRP and CDFC. 

Density f 1 is depicted on Figure 1 with respect to the gross revenue, which variate

in [0, 100], and for two dierent levels of eort. It is decreasing in π. Distribution F 1

is related to gross revenues and, consequently, to a problem where the objective of the

principal is to maximize prots through a task performed by an agent. But some agency

problems also deal with damages, such as in insurance for instance. The agent (the

insured person) may inuence her conditional accident cost by choosing some specic

action like driving carefully (or fast), carrying (or not) her seat belt, etc. If the insurer

cannot observe the level or the type of action chosen by the insured when xing the

price of insurance, one has to cope with ex ante moral hazard (Winter, 1992). In such

a context MLRP says that the higher the level of eort, the higher the likelihood of

observing a damage with not too large severity. As a direct consequence of MLRP, the

loss distribution increases in eort. Furthermore, when the insurer wants to maximize

his prots under participation and incentive constraints the sucient condition for a

global maximum now refers to the concavity of the loss distribution with respect to a.

In summary, if we denote l̃ the risk of damage with l ∈

l, l


, l ≥ 0, and a the eort

with a ∈ [a, a], we should have:

{
(i) ∂

∂l


fa(la)
f(la)


≤ 0

(ii) Faa(la) < 0 ∀l ∈

l, l

 (9)

Condition (9.i) implies Fa(la) > 0. The following function, which is the counter-

part of Example 1.a, displays both properties:
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Example 1.b

F 2(la) =
[
(a+1)1/2

k
(l − l) + 1

]
 l
l
,

with k > l(a+ 1)12 and l ∈

0, l

 (10)



The condition imposed on the scalar k ensures the strict positivity of the density

function. The properties of F 2 are given in section B of Appendix 1. Density f 2 is

depicted on Figure 2 with respect to l, which varies in [0, 150], and for two dierent

levels of eort. It is decreasing in loss.

An other environment where the properties of F 2 are welcome deals with the

bank/entrepreneur relationship. Assume the rm needs some external funds in or-

der to start a risky project. She can take some actions to prevent an accident within

the production process for instance. The ex post prots depend on the occurrence of a

damage and, consequently, the chances for the bank to be reimbursed are aected by

the level of prevention adopted by the rm. Still here, the distribution of losses should

satisfy Properties (9).

Hereafter, we provide a second example of revenue distribution.

Example 2.a

Consider the following function:

G1(πa) = (a+ k)(π−π)


π − π

π − π


; k > 1 (11)

Here, the lower bound π may be positive or zero. G1(πa) is twice continuously

dierentiable over [π, π] and over [a, a]. It displays the following properties:

{
G1(πa) > 0, ∀a, ∀π > π

G1(πa) = 0, G1(πa) = 1

With k > 1 it is also strictly increasing in π whatever the value of a:

∂G1(πa)

∂π
= g1(πa) =

(a+ k)(π−π)

(π − π)
[1 + ln(a+ k)(π − π)] > 0 (12)

Thus G1 displays the properties of a distribution function and g1 is the associated

density function.

8



The rst derivative ofG1 with respect to a isG1
a(πa) = (π−π)(a+k)(π−π−1)


π−π
π−π


.

So that: {
G1

a(πa) < 0, ∀π ∈ ]π, π[

G1
a(πa) = G1

a(πa) = 0

Moreover:

G1
aa(πa) = (π − π − 1)(π − π)(a+ k)(π−π−2)


π − π

π − π


> 0, ∀π ∈ ]π, π[

Distribution G1 satises the rst order stochastic dominance and also CDFC. Now,

we have to show that it still satises MLRP. This is demonstrated in section C of

Appendix 1.

Finally, Function G1 satises both MLRP and CDFC. 

It is worth noticing that g1 increases in output, whereas f 1 decreases. Density g1

is depicted on Figure 3 with π ∈ [0, 10].

Hereafter, we give the counterpart of G1 in terms of losses. Distribution G2 is

dened for levels of eort between [a, 1], a ≥ 0. 6 Properties and computations are

given in section D of Appendix 1.

Example 2.b

For l ∈

l, l


, with l ≥ 0, and a ∈ [a, 1], with a ≥ 0:

G2(la) = (a+ 1)

(
l−l

l−l

)




l − l

l − l





Since l may be positive or zero, the distribution G2 can be used for risks of dam-

age having a continuous distribution over all states of nature (the no-accident state

included) or for situations where the no-accident state presents a mass point, while

positive damages have a continuous distribution. Density g2 is depicted on Figure 4

with respect to l, which takes values in [0, 10], and for two dierent levels of eort.

6Ts ypotss s m n orr to smply t lulus lry omplt wt G2. T
nrlzton to ny postv ntrvl or t lvl o ort stts s:

G3(la) = (a+ 1)


l−l

l−l

k




l − l

l − l


, with k > 0

9



Before concluding, we give the means and variances for each example of distribution

in Table 1. They are calculated in Appendix 2, with π ∈ [0, π] and l ∈

0, l


.

Table 1

Mean Variance

F 1(πa) π
2


1− 1

3(a+1)


π3

12
(4 + b(3b− 6))

G1(πa) π + 1
ln(a+k)


1

π ln(a+k)


1− (a+ k)(−π)


− 1


π3

3
+ πc(π + c)

F 2(la) l
2


1− l(a+1)1/2

3k


l
3

3


1− h+ h2

3



G2(la) l

1 + 1

ln(a+1)


1− a

ln(a+1)


l
3 1

3
+m+m2



with





b =

1− 1

3(a+1)



c = 1
ln(a+k)


1

π ln(a+k)


1− (a+ k)(−π)


− 1



h = 1
2


3− l(a+1)1/2

k



m = 1
ln(a+1)


1− a

ln(a+1)


and a ∈ ]0, 1]

4 Conclusion

We have provided two examples of revenue distributions that satisfy MLRP and CDFC.

Accordingly, they can be used to illustrate many agency problems - such as em-

ployee/employer relationships, sharecropping, bank/rm relationships or law enforce-

ment7 - solved with the rst-order approach.

We have still given their counterpart in terms of loss distributions, so that insurance

problems (Winter, 1992), models with environmental risk (Boyer and Laont, 1997;

Dionne and Spaeter, 1998) and, more generally, models with risks of losses (Brander

and Spencer, 1989; Dionne, Gagné, Gagnon and Vanasse, 1997) may also be illustrated

thanks to them. Up to now only one distribution, due to Rogerson (1985), was pre-

sented in the literature and illustrations were seldom possible notably when the agency

7S or nstn Hrrs n Rvv (1978) or ormlztons o su prolms.
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problem deals with two random variables. The examples we just provided here enlarge

the set of admissible distributions.

Our distributions can also be applied to problems where a risk-averse agent has to

split his initial wealth between a risky asset and a safe one. Indeed, it is known that

intuitive comparative static results can be obtained about the behavior of the agent

following an increase in risk that satises MLRP (Landsberger and Meilijson, 1990;

Ormiston and Schlee, 1993). Lastly, the distributions presented in this paper still hold

for the MPR (Monotone Probability Ratio) Property established by Eeckhoudt and

Gollier (1995) and related to the ratio of cumulative distributions rather than to that

of density functions.

APPENDIX 1

A. Example 1.a.

For Example 1.a we have:




f 1(πa) =
[

1
(a+1)π

(π − 2π) + 1
]
 1
π

f 1
a (πa) =

−1
(a+1)2π2 (π − 2π)

After simplication the likelihood ratio equals:

f 1
a (πa)

f 1(πa)
=

2π − π

(a+ 1) (π − 2π) + (a+ 1)2π

Dierentiating it with respect to π and simplifying the result leads to

∂

∂π


f 1
a (πa)

f 1(πa)


=

2(a+ 1)2π

[(a+ 1) (π − 2π) + (a+ 1)2π]2
,

which is always strictly positive (for a > 0). Consequently, F 1 satises MLRP. 

B. Example 1.b.

We have for any l ∈

0, l


:

F 2(la) =


(a+ 1)12

k
(l − l) + 1



l

l
, with k > l(a+ 1)12
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Distribution F 2 satises: F 2(0a) = 0 and F 2(la) = 1. Also F 2 is strictly positive

for any l > 0. The associated density function is:

f 2(la) =


(a+ 1)12

k
(l − 2l) + 1



1

l

It is strictly positive for any l and any a if the term into brackets is strictly positive

at point (l, a) because f 2 is increasing in a and decreasing in l. This is satised for any

k strictly larger than l(a+ 1)12.

Concerning F 2 we have:





F 2
a (la) =

(a+1)−1/2

2k
(l − l) l

l
> 0 ∀a, ∀l > 0

F 2
a (0a) = Fa(la) = 0

F 2
aa(la) = − (a+1)−3/2

4k
(l − l) l

l
< 0, ∀a, ∀l > 0

Now, let us show that F 2 also satises MLRP. We have f 2
a (la) =

(a+1)−1/2

2k
(l−2l) 1

l
.

And after simplication:

f 2
a (la)

f 2(la)
=

(a+ 1)−1(l − 2l)

2[(l − 2l) + k]

Dierentiating this likelihood ratio with respect to l leads to:

∂

∂l


f 2
a (la)

f 2(la)


=

−4(a+ 1)−1

(l − 2l) + k


+ 4(a+ 1)−1(l − 2l)

4

(l − 2l) + k

2

=
−(a+ 1)−1k

(l − 2l) + k

2 < 0

Then F 2 also satises MLRP. 

C. Example 2.a.

For Example 2.a we have:





g1(πa) = (a+k)(π−π)

(π−π)
[1 + ln(a+ k)(π − π)]

g1a(πa) =
(a+k)(π−π−1)

(π−π)
[(π − π) + (π − π) (1 + ln(a+ k)(π − π))]

12



After simplication the likelihood ratio equals:

g1a(πa)

g1(πa)
=

(a+ k)−1 [(π − π) + (π − π) (1 + ln(a+ k)(π − π))]

(1 + ln(a+ k)(π − π))

Dierentiating this last ratio with respect to π leads to

∂

∂π


g1a(πa)

g1(πa)


= {(2 + (2π − π − π) ln(a+ k)) (1 + ln(a+ k)(π − π))

− ((π − π) + (π − π) (1 + ln(a+ k)(π − π))) ln(a+ k)} D,

with D = (a + k) (1 + ln(a+ k)(π − π))2. By developing each term in the right-

hand-side and by simplifying we obtain nally

∂

∂π


g1a(πa)

g1(πa)


=

2 (1 + (π − π) ln(a+ k)) + (π − π)2 [ln(a+ k)]2

D ,

which is strictly positive. As a result, G1 satises MLRP. 

D. Example 2.b.

We have G2(la) = (a + 1)

(
l−l

l−l

)




l−l

l−l


. Assume l ∈


l, l


with l ≥ 0 and a ∈ [a, 1]

with a ≥ 0.

In the course we use the following notation: C(l) =


l−l
l−l


and D(l) =


l−l

l−l


.

We have: 0 ≤ C(l) ≤ 1 and 0 ≤ D(l) ≤ 1. G2 satises the following properties:

G2(la) = 0 and G2(la) = 1. Also G2 is strictly positive for any l > l. The associated

density function is:

g2(la) =
(a+ 1)C(l)

(l − l)
− 1

(l − l)
ln(a+ 1)(a+ 1)C(l)D(l)

=
(a+ 1)C(l)

(l − l)
[1− ln(a+ 1)D(l)]

This function is strictly positive for any a and any l if the term into brackets is

strictly positive. To get this property it is sucient that this term be positive at point

(a, l). With a = 1 this is always true.

We also have:

13







G2
a(la) = C(l)(a+ 1)C(l)−1D(l) > 0, ∀l < l < l

G2
a(la) = G2

a(la) = 0

G2
aa(la) = C(l)(C(l)− 1)(a+ 1)C(l)−2D(l) < 0, ∀l < l < l

Now, let us show that G2 also satises MLRP. We have:

g2a(la) = C(l)
(a+ 1)C(l)−1

(l − l)
[1− ln(a+ 1)D(l)]− (a+ 1)C(l)

(l − l)

1

(a+ 1)
D(l)

=
(a+ 1)C(l)−1

(l − l)
[(1− ln(a+ 1)D(l))C(l)−D(l)]

Hence:

g2a(la)

g2(la)
=

(a+ 1)−1 [(1− ln(a+ 1)D(l))C(l)−D(l)]

(1− ln(a+ 1)D(l))

Dierentiating this likelihood ratio with respect to l leads to:

∂

∂l


g2a(la)

g2(la)


= {(1− ln(a+ 1)D(l))[(1− ln(a+ 1)D(l))C ′(l)− ln(a+ 1)D′(l)C(l)

−D′(l)] + ln(a+ 1)D′(l) [(1− ln(a+ 1)D(l))C(l)−D(l)]}
(a+ 1)(1− ln(a+ 1)D(l))2

Knowing that C ′(l) = −1(l− l) and that D′(l) = 1(l− l) we obtain after simpli-

cations:

∂

∂l


g2a(la)

g2(la)


=

−1− (1− ln(a+ 1)D(l))2

(a+ 1)(l − l)(1− ln(a+ 1)D(l))2
< 0

So, G2 also satises MLRP. 
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APPENDIX 2

In this appendix, we compute the means and the variances for each example of

distribution. Revenues variate in [0, π] and losses in

0, l


.

 Example 1.a

Distribution F 1 is as follows: F 1(πa) =
[

1
(a+1)π

(π − π) + 1
]
π
π
.

Its density function is f 1(πa) =
[

1
(a+1)π

(π − 2π) + 1
]
 1
π
.

• The mean EF 1(π̃)

We have:

EF 1(π̃) =

π∫

0


1

(a+ 1)π2


ππ − 2π2


+

π

π


dπ

=


1

(a+ 1)π2


ππ2

2
− 2π3

3


+

π2

2π

π

0

=
−π3

6(a+ 1)π2 +
π

2

And nally EF 1(π̃) = π
2


1− 1

3(a+1)


.

• The variance VF 1(π̃)

We have VF 1(π̃) =
π
0


π − π

2


1− 1

3(a+1)

2

dπ.

Let us adopt the following notation:

b =


1− 1

3(a+ 1)


(13)
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Thus:

VF 1(π̃) =

π∫

0


π2 − ππb+

π2b2

4


dπ

=


π3

3
− π2πb

2
+

ππ2b2

4

π

0

=
π3

3
− π3b

2
+

π3b2

4

= π3


1

3
− b

2
+

b2

4



And nally VF 1(π̃) = π3

12
(4 + b(3b− 6)), where b is given by (13).

 Example 1.b

Recall that F 2 is dened as follows

F 2(la) =


(a+ 1)12

k
(l − l) + 1



l

l
,

with k > l(a+ 1)12, and its density function is:

f 2(la) =


(a+ 1)12

k
(l − 2l) + 1



1

l

• The mean EF 2(l̃)

We have:

EF 2(l̃) =
1

l

l∫

0


(a+ 1)12

k
(ll − 2l2) + l


dl

=
1

l


(a+ 1)12

k
(
ll2

2
− 2l3

3
) +

l2

2

l

0

=
−l

2
(a+ 1)12

6k
+

l

2

And nally EF 2(l̃) = l
2


1− l(a+1)1/2

3k


, which is positive because of the condition

imposed on k.
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• The variance VF 2(l̃)

We have VF 2(l̃) =
l
0


l − l

2


1− l(a+1)1/2

3k

2

dl.

Let us adopt the following notation: e = l
2


1− l(a+1)1/2

3k


. Thus:

VF 2(l̃) =

l∫

0

(l2 − 2le+ e2)dl

=


l3

3
− l2e+ le2

l

0

And nally VF 2(l̃) = l
3

3


1− h+ h2

3


, with h = 1

2


3− l(a+1)1/2

k


.

 Example 2.a

Distribution G1 is dened as follows: G1(πa) = (a+ k)(π−π)


π−π
π−π


with k > 1.

Its density function is g1(πa) = (a+k)(π−π)

(π−π)
[1 + ln(a+ k)(π − π)].

• The mean EG1(π̃)

With π = 0, we have:

EG1(π̃) =
1

π

π∫

0

(a+ k)(π−π)

π + π2 ln(a+ k)


dπ

=
1

π
{

(a+ k)(π−π)π

2

2

π

0

−
π∫

0

ln(a+ k)(a+ k)(π−π)π
2

2
dπ

+

π∫

0

ln(a+ k)(a+ k)(π−π)π2dπ}

=
1

π




π2

2
+

π∫

0

ln(a+ k)(a+ k)(π−π)π
2

2
dπ





=
1

π




π2

2
+


(a+ k)(π−π)π

2

2

π

0

−
π∫

0

(a+ k)(π−π)πdπ





17



=
1

π



π2 −


(a+ k)(π−π)

ln(a+ k)
π

π

0

+

π∫

0

(a+ k)(π−π)

ln(a+ k)
dπ





=
1

π

{
π2 − π

ln(a+ k)
+


(a+ k)(π−π)

(ln(a+ k))2

π

0

}

And nally EG1(π̃) = π + 1
ln(a+k)


1

π ln(a+k)


1− (a+ k)(−π)


− 1


.

• The variance VG1(π̃)

We have:

VG1(π̃) =

π∫

0


π − π − 1

ln(a+ k)


1

π ln(a+ k)


1− (a+ k)(−π)


− 1

2

dπ

Let us adopt the following notation:

c =
1

ln(a+ k)


1

π ln(a+ k)


1− (a+ k)(−π)


− 1


(14)

Thus:

VG1(π̃) =

π∫

0


(π − π)2 − 2(π − π)c+ c2


dπ

=

π∫

0


π2 − 2ππ + π2 − 2(π − π)c+ c2


dπ

=


π3

3
− π2π + ππ2 − π2c+ 2ππc+ πc2

π

0

=
π3

3
+ π2c+ πc2

And nally VG1(π̃) = π3

3
+ πc(π + c), with c dened by (14).

 Example 2.b

For a ∈ [a, 1], with a > 0, G2 is dened by:
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G2(la) = (a+ 1)

(
l−l

l−l

)




l − l

l − l



Its density function is g2(la) = (a+1)

(
l−l
l−l

)

(l−l)

[
1− ln(a+ 1)


l−l

l−l

]
.

• The mean EG2(l̃)

We have:

EG2(l̃) =
1

l

l∫

0

(a+ 1)

(
l−l

l

) 
l − ln(a+ 1)

l2

l


dl

=
1

l
{

(a+ 1)

(
l−l

l

)
l2

2

l

0

+

l∫

0

(a+ 1)

(
l−l

l

)
ln(a+ 1)

l2

2l
dl

−
l∫

0

(a+ 1)

(
l−l

l

)
ln(a+ 1)

l2

l
dl}

=
1

l




l
2

2
−

l∫

0

(a+ 1)

(
l−l

l

)
ln(a+ 1)

l2

2l
dl





=
1

l




l
2

2
−


−(a+ 1)

(
l−l

l

)
l2

2

l

0

−
l∫

0

(a+ 1)

(
l−l

l

)
ldl





=
1

l




l
2 −


−(a+ 1)

(
l−l

l

)

ln(a+ 1)
ll




l

0

−
l∫

0

(a+ 1)

(
l−l

l

)

ln(a+ 1)
ldl





=
1

l




l
2
+

l
2

ln(a+ 1)
+


(a+ 1)

(
l−l

l

)

(ln(a+ 1))2
l
2




l

0





=
1

l

{
l
2
+

l
2

ln(a+ 1)
+

(
l
2

(ln(a+ 1))2
− (a+ 1)

(ln(a+ 1))2
l
2

)}

And nally EG2(l̃) = l

1 + 1

ln(a+1)


1− a

ln(a+1)


, which is positive because a ≤ 1.
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• The variance VG2(l̃)

We have VG2(l̃) =
l
0


l − l


1 + 1

ln(a+1)


1− a

ln(a+1)

2

dl.

Let us adopt the following notation: j = l
ln(a+1)


1− a

ln(a+1)


. Thus:

VG2(l̃) =

l∫

0


(l − l)2 − 2(l − l)j + j2


dl

=

l∫

0


l2 − 2ll + l

2 − 2(l − l)j + j2

dl

=


l3

3
− l2l + ll

2 − l2j + 2llj + lj2
l

0

=
l
3

3
+ l

2
j + lj2

And nally VG2(l̃) = l
3 1

3
+m+m2


, with m = 1

ln(a+1)


1− a

ln(a+1)


. 
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Figure 1

Density f 1 when Revenues Vary

Figure 2

Density f 2 when Losses Vary

For k = 700



Figure 3

Density g1 when Revenues Vary

For k = 2

Figure 4

Density g2 when Losses Vary
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