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Abstract

We extend the Consumption-based CAPM (C-CAPM) model to representative agents

with different risk attitudes. We use the concept of expectation dependence and show that

for a risk averse representative agent, it is the first-degree expectation dependence rather

than the covariance that determines C-CAPM’s riskiness. We extend the assumption of risk

aversion to prudence and provide an additional dependence condition to obtain the values of

asset price and equity premium. Results are generalized to higher-degree risk changes and

higher- order risk averse representative agents, and are linked to the equity premium puzzle.
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1 Introduction

The consumption-based capital asset pricing model (C-CAPM), developed in Rubinstein (1976),

Lucas (1978), Breeden (1979) and Grossman and Shiller (1981), relates the risk premium on

each asset to the covariance between the asset return and the intertemporal marginal rate of

substitution of a decision maker. The most important comparative static results for C-CAPM

is how an asset’s price or equity premium changes as the quantity of risk and the price of

risk change. The results of comparative statics analysis thus form the basis for much of our

understanding of the sources of changes in consumption (macroeconomic) risk and risk aversion

that drive asset prices and equity premia.

The two objectives of this study are to propose a new theoretical framework for C-CAPM and

to extend its comparative statics. We use general utility functions and probability distributions

to investigate C-CAPM. Our model provides insight into the basic concepts that determine asset

prices and equity premia.

The C-CAPM pricing rule is sometimes interpreted as implying that the price of an asset

with a random payoff falls short of its expected payoff if and only if the random payoff positively

correlates with consumption. Liu and Wang (2007) show that this interpretation of C-CAPM is

not generally correct by presenting a counterexample. We use more powerful statistical tools to

obtain the appropriate dependence between asset payoff and consumption. We first discuss the

concept of expectation dependence developed by Wright (1987) and Li (2011). We show that,

for a risk averse representative agent, it is the first-degree expectation dependence between the

asset’s payoff and consumption rather than the covariance that determines C-CAPM’s riskiness.

Our result also reinterprets the covariance between an asset’s payoff and the marginal utility of

consumption in terms of the expectation dependence between the asset’s payoff and consumption

itself. We extend the assumption of risk aversion to prudence and provide another dependence

condition. Finally, we interpret C-CAPM in a general setting: for the ith-degree risk averse

representative agent,1 with i = 2, .., N + 1, it is the N th-order expectation dependence that

determines C-CAPM’s riskiness.
1Risk aversion in the traditional sense of a concave utility function is indicated by i = 2, whereas i = 3

corresponds to downside risk aversion in the sense of Menezes, Geiss and Tressler (1980). ith-degree risk aversion

is equivalent to preferences satisfying risk apportionment of order i. See Ekern (1980) and Eeckhoudt and

Schlesinger (2006) for more discussions.
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Our contribution is linked to the recent literature on higher-order risk preferences and higher-

order moments and comoments in finance developed by Harvey and Siddique (2000), Dittmar

(2002), Mitton and Vorkink (2007), Chabi-Yo et al. (2007), and Martellini and Ziermann (2010).

We provide a theoretical foundation for the pricing kernel model based on higher comoments

than the covariance by suggesting a more general definition of dependence between consumption

and asset payoff, and propose a general pricing formula not restricted to specific utility functions.

Our study also relates to Gollier and Schlesinger (2002) who examine asset prices in a

representative-agent model of general equilibrium with two differences. First, we study asset

price and equity premium driven by macroeconomic risk as in the traditional C-CAPM model

while Gollier and Schlesinger’s model considers the relationship between the riskiness of the

market portfolio and its expected return. Second, Gollier and Schlesinger’s model is a one

period model whereas our results rest on a two-period framework.

Finally, our study extends the literature that examines the effects of higher-degree risk

changes on the economy. Eeckhoudt and Schlesinger (2006) investigate necessary and sufficient

conditions on preferences for a higher-degree change in risk to increase saving. Our study

provides necessary and sufficient conditions on preferences for a higher-degree change in risk to

set asset prices, and sufficient conditions on preferences for a higher-degree change in risk to set

equity premia.

The paper proceeds as follows. Section 2 introduces several concepts of dependence. Section

3 provides a reinterpretation of C-CAPM for risk averse representative agents. Section 4 extends

the results of Section 3 to prudent and higher-order risk averse agents respectively. Section 5

discusses the results in relation to local indexes of risk aversion and higher-order moments and

comoments. Section 6 interprets the results in terms of the equity premium puzzle and concludes

the paper.

2 Concepts of dependence

The concept of correlation coined by Galton (1886) had served as the only measure of depen-

dence during the first 70 years of the 20th century. However correlation is too weak to obtain

meaningful conclusions in many economic and financial applications. For example, covariance

is a poor tool for describing dependence for non-normal distributions. Since Lehmann’s intro-

duction of the concept of quadrant dependence in 1966, stronger definitions of dependence have
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received much attention in the statistical literature2.

Suppose x̃ × ỹ ∈ R × R are two continuous random variables. Let F (x, y) denote the joint

and Fx(x) and Fy(y) the marginal distributions of x̃ and ỹ. Lehmann (1966) introduces the

following concept to investigate positive dependence.

Definition 2.1 (Lehmann, 1966) (x̃, ỹ) is positively quadrant dependent, written as PQD(x̃, ỹ),

if

F (x, y) ≥ Fx(x)Fy(y) for all (x, y) ∈ R×R. (1)

The above inequality can be rewritten as

Fx(x|ỹ ≤ y) ≥ Fx(x) (2)

and Lehmann provides the following interpretation of definition (2.1): “knowledge of ỹ being

small increases the probability of x̃ being small.” PQD is useful to model dependent risks

because it can take into account the simultaneous downside (upside) evolution of risks. The

marginal and the conditional CDFs can be changed simultaneously.3

Wright (1987) introduced the concept of expectation dependence in the economics literature.

The following definition, uses a weaker definition of dependence than PQD.

Definition 2.2 If

FED(x̃|y) = [Ex̃− E(x̃|ỹ ≤ y)] ≥ 0 for all y ∈ R, (3)

then x̃ is positive first− degree expectation dependent on ỹ.

The family of all distributions F satisfying (3) will be denoted by F1. Similarly, x̃ is negative

first-degree expectation dependent on ỹ if (3) holds with the inequality sign reversed. The

totality of negative first-degree expectation dependent distributions will be denoted by G1.

Wright (1987, page 113) interprets negative first-degree expectation dependence as follows:

“when we discover ỹ is small, in the precise sense that we are given the truncation ỹ ≤ y,

our expectation of x̃ is revised upward.” First-degree expectation dependence is a stronger

definition of dependence than correlation, but a weaker definition than quadrant dependence.
2For surveys of the literature, we refer to Joe (1997), Mari and Kotz (2001) and Embrechts (2009).
3Portfolio selection problems with positive quadrant dependency have been explored by Pellerey and Semeraro

(2005) and Dachraoui and Dionne (2007), among others. Pellerey and Semeraro (2005) assert that a large subset

of the elliptical distributions class is PQD. For examples of distributions, see Joe (1997).
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Therefore, many bivariate random variables being positive (negative) quadrant dependent are

also first-degree expectation dependent. But positive (negative) correlated random variables

are not necessary positive (negative) first-degree expectation dependent. We provide a simple

example of two random variables that are positively correlated but not positive first-degree

expectation dependent.

Example Let x̃ be normally distributed with Ex̃ = µ > 0 and var(x̃) = σ2. Let ỹ = x̃2. Since

Ex̃2 = µ2 + σ2 and Ex̃3 = µ3 + 3µσ2, then

cov(x̃, ỹ) = Ex̃ỹ − Ex̃Eỹ (4)

= Ex̃3 − Ex̃Ex̃2

= µ3 + 3µσ2 − µ(µ2 + σ2) = 2µσ2 > 0.

By definition,

FED(ỹ| −
√

µ2 + σ2) = Ex̃2 −E(x̃2|x̃ ≤ −
√

µ2 + σ2) (5)

= µ2 + σ2 − E(x̃2|x̃ ≤ −
√

µ2 + σ2) < 0,

and we obtain (ỹ, x̃) /∈ F1.

Note that the expectation dependence concept is not symmetric (for more discussion, see Wright,

1987). Li (2011) proposes the following weaker definition of dependence:

Definition 2.3 If

SED(x̃|y) =
∫ y

−∞
[Ex̃−E(x̃|ỹ ≤ t)]Fy(t)dt (6)

=
∫ y

−∞
FED(x̃|t)Fy(t)dt ≥ 0 for all y,

then x̃ is positive second-degree expectation dependent on ỹ.

The family of all distributions F satisfying (6) will be denoted by F2. Similarly, x̃ is negative

second-degree expectation dependent on ỹ if (6) holds with the inequality sign reversed, and the

totality of negative second-degree expectation dependent distributions will be denoted by G2.

It is obvious that F1 ⊆ F2 and G1 ⊆ G2 but the converse is not true. Because x̃ and ỹ are

positively correlated when (see Lehmann 1966, lemma 2)

cov(x̃, ỹ) =
∫ +∞

−∞

∫ +∞

−∞
[F (x, y)− Fx(x)Fy(y)]dxdy =

∫ +∞

−∞
FED(x̃|t)Fy(t)dt ≥ 0, (7)
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again we see that cov(x̃, ỹ) ≥ 0 is only a necessary condition for (x̃, ỹ) ∈ F2 but the converse is

not true. Comparing (6) and (7), we know that cov(x̃, ỹ) is the 2nd central cross moment of x̃

and ỹ while SED(x̃|y) is related to 2nd central cross lower partial moment of x̃ and ỹ which can

be explained as a measure of downside risk computed as the average of the squared deviations

below a target.

For our purpose of extending the C-CAPM model, comparative expectation dependence

has to be defined. We propose the following definition to quantify comparative expectation

dependence.

Definition 2.4 Distribution F (x, y) is more first-degree expectation dependent than H(x, y) if

and only if FEDF (x̃|y)Fy(y) ≥ FEDH(x̃|y)Hy(y) for all y. Distribution F (x, y) is more second

order expectation dependent than H(x, y), if FEDF (x̃) ≥ FEDH(x̃), and

SEDF (x̃|y) ≥ SEDH(x̃|y) for all y. (8)

Sibuya (1960) introduces the concept of dependence function ΩF :

ΩF =
F (x, y)

Fx(x)Fy(y)
. (9)

Since log(ΩF ) = log(F (x, y))−log(Fx(x)Fy(y)), “more first-degree expectation dependent” com-

pares the difference between F (x, y) and Fx(x)Fy(y) whereas Sibuya’s definition compares the

difference between log(F (x, y)) and log(Fx(x)Fy(y)).

3 C-CAPM for a risk averse representative agent

3.1 Consumption-based asset pricing model

Suppose that an investor can freely buy or sell an asset with random payoff x̃t+1 at a price

pt. The investor’s preference can be represented by a utility function u(.). We assume that all

derivatives for u(.) exist. Denote ξ as the amount of the asset the investor chooses to buy. Then,

his decision problem is to

max
ξ

u(ct) + βEt[u(c̃t+1)] (10)

s.t. ct = et − ptξ

c̃t+1 = et+1 + x̃t+1ξ,
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where et and et+1 are the original consumption levels, β is the subjective discount factor, ct is

the consumption in period t, and c̃t+1 is the consumption in period t + 1.

From the first order condition of this problem, we can obtain the well-known consumption-

based asset pricing model which can be expressed by the following two equations (see e.g.

Cochrane 2005, page 13-14)4

pt =
Etx̃t+1

Rf
+ β

covt[u′(c̃t+1), x̃t+1]
u′(ct)

, (11)

and

EtR̃t+1 −Rf = −covt[u′(c̃t+1), R̃t+1]
Etu′(c̃t+1)

(12)

where gross return R̃t+1 = x̃t+1

Pt
in period t+1, Rf is the gross return of the risk-free asset, u′(·)

is the marginal utility function, ER̃t+1 − Rf is the asset’s risk premium. As for expectation

dependence, covt[u′(c̃t+1), x̃t+1] and covt[u′(c̃t+1), R̃t+1] are not symmetric.

The first term on the right-hand side of (11) is the standard discounted present-value formula.

This is the asset’s price for a risk-neutral representative agent or for a representative agent when

asset payoff and consumption are independent. The second term is a risk aversion adjustment.

(11) states that an asset with random future payoff x̃t+1 is worth less than its expected payoff

discounted at the risk-free rate if and only if cov[u′(c̃t+1), x̃t+1] ≤ 0. (12) shows that an asset

has an expected return equal to the risk-free rate plus a risk adjustment under risk aversion.

When the representative agent’s utility function is the power function, u(ct) = c1−γ
t −1
1−γ where

γ is the coefficient of relative risk aversion and c̃t+1 and x̃t+1 are conditional lognormally dis-

tributed, (12) becomes (Campbell 2003, page 821)

Etr̃t+1 − rf +
vart(r̃t+1)

2
= γcovt(log c̃t+1, r̃t+1), (13)

where r̃t+1 = log(1 + R̃t+1) and rf = log(1 + Rf ).

(13) states that the log risk premium is equal to the product of the coefficient of relative risk

aversion and the covariance of the log asset return with consumption growth. We now provide

a generalization of these results.

From Theorem 1 in Cuadras (2002), we know that covariance can always be written as

covt[u′(c̃t+1), x̃t+1] =
∫ +∞

−∞

∫ +∞

−∞
[F (ct+1, xt+1)− Fct+1(ct+1)Fxt+1(xt+1)]u′′(ct+1)dxt+1dct+1.(14)

4Equations (11) and (12) can also be obtained in a muti-period dynamic framework from Euler equations. For

more details, see Constantinides and Duffie (1996).
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Because we can write

∫ +∞

−∞
[Fxt+1(xt+1|c̃t+1 ≤ ct+1)− Fxt+1(xt+1)]dxt+1 = Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ ct+1), (15)

(see, e.g., Tesfatsion (1976), Lemma 1), hence, we have

covt[u′(c̃t+1), x̃t+1] (16)

=
∫ +∞

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ ct+1)]Fct+1(ct+1)u′′(ct+1)dct+1 (by (15))

=
∫ +∞

−∞
FED(x̃t+1|ct+1)u′′(ct+1)Fct+1(ct+1)dct+1.

Using (16), (11) can be rewritten as

pt =
Etx̃t+1

Rf︸ ︷︷ ︸
discounted present value effect

−β

∫ +∞

−∞
FED(x̃t+1|ct+1)Fct+1(ct+1)[−u′′(ct+1)

u′(ct)
]dct+1

︸ ︷︷ ︸
first−degree expectation dependence effect

(17)

=
Etx̃t+1

Rf
− β

∫ +∞

−∞
FED(x̃t+1|ct+1)Fct+1(ct+1)AR(ct+1)MRSct+1,ctdct+1,

where AR(x) = −u′′(x)
u′(x) is the Arrow-Pratt absolute risk aversion coefficient, and MRSx,y = u′(x)

u′(y)

is the marginal rate of substitution between x and y.5

We can also rewrite (12) as

EtR̃t+1 −Rf =
∫ +∞

−∞
FED(R̃t+1|ct+1)Fct+1(ct+1)︸ ︷︷ ︸

consumption risk effect

[− u′′(ct+1)
Etu′(c̃t+1)

]
︸ ︷︷ ︸

price of risk effect

dct+1 (18)

Because Rf = 1
β

u′(ct)
Etu′(c̃t+1)

(see e.g. Cochrane 2005, page 11), we also have

EtR̃t+1 −Rf = βRf
∫ +∞

−∞
FED(R̃t+1|ct+1)Fct+1(ct+1)AR(ct+1)MRSct+1,ctdct+1 (19)

(17) shows that an asset’s price involves two terms. The effect, measured by the first term on

the right-hand side of (17), is the “discounted present value effect.” This effect depends on the

expected return of the asset and the risk-free interest rate. The sign of the discounted present

value effect is the same as the sign of the expected return. This term captures the “direct”

effect of the discounted expected return, which characterizes the asset’s price for a risk-neutral

representative agent.

The second term on the right-hand side of (17) is called “first-degree expectation depen-

dence effect.” This term involves the subjective discount factor, the expectation dependence
5Andersen et al. (2011) propose a multi-attribute risk aversion model that allows one to separate the intertem-

poral risk aversion coefficient into the risk aversion coefficient and the MRS
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between the random payoff and consumption, the Arrow-Pratt risk aversion coefficient and the

intertemporal marginal rate of substitution. The sign of the first-degree expectation depen-

dence indicates whether the movements on consumption tend to reinforce (positive first-degree

expectation dependence) or to counteract (negative first-degree expectation dependence) the

movements on an asset’s payoff.

(18) states that the expected excess return on any risky asset over the risk-free interest rate

can be explained as the sum of the quantity of consumption risk times the price of this risk.

The quantity of consumption risk is measured by the first-degree expectation dependence of the

excess stock return with consumption, while the price of risk is the Arrow-Pratt risk aversion

coefficient times the intertemporal marginal rate of substitution.

We obtain the following proposition from (17) and (18).

Proposition 3.1 Suppose F (xt+1, ct+1) and F (Rt+1, ct+1) are continuous, then the following

statements hold:

(i) pt ≤ Etx̃t+1

Rf for any risk averse representative agent (u′′ ≤ 0) if and only if (x̃t+1, c̃t+1) ∈
F1;

(ii) pt ≥ Etx̃t+1

Rf for any risk averse representative agent (u′′ ≤ 0) if and only if (x̃t+1, c̃t+1) ∈
G1;

(iii) EtR̃t+1 ≥ Rf for any risk averse representative agent (u′′ ≤ 0) if and only if (R̃t+1, c̃t+1) ∈
F1;

(iv) EtR̃t+1 ≤ Rf for any risk averse representative agent (u′′ ≤ 0) if and only if (R̃t+1, c̃t+1) ∈
G1.

Proof See Appendix A.

Proposition 3.1 states that, for a risk averse representative agent, an asset’s price is low-

ered (or equity premium is positive) if and only if its payoff is positively first-degree expec-

tation dependent with consumption. Conversely, an asset’s price is raised (or equity pre-

mium is negative) if and only if its payoff is negatively first-degree expectation dependent

with consumption. Therefore, for a risk averse representative agent, it is the first-degree

expectation dependence rather than the covariance that determines its riskiness. Because

(x̃t+1, c̃t+1) ∈ F1(G1) ⇒ covt(x̃t+1, c̃t+1) ≥ 0(≤ 0) and the converse is not true, we conclude

that a positive (negative) covariance is a necessary but not sufficient condition for a risk averse

agent paying a lower (higher) asset price (or having a positive (negative) equity premium).
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3.2 Comparative risk aversion

The assumption of risk aversion has long been a cornerstone of modern economics and finance.

Ross (1981) provides the following strong measure for comparative risk reversion:

Definition 3.2 (Ross 1981) u is more Ross risk averse than v if and only if there exists λ > 0

such that for all x, y

u′′(x)
v′′(x)

≥ λ ≥ u′(y)
v′(y)

. (20)

More risk averse in the sense of Ross guarantees that the more risk averse decision-maker is

willing to pay more to benefit from a mean preserving contraction.

Our important comparative statics question is the following: Under which condition does

a change in the representative agent’s risk preferences reduce the asset price? To answer this

question let us consider a change in the utility function from u to v. From (17), for agent v, we

have

pt =
Etx̃t+1

Rf
− β

∫ +∞

−∞
FED(x̃t+1|ct+1)FCt+1(ct+1)[−v′′(ct+1)

v′(ct)
]dct+1. (21)

Intuition suggests that if asset return and consumption are positive dependent and agent v

is more risk averse than agent u, then agent v should have a larger risk premium than agent u.

This intuition can be reinforced by Ross risk aversion and first-degree expectation dependence,

as stated in the following proposition.

Proposition 3.3 Let pu
t and pv

t denote the asset’s prices corresponding to u and v respectively.

Suppose u′, v′, u′′ and v′′ are continuous, then the following statements hold:

(i) pu
t ≥ pv

t for all (x̃t+1, c̃t+1) ∈ F1 if and only if v is more Ross risk averse than u;

(ii) pu
t ≥ pv

t for all (x̃t+1, c̃t+1) ∈ G1 if and only if u is more Ross risk averse than v;

Proof See Appendix A.

Proposition 3.3 indicates that, when an asset’s payoff is first-degree positive (negative) expec-

tation dependent on consumption, an increase in risk aversion in the sense of Ross decreases

(increases) the asset price.

The results of Proposition 3.3 cannot be obtained with the Arrow-Pratt relative risk aversion

measure. We consider the convenient power utility form u(c) = c1−γu−1
1−γu

and v(c) = c1−γv−1
1−γv

.

γu and γv are u and v’s relative risk aversion coefficients respectively. Intuition would suggest

that, when an asset’s payoff and consumption are positively dependent, γu ≥ γv implies that
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pu
t ≤ pv

t . However, the following counter example shows that, in the range of acceptable values

of parameters, a lower Arrow-Pratt relative risk aversion coefficient is neither a necessary nor a

sufficient condition to obtain higher price when asset’s payoff and consumption are first-degree

positive expectation dependent6.

Counter Example Suppose u(c) = c1−γ−1
1−γ , c̃t+1 ∈ [1, 3] almost surely and (x̃t+1, c̃t+1) ∈ F1

(note that in this case covt(x̃t+1, c̃t+1) ≥ 0), from (18) we obtain

pt =
Etx̃t+1

Rf
− β

∫ +∞

−∞
FED(x̃t+1|ct+1)Fct+1(ct+1)[−u′′(ct+1)

u′(ct)
]dct+1 (22)

=
Etx̃t+1

Rf
− β

∫ +∞

−∞
FED(x̃t+1|ct+1)Fct+1(ct+1)

γc−γ−1
t+1

Etc̃
−γ
t+1

dct+1,

hence, when an asset’s payoff and consumption are positively first-degree expectation dependent,

dpt

dγ ≤ 0 if and only if d
γc−γ−1

t+1

Etc̃
−γ
t+1

/dγ ≥ 0. We now show that d
γc−γ−1

t+1

Etc̃
−γ
t+1

/dγ ≥ 0 is not always verified

because it contains the variations of the marginal rate of substitution. Since

d
γc−γ−1

t+1

Etc̃
−γ
t+1

/dγ =
c−γ−1
t+1

(Etc̃
−γ
t+1)2

{[1− γ(γ + 1)c−1
t+1]Etc̃

−γ
t+1 + γ2Etc̃

−γ−1
t+1 }, (23)

we obtain dpt

dγ ≤ 0 if and only if [1− γ(γ + 1)c−1
t+1]Etc̃

−γ
t+1 + γ2Etc̃

−γ−1
t+1 ≥ 0. Because

[1− γ(γ + 1)c−1
t+1]Etc̃

−γ
t+1 + γ2Etc̃

−γ−1
t+1 (24)

≤ [1− 1
3
γ(γ + 1)]Etc̃

−γ
t+1 + γ2Etc̃

−γ−1
t+1 (since c̃t+1 ≤ 3 almost surely),

then for γ = 2 and c̃t+1 such that Etc̃
−γ
t+1 = 1

5 and Etc̃
−γ−1
t+1 = 1

21 , we have

[1− 1
3
γ(γ + 1)]Etc̃

−γ
t+1 + γ2Etc̃

−γ−1
t+1 = −1

5
+

4
21

< 0. (25)

Therefore, a higher Arrow-Pratt relative risk aversion coefficient is neither a necessary nor a

sufficient condition to obtain a lower price.

3.3 Changes in joint distributions

The question dual to the change in risk aversion examined above is as follows: Under which

condition does a change in the joint distribution of random payoff and consumption increase

the asset’s price? We may also ask the same question for the risk premium by using the joint

distribution of an asset’s gross return and consumption. To address these questions, let us denote
6When x̃t+1 = c̃t+1, the asset price is always monotone in the Arrow-Pratt measure of risk aversion (Gollier

2001, p336-337).
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EH
t and FEDH as the expectation and first order expectation dependency under distribution

H(x, y). Let pF
t and pH

t denote the corresponding prices under distributions F (x, y) and H(x, y)

respectively. From (17), we have

pH
t =

EH
t x̃t+1

Rf
− β

∫ +∞

−∞
FEDH(x̃t+1|ct+1)HCt+1(ct+1)[−u′′(ct+1)

u′(ct)
]dct+1. (26)

From (17) and (26), we obtain the following result.

Proposition 3.4 (i) Suppose F (xt+1, ct+1) is continuous and EF
t x̃t+1 = EH

t x̃t+1, then pF
t ≤

pH
t for all risk averse representative agents if and only if F (xt+1, ct+1) is more first-degree

expectation dependent than H(xt+1, ct+1);

(ii)Suppose F (Rt+1, ct+1) is continuous, then for all risk averse representative agents, F (Rt+1, ct+1)

is more first-degree expectation dependent than H(Rt+1, ct+1) if and only if the risk premium

under F (Rt+1, ct+1) is greater than under H(Rt+1, ct+1).

Proof See Appendix A.

Proposition 3.4 shows that a pure increase in first-degree expectation dependence represents an

increase in asset riskiness for all risk averse investors. The next corollary considers a simultaneous

variation in expected return and dependence.

Corollary 3.5 For all risk averse representative agents, EF
t x̃t+1 ≤ EH

t x̃t+1 and F (xt+1, ct+1)

is more first-degree expectation dependent than H(xt+1, ct+1) imply pF
t ≤ pH

t .

Proof The sufficient conditions are directly obtained from (17) and (26).

Corollary 3.5 states that, for all risk averse representative agents, a decrease in the expected re-

turn and an increase in the first-degree expectation dependence between return and consumption

will decrease the asset’s price. Again, the key available concept for prediction is comparative

first-degree expectation dependence.

4 C-CAPM for a higher-order risk averse representative agent

4.1 C-CAPM for a risk averse and prudent representative agent

The concept of prudence and its relationship to precautionary savings was introduced by Kimball

(1990). Since then, prudence has become a common and accepted assumption in the economics

11



literature (Gollier 2001). All prudent agents dislike any increase in downside risk in the sense

of Menezes et al. (1980) (see also Chiu, 2005.). Deck and Schlesinger (2010) conduct a labo-

ratory experiment to determine whether preferences are prudent and show behavioral evidence

for prudence. In this section, we will demonstrate that we can get additional dependence con-

ditions for asset price and equity premium than first-degree expectation dependence, when the

representative agent is risk averse and prudent.

We can integrate the right-hand term of (16) by parts and obtain:

covt[u′(c̃t+1), x̃t+1] =
∫ +∞

−∞
FED(x̃t+1|ct+1)u′′(ct+1)Fct+1(ct+1)dct+1 (27)

=
∫ +∞

−∞
u′′(ct+1)d(

∫ ct+1

−∞
[Ex̃t+1 −E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)ds)

= u′′(ct+1)
∫ ct+1

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)ds|+∞−∞

−
∫ +∞

−∞

∫ ct+1

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)dsu′′′(ct+1)dct+1

= u′′(+∞)
∫ +∞

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)ds

−
∫ +∞

−∞

∫ ct+1

−∞
[Ex̃t+1 − E(x̃t+1|c̃t+1 ≤ s)]Fct+1(s)dsu′′′(ct+1)dct+1

= u′′(+∞)covt(x̃t+1, c̃t+1)−
∫ +∞

−∞
SED(x̃t+1|ct+1)u′′′(ct+1)dct+1.

From equation (7), we know that a positive SED implies a positive cov(x̃t+1, c̃t+1) but the

converse is not true. Hence, we have from (27) that covt(x̃t+1, c̃t+1) ≥ 0 is a necessary but not

sufficient condition for covt[u′(c̃t+1), x̃t+1] ≤ 0 for all u′′ ≤ 0 and u′′′ ≥ 0. With a positive SED

function, prudence is also necessary.

(11) and (12) can be rewritten as:

pt =
Etx̃t+1

Rf︸ ︷︷ ︸
discounted present value effect

−βcovt(x̃t+1, c̃t+1)[−u′′(+∞)
u′(ct)

]
︸ ︷︷ ︸

covariance effect

(28)

−β

∫ +∞

−∞
SED(x̃t+1|ct+1)[

u′′′(ct+1)
u′(ct)

]dct+1

︸ ︷︷ ︸
second−degree expectation dependence effect

or

pt =
Etx̃t+1

Rf
− βcovt(x̃t+1, c̃t+1)AR(+∞)MRS+∞,ct (29)

−β

∫ +∞

−∞
SED(x̃t+1|ct+1)AP (ct+1)MRSct+1,ctdct+1,
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where AP (x) = u′′′(x)
u′(x) is the index of absolute prudence7, and

EtR̃t+1 −Rf (30)

= covt(R̃t+1, c̃t+1)[− u′′(+∞)
Etu′(c̃t+1)

]
︸ ︷︷ ︸

consumption covariance effect

+
∫ +∞

−∞
SED(R̃t+1|ct+1)

u′′′(ct+1)
Etu′(c̃t+1)

dct+1

︸ ︷︷ ︸
consumption second−degree expectation dependence effect

or

EtR̃t+1 −Rf (31)

= βRfcovt(R̃t+1, c̃t+1)AR(+∞)MRSc,ct

+βRf
∫ +∞

−∞
SED(R̃t+1|ct+1)AP (ct+1)MRSct+1,ctdct+1.

Condition (28) includes three terms. The first one is the same as in condition (17). The second

term on the right-hand side of (28) is called the “covariance effect.” This term involves β, the

covariance of asset return and consumption, the Arrow-Pratt risk aversion coefficient and the

marginal rates of substitution. The third term on the right-hand side of (28) is called “second-

degree expectation dependence effect,” which reflects the way in which second-degree expectation

dependence of risk affects asset’s price through the intensity of downside risk aversion. Again

(28) affirms that positive correlation is only a necessary condition for all risk averse and prudent

agents to pay a lower price. Equation (30) shows that a positive SED reinforces the positive

covariance effect to obtain a positive risk premium.

We state the following propositions without proof. The proofs of these propositions are

similar to the proofs of Propositions in Section 3, and are therefore skipped. They are available

from the authors.

Proposition 4.1 Suppose F (xt+1, ct+1) and F (Rt+1, ct+1) are continuous, then the following

statements hold:

(i) pt ≤ Etx̃t+1

Rf for any risk averse and prudent representative agent (u′′ ≤ 0 and u′′′ ≥ 0) if

and only if (x̃t+1, c̃t+1) ∈ F2;

(ii) pt ≥ Etx̃t+1

Rf for any risk averse and prudent representative agent (u′′ ≤ 0 and u′′′ ≥ 0) if

and only if (x̃t+1, c̃t+1) ∈ G2;

(iii) EtR̃t+1 ≥ Rf for any risk averse and prudent representative agents (u′′ ≤ 0 and u′′′ ≥ 0)

if and only if (R̃t+1, c̃t+1) ∈ F2;

7Modica and Scarsini (2005), Crainich and Eeckhoudt (2008) and Denuit and Eeckhoudt (2010) propose u′′′(x)
u′(x)

instead of −u′′′(x)
u′′(x)

(Kimball, 1990) as an alternative candidate to evaluate the intensity of prudence.
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(iv) EtR̃t+1 ≤ Rf for any risk averse and prudent representative agents (u′′ ≤ 0 and u′′′ ≥ 0)

if and only if (R̃t+1, c̃t+1) ∈ G2.

Modica and Scarsini (2005) provide a comparative statics criterion for downside risk in the

spirit of Ross (1981).

Definition 4.2 (Modica and Scarsini 2005) u is more downside risk averse than v if and only

if there exists λ > 0 such that for all x, y

u′′′(x)
v′′′(x)

≥ λ ≥ u′(y)
v′(y)

. (32)

More downside risk aversion can guarantee that the decision-maker with a utility function that

has more downside risk aversion is willing to pay more to avoid the downside risk increase as

defined by Menezes et al. (1980). We can therefore extend Proposition 3.3 as follows:

Proposition 4.3 Suppose u′, v′, u′′′ and v′′′ are continuous, then the following statements hold:

(i) pu
t ≥ pv

t for all (x̃t+1, c̃t+1) ∈ F2 if and only if v is more Ross and downside risk averse

than u;

(ii) pu
t ≥ pv

t for all (x̃t+1, c̃t+1) ∈ G2 if and only if u is more Ross and downside risk averse

than v;

We also obtain the following results for changes in joint distributions.

Proposition 4.4 (i) Suppose F (xt+1, ct+1) is continuous and EF
t x̃t+1 = EH

t x̃t+1, then pF
t ≤ pH

t

for all risk averse and prudent representative agents if and only if F (xt+1, ct+1) is more second-

degree expectation dependent than H(xt+1, ct+1);

(ii) Suppose F (Rt+1, ct+1) is continuous, then for all risk averse and prudent representative

agents, F (Rt+1, ct+1) is more second-degree expectation dependent than H(Rt+1, ct+1) if and

only if the risk premium under F (Rt+1, ct+1) is greater than under H(Rt+1, ct+1).

Corollary 4.5 For all risk averse and prudent representative agents, EF
t x̃t+1 ≤ EH

t x̃t+1 and

F (xt+1, ct+1) is more second-degree expectation dependent than H(xt+1, ct+1) implies pF
t ≤ pH

t ;

4.2 C-CAPM for a higher-order representative agent

Ekern (1980) provides the following definition to sign the higher-order risk attitude.
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Definition 4.6 (Ekern 1980) An agent u is N th degree risk averse, if and only if

(−1)Nu(N)(x) ≤ 0 for all x, (33)

where u(N)(·) denotes the N th derivative of u(x).

Ekern (1980) shows that all agents having utility function with N th degree risk aversion dislike

a probability change if and only if it produces an increase in N th degree risk. Risk aversion

in the traditional sense of a concave utility function is indicated by N = 2. When N = 3, we

obtain u′′′ ≥ 0 which means that marginal utility is convex, or implies prudence. Eeckhoudt and

Schlesinger (2006) derive a class of lottery pairs to show that lottery preferences are compatible

with Ekern’s N th degree risk aversion.

Jindapon and Neilson (2007) generalize Ross’ risk aversion to higher-order risk aversion.

Definition 4.7 (Jindapon and Neilson 2007) u is more N th-degree Ross risk averse than v if

and only if there exists λ > 0 such that for all x, y

u(N)(x)
v(N)(x)

≥ λ ≥ u′(y)
v′(y)

. (34)

Li (2009) and Denuit and Eeckhoudt (2010) provide context-free explanations for higher-order

Ross risk aversion. In Appendix B, we generalize the results of Section 3 and 4 to higher-degree

risks and higher order representative agents.

5 Asset prices and two local absolute indexes of risk attitude

If we assume that c̃t and c̃t+1 are close enough, then we can use the local coefficient of risk

aversion and local downside risk aversion (see Modica and Scarsini, 2005) to obtain the following

approximation formulas for (17) and (28):

pt ≈ Etx̃t+1

Rf
+ β

u′′(ct)
u′(ct)

∫ +∞

−∞
FED(x̃t+1|ct+1)Fct+1(ct+1)dct+1 (35)

=
Etx̃t+1

Rf
− βAR(ct)covt(x̃t+1, ct+1)

and

pt ≈ Etx̃t+1

Rf
+ β

u′′(ct)
u′(ct)

covt(x̃t+1, c̃t+1)− β
u′′′(ct)
u′(ct)

∫ +∞

−∞
SED(x̃t+1|ct+1)dct+1 (36)

=
Etx̃t+1

Rf
− βAR(ct)covt(x̃t+1, c̃t+1)− βAP (ct)

∫ +∞

−∞
SED(x̃t+1|ct+1)dct+1.
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When the variation of consumption is small, (35) implies that absolute risk aversion and covari-

ance determine asset prices while (36) implies that absolute risk aversion, absolute prudence,

covariance and SED determine asset prices. We mentioned before that SED(x̃|y) is related to

the 2nd central cross lower partial moment of x̃ and ỹ, hence (36) provides a theoretical expla-

nation of the importance of higher-order risk preferences, higher-order moments and comoments

in finance. We must emphasize that we obtain only approximations of asset prices when we use

Arrow-Pratt measure of risk aversion and Kimball measure of prudence.

6 Concluding remarks on the equity premium puzzle

We discuss the implications of our results on the equity premium puzzle. The major discrepancy

between the C-CAPM model predictions and empirical reality is identified as the equity premium

puzzle in the literature. As mentioned in Section 3, the key empirical observations of the equity

premium puzzle based on (13) can be summarized as follows:

When the representative agent’s utility function is the power function, and c̃t+1 and x̃t+1

are conditional lognormally distributed, the observed equity premium can be explained only by

assuming a very high coefficient of relative risk aversion. Moreover, it is also difficult to explain

the existence of observed high risk premia with the covariance because of the smoothness of

consumption over time. However, the equity premium puzzle conclusion is built on specific

utility functions and return distributions. Our results show that, for general utility functions

and distributions, covariance is not the key element of equity premium prediction. It is very

easy to find counter intuitive results. For example, given positively correlated gross return

and consumption distributions, a lower Arrow-Pratt coefficient of relative risk aversion may

result in a higher equity premium. Alternatively, given a representative agent’s preference, a

lower covariance between gross return and consumption may result in a higher equity premium.

Therefore, (13) is not a robust theoretical prediction of equity premia.

Our results prove that asset pricing’s comparative statics imply the following robust predic-

tions:

(a) expectation dependence between payoff and consumption determines asset riskiness

rather than covariance;

(b) when a representative agent’s risk preference satisfies higher-order risk aversion, more

expectation dependence between payoff and consumption is equivalent to a lower price.
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(c) when a representative agent’s risk preference satisfies higher-order risk aversion, more

expectation dependence between gross return and consumption is equivalent to a higher equity

premium.

(d) when payoff and consumption are positive expectation dependent, higher risk aversion

in the sense of Ross is equivalent to a lower equity price;

Because the comparative Ross risk aversion is fairly restrictive upon preference, some readers

may regard (d) as a negative result, because no standard utility functions satisfy such condition

on the whole domain. However, some utility functions satisfy comparative Ross risk aversion on

some domain. For example, Crainich and Eeckhoudt (2008) and Denuit and Eeckhoudt (2010)

assert that (−1)N+1 u(N)

u′ is an appropriate local index of N th order risk attitude. Nonetheless,

some readers may think that because no standard utility functions satisfy these conditions,

experimental methods to identify these conditions may need to be developed. Ross (1981),

Modica and Scarsini (2005), Li (2009) and Denuit and Eeckhoudt (2010) provide context-free

experiments for comparative Ross risk aversion. More research is needed in both directions to

develop the theoretical foundations for C-CAPM. This paper takes a first step in that direction.

We have proposed a new unified interpretation to C-CAPM, which we have related to the equity

premium puzzle problem. Our results are important because C-CAPM shares the positive

versus normative tensions that prevail in finance and economics to explain asset prices and

equity premia.

7 Appendix A: Proofs of propositions

7.1 Proof of Proposition 3.1

(i): The sufficient conditions are directly obtained from (17) and (18). We prove the necessity

using a contradiction. Suppose that FED(x̃t+1|ct+1) < 0 for c0
t+1. Because of the continuity of

FED(x̃|y), we have FED(x̃t+1|c0
t+1) < 0 in interval [a,b]. Choose the following utility function:

ū(x) =





αx− e−a x < a

αx− e−x a ≤ x ≤ b

αx− e−b x > b,

(37)
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where α > 0. Then

ū′(x) =





α x < a

α + e−x a ≤ x ≤ b

α x > b

(38)

and

ū′′(x) =





0 x < a

−e−x a ≤ x ≤ b

0 x > b.

(39)

Therefore,

pt =
Etx̃t+1

Rf
− β

1
u′(ct)

∫ b

a
FED(x̃t+1|ct+1)FCt+1(ct+1)e−ct+1dct+1 >

Etx̃t+1

Rf
. (40)

This is a contradiction.

(ii) (iii) and (iv): We can prove them using the same approach used in (i).

7.2 Proof of Proposition 3.3

(i): The sufficient conditions are directly obtained from (17), and (21). We prove the necessity

by a contradiction. Suppose that there exists some ct+1 and ct such that u′′(ct+1)
v′′(ct+1)

> u′(ct)
v′(ct)

.

Because u′, v′, u′′ and v′′ are continuous, there exists a neighborhood [γ1, γ2], such that

u′′(ct+1)
v′′(ct+1)

>
u′(ct)
v′(ct)

for all (ct+1, ct) ∈ [γ1, γ2], (41)

hence
−u′′(ct+1)
−v′′(ct+1)

>
u′(ct)
v′(ct)

for all (ct+1, ct) ∈ [γ1, γ2], (42)

and

−u′′(ct+1)
u′(ct)

> −v′′(ct+1)
v′(ct)

for all (ct+1, ct) ∈ [γ1, γ2]. (43)

If F (x, y) is a distribution function such that FED(x̃t+1|ct+1)FY (y) is strictly positive on interval

[γ1, γ2] and is equal to zero on other intervals, then we have

pu
t − pv

t = β

∫ γ2

γ1

FED(x̃t+1|ct+1)FY (y)[
u′′(ct+1)
u′(ct)

− v′′(ct+1)
v′(ct)

] < 0. (44)

This is a contradiction.

(ii): We can prove them using the same approach used in (i).
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7.3 Proof of Proposition 3.4

(i) The sufficient conditions are directly obtained from (17), and (26). We prove the necessity us-

ing a contradiction. Suppose FEDF (x̃t+1|ct+1)FCt+1(ct+1) < FEDH(x̃t+1|ct+1)HCt+1(ct+1) for

c0
t+1. Owing to the continuity of FEDF (x̃t+1|ct+1)FCt+1(ct+1)− FEDH(x̃t+1|ct+1)HCt+1(ct+1),

we have FEDF (x̃t+1|c0
t+1)FCt+1(c

0
t+1) < FEDH(x̃t+1|c0

t+1)HCt+1(c
0
t+1) in interval [a,b]. Choose

the following utility function:

ū(x) =





αx− e−a x < a

αx− e−x a ≤ x ≤ b

αx− e−b x > b,

(45)

where α > 0. Then

ū′(x) =





α x < a

α + e−x a ≤ x ≤ b

α x > b

(46)

and

ū′′(x) =





0 x < a

−e−x a ≤ x ≤ b

0 x > b.

(47)

Therefore,

pF
t − pH

t (48)

= β
1

u′(ct)

∫ b

a
[FEDH(x̃t+1|ct+1)FCt+1(ct+1)− FEDF (x̃t+1|y)FCt+1(ct+1)]e−ct+1dct+1 > 0.

(ii): We can prove them using the same approach used in (i).

8 Appendix B: Higher-order risks and higher order representa-

tive agents

In this section, we suppose x̃ × ỹ ∈ [a, b] × [d, e], where a, b, d and e are finite. Rewriting

1thED(x̃|y) = FED(x̃|y), 2thED(x̃|y) = SED(x̃|y) =
∫ y
d FED(x̃|t)FY (t)dt, repeated integrals

yield:

N thED(x̃|y) =
∫ y

d
(N − 1)thED(x̃|t)dt, for N ≥ 3. (49)
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Definition 8.1 (Li 2011) If kthED(x̃|e) ≥ 0, for k = 2, ..., N − 1 and

N thED(x̃|y) ≥ 0 for all y ∈ [d, e], (50)

then x̃ is positive N th-order expectation dependent on ỹ (N thED(x̃|y)).

The family of all distributions F satisfying (50) will be denoted by FN . Similarly, x̃ is negative

N th-order expectation dependent on ỹ if (50) holds with the inequality sign reversed, and the

totality of negative N th-order expectation dependent distributions will be denoted by GN . From

this definition, we know that FN−1 ⊆ FN and GN−1 ⊆ GN but the converse is not true. N th-

order expectation dependence is related to N th-order central cross lower partial moment of x̃

and ỹ (See, Li (2011) for more details). Several recent researches in finance have focused on

estimators of higher-order moments and comoments of the return distribution (i.e. coskewness

and cokurtosis) and showed that these estimates generate a better explanation of investors’

portfolios. (see, Martellini and Ziemann (2010) for more details).

Definition 8.2 Define ithEDF and ithEDH , for i = 1, .., N , as the ith expectation dependence

under distribution F (x, y) and H(x, y) respectively. Distribution F (x, y) is more first-degree

expectation dependent than H(x, y), if and only if FEDF (x̃|y)FY (y) ≥ FEDH(x̃|y)HY (y) for

all y ∈ [d, e]. Distribution F (x, y) is more N th-order expectation dependent than H(x, y) for

N ≥ 2, if kthEDF (x̃|e) ≥ kthEDH(x̃|e), for k = 2, ..., N − 1 and

N thEDF (x̃|y) ≥ N thEDH(x̃|y) for all y ∈ [d, e]. (51)

Suppose (x̃t+1, R̃t+1, c̃t+1) ∈ [x, x]× [R, R]× [c, c]. We integrate the right-hand term of (16)

by parts repeatedly until we obtain:

cov[u′(c̃t+1), x̃t+1] =
N∑

k=2

(−1)ku(k)(c)kthED(x̃t+1|c) (52)

+
∫ c

c
(−1)N+1u(N+1)(ct+1)N thED(x̃t+1|ct+1)dct+1, for n ≥ 2.

Then (11) and (12) can be rewritten as:

pt =
Etx̃t+1

Rf︸ ︷︷ ︸
discounted present value effect

−β
N∑

k=2

kthED(x̃t+1|c)[(−1)k+1 u(k)(c)
u′(ct)

]

︸ ︷︷ ︸
higher−order cross moments effect

(53)

−β

∫ c

c
N thED(x̃t+1|ct+1)[(−1)N+2 u(N+1)(ct+1)

u′(ct)
]dct+1

︸ ︷︷ ︸
Nth−order expectation dependence effect
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=
Etx̃t+1

Rf
− β

N∑

k=2

kthED(x̃t+1|c)AR(k)(c)MRSc,ct

−β

∫ c

c
N thED(x̃t+1|ct+1)AR(k+1)(ct+1)MRSct+1,ctdct+1

where AR(k)(x) = (−1)k+1 u(k)(x)
u′(x) is the absolute index of kth order risk aversion, and

EtR̃t+1 −Rf (54)

=
N∑

k=2

kthED(R̃t+1|c)[(−1)k+1 u(k)(c)
Etu′(c̃t+1)

]
︸ ︷︷ ︸

consumption cross moments effect

+
∫ c

c
N thED(R̃t+1|ct+1)[(−1)N+2 u(N+1)(ct+1)

Etu′(c̃t+1)
]

︸ ︷︷ ︸
Nth degree expectation dependence effect

dct+1

= βRf
N∑

k=2

kthED(R̃t+1|c)AR(k)(c)MRSc,ct

+βRf
∫ c

c
N thED(R̃t+1|ct+1)AR(k+1)(ct+1)MRSct+1,ctdct+1.

Condition (53) includes three terms. The first one is the same as in condition (17). The second

term on the right-hand side of (53) is called the “higher-order cross moments effect.” This term

involves β, the intensity of higher-order risk aversion, the marginal rates of substitution and the

higher-order cross moments of asset return and consumption. The third term on the right-hand

side of (53) is called “N th − degree expectation dependence effect,” which reflects the way in

which N th-degree expectation dependence of risks affects asset price through the intensity of

absolute N th risk aversion and the marginal rates of substitution.

We state the following propositions without proof (The proofs of these propositions are

similar to the proofs of propositions in Section 3, and are therefore skipped. They are however

available from the authors.).

Proposition 8.3 Suppose F (xt+1, ct+1) and F (Rt+1, ct+1) are continuous, then the following

statements hold:

(i) pt ≤ Etx̃t+1

Rf for any ith risk averse representative agent with i = 2, ..., N + 1 if and only

if (x̃t+1, c̃t+1) ∈ FN ;

(ii) pt ≥ Etx̃t+1

Rf for any ith risk averse representative agent with i = 2, ..., N + 1 if and only

if (x̃t+1, c̃t+1) ∈ GN ;

(iii) EtR̃t+1 ≥ Rf for any ith risk averse representative agents with i = 2, ..., N + 1 if and

only if (R̃t+1, c̃t+1) ∈ FN ;
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(iv) EtR̃t+1 ≤ Rf for any ith risk averse representative agents with i = 2, ..., N + 1 if and

only if (R̃t+1, c̃t+1) ∈ GN .

Proposition 8.3 suggests that, for an ith-degree risk averse representative agent with i = 1, .., n =

1, an asset’s price is lowered if and only if its payoff N th-order is positively expectation dependent

on consumption. Conversely, an asset’s price is raised if and only if it N th-order is negatively

expectation dependent on consumption. Therefore, for ith-degree representative agents with

i = 1, .., N + 1, it is the N th-order expectation dependence that determines its riskiness. The

next two propositions and Corollary 8.6 have a similar general intuition when compared with

those in Section 3.

Proposition 8.4 Suppose u′, v′, uN+1 and vN+1 are continuous, then the following statements

hold:

(i) pu
t ≥ pv

t for all (x̃t+1, c̃t+1) ∈ FN if and only if v is more ith risk averse than u for

i = 2, ..., N + 1;

(ii) pu
t ≥ pv

t for all (x̃t+1, c̃t+1) ∈ GN if and only if u is more ith risk averse than v for

i = 2, ..., N + 1;

Proposition 8.5 (i) Suppose F (xt+1, ct+1) is continuous and EF
t x̃t+1 = EH

t x̃t+1, then pF
t ≤ pH

t

for all ith risk averse representative agents with i = 2, ..., N + 1 if and only if F (xt+1, ct+1) is

N th more expectation dependent than H(xt+1, ct+1);

(ii) Suppose F (Rt+1, ct+1) is continuous, then for all ith risk averse representative agents

with i = 2, ..., N +1,, F (Rt+1, ct+1) is more ith-degree expectation dependent than H(Rt+1, ct+1)

if and only if the risk premium under F (Rt+1, ct+1) is greater than H(Rt+1, ct+1).

Corollary 8.6 For all ith risk averse representative agents with i = 2, ..., N + 1, EF
t x̃t+1 ≤

EH
t x̃t+1 and F (xt+1, ct+1) is more N th-degree expectation dependent than H(xt+1, ct+1) implies

pF
t ≤ pH

t ;
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