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A B S T R A C T   

We explore high-frequency arbitrage activities on international cross-listed stocks and develop a methodology to 
study the effect of information latency in high-frequency trading. We derive statistical arbitrage bounds for a 
mean-reverting synthetic instrument engineered from cross-listed stock prices, and we propose a new strategy 
that takes advantage of price deviations outside these bounds. Market frictions such as trade costs, inventory 
control, and arbitrage risks are considered. The strategy is tested with cross-listed stocks involving three ex
changes in Canada and the United States in 2019. The annual net profit with the limit order strategy is around US 
$6 million, whereas the market order version is not profitable because of the great interconnectedness between 
exchanges in our data.   

1. Introduction 

We study the profitability of arbitrage activities on international 
cross-listed stocks in the context of North American markets. Our main 
research question is as follows: Is international high-speed arbitrage 
profitable for High-Frequency Traders (HFTers) under strong competi
tion and when all potential arbitrage costs and risks are considered? 

Stock exchanges in different countries often use distinct market mi
crostructures, whereas many large public firms employ cross-border 
listing to reduce their cost of capital and increase their access to 
liquidity. The current market structure of stock exchanges in North 
America and Europe is very competitive, fragmented, and fast (Biais & 
Woolley, 2011; Goldstein, Kumar, & Graves, 2014; Jones, 2013; O’Hara, 
2015; Wah, 2016). Changes in regulation, particularly the Regulation 
NMS in the US and the IIROC rules in Canada,1 led to an increase in the 
number of trading venues, thus further fragmenting financial markets 
(Chao, Chen, & Mao, 2019; Garriott, Pomeranets, Slive, & Thorn, 2013). 
In 2019, there were more than twenty designated exchanges in North 

America. Further, competition related to trading fees, rebates, and 
colocation fees have increased significantly in recent years (Thomson 
Reuters, 2019). 

The existence of multiple venues means that the price of a given asset 
need not always be the same across all venues for a very short period, 
opening the door to high-speed arbitrage across markets (Foucault & 
Biais, 2014; O’Hara, 2015). Given that this form of arbitrage can be done 
by creating portfolios that result from spatial arbitrage, traders must 
appraise intra-market liquidity and analyze the assets’ serial correlation. 
Nonetheless, serial correlation dissipates very quickly, which further 
increases the possibility of high-speed spatial arbitrage (Budish, Cram
ton, & Shim, 2015). 

In a market fragmentation context, traders need to search for 
liquidity across many venues in the same country or across countries. 
High speed can be crucial when there is strong competition. The ability 
of HFTers to enter and cancel orders very rapidly makes it hard for many 
traders to discern where liquidity really exists, which creates more op
portunities for HFTers to exploit profitable trading opportunities. 
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International latency arbitrage opportunities may also arise because 
of different market models used in local exchanges, different regula
tions, transient supply and demand shocks, and the arrival of new local 
information that generates asynchronous adjustments in asset prices. 
These additional arbitrage possibilities terminate either when an arbi
trageur exploits the new opportunity or when market makers update 
their quotes to reflect the new information (Foucault, Kozhan, & Tham, 
2017). However, local market makers are not always harmonized in real 
time. High-speed international arbitrage may then benefit all market 
participants (those with and without high-speed) by reducing inter- 
market bid-ask spreads, a measure of market quality (Hendershott, 
Jones, & Menkveld, 2011; Riordan & Storkenmaier, 2012). As a result, 
HFTers may even become inter-market makers who provide liquidity 
with their arbitrage activities, as we demonstrate with our mean- 
reverting strategy. 

Whereas arbitrage forces should drive prices to attain an equilib
rium, an exchange that acts as a price leader could attract a significant 
portion of order flow if the adjustment takes time. In this case, it is 
reasonable to assume that price discovery will tend to occur primarily in 
the original stock exchange of a cross-listed stock. For example, empir
ical evidence suggests that prices on Canadian and U.S. exchanges 
mutually adjust for Canadian-based cross-listed stocks (Chouinard & 
D’Souza, 2003; Eun & Sabherwal, 2003). 

Considering a cross-country environment, we revisit latency arbi
trage strategies, and propose a new model of international mean- 
reverting arbitrage with FX rate hedging. We are the first to introduce 
a synthetic instrument engineered from cross-listed stock prices, that 
seeks to replicate the exchange rate between currencies. As we will 
show, this instrument possesses a strong mean-reversion to the actual 
exchange rate observed in currency futures. Using this property, we 
derive statistical arbitrage bounds that allow a high-frequency trader to 
find statistical arbitrage opportunities in cross-listed stocks prices. 
Taking positions in currency futures also protects the high-frequency 
trader from currency risk. The earlier literature mainly relied on cross- 
markets to seek arbitrage opportunities (Budish et al., 2015; Wah, 
2016), which is only a subset of the opportunities that can be found with 
our model. 

Our strategy is a hybrid between triangular arbitrage (Spraos, 1953) 
and pairs trading (Gatev, Goetzmann, & Rouwenhorst, 2006). Indeed, it 
relies on the equilibrium of currency instruments (the synthetic instru
ment and the currency futures), like in triangular arbitrage, but it also 
trades mainly on a pair of assets (cross-listed stocks) whenever their 
prices diverge from a historical equilibrium, like in pairs trading. In 
practice, traders face two problems when considering triangular arbi
trage or pairs trading strategies. First, they need to determine the 
equilibrium-level threshold of the combined positions, which is essential 
to know ex ante the positions’ exit point and to determine the expected 
economic value of any arbitrage opportunity. Second, traders need to 
ensure that the process resulting from the combined positions will 
indeed correspond to a mean-reversion process. To the best of our 
knowledge, we are the first to directly address these two issues simul
taneously, and such a strategy has never been proposed. 

The present study is the first to examine stocks’ cross-country mean- 
reverting arbitrage with FX rate hedging. We adopt the perspective of a 
unique temporal frame of reference, which means that we synchronize 
the data feeds of exchange venues and explicitly consider the latency 
that comes from the transmission of information between them and the 
data processing time. This approach, coupled with the inclusion of 
trading costs and trading risks in our methodology, generates more 
realistic results than those obtained in previous studies. 

Our strategy signals when the prices of cross-listed stocks deviate 
enough from their relative equilibrium that an economically viable 
arbitrage opportunity occurs. We construct a portfolio of synthetic in
struments from pairs of cross-listed stocks of the same company traded 
on two exchanges and compute their relative spread (SPRD), defined as 
the ratio of the stock prices (our synthetic future) and a hedging position 

in the equivalent currency futures. The relative spread deviation 
resulting from a variation between the synthetic instrument and the 
hedging instrument is expected to be mean-reverting. We analyze this 
intraday reverting behavior in detail for each pair of stocks between 
exchanges. Economically significant deviations of the relative spread 
from its target value could lead to arbitrage opportunities. We develop 
different arbitrage strategies to exploit these deviations and to demon
strate the potential profitability of mean-reverting arbitrage opportu
nities that exist between international exchanges. 

According to Foucault and Moinas (2019), empirical studies must 
consider the effect of trading speed on each component of bid-ask 
spreads separately. These components are adverse selection costs, in
ventory costs, and order processing costs. We consider adverse selection 
costs via non-execution risk. Inventory costs are minimized by applying 
restrictions on the quantities traded and by precluding overnight posi
tions. Order processing costs are considered via infrastructure and 
trading platform costs, and fees and rebates are also explicitly quanti
fied. We then consider overnight positions to evaluate their effects on 
our results. 

High-frequency trading (HFT) technologies provide speed and in
formation superiority (Biais, Foucault, & Moinas, 2015; Foucault & 
Moinas, 2019), but they introduce various costs such as high technology 
costs, trading fees and colocation fees (Andonov, Kräussl, & Rauh, 2021; 
Baron, Brogaard, Hagstromer, & Kirilenko, 2019, and Shkilko & Soko
lov, 2020). Potential important arbitrage profits or realized opportunity 
costs described in the literature are often based on strong (and some
times unrealistic) assumptions about the functioning of financial mar
kets. The most prevalent costs are latency costs, direct trading fees, 
rebates on trading fees, and trading platform, colocation and proprietary 
data feed costs. Moreover, the closing of positions is not always coherent 
with market reality. Mean-reversion risk, execution risk, and 
non-execution risk are additional cost components that may affect 
arbitrage profits. We propose a methodology to introduce all the costs 
and adjust our algorithm performance accordingly. 

Given that high-frequency trading is very fast and competitive, the risk 
that the market will move between the time of observing an arbitrage 
opportunity and the time of the exchange receiving orders sent by a 
trader’s algorithm (i.e., execution risk when using market orders, non- 
execution risk when using limit orders) is very high. Latency costs for 
the transmission and the processing of information may matter when ex
changes are distant, and assets quoted in different currencies are present. 
Moreover, because gains per trade for high-frequency traders are rela
tively small given their short holding periods, trading costs and rebates 
may be significant in the computation of net profits, especially when 
considering the enormous quantity of trades per day that HFTers perform. 
The colocation and the proprietary data feed costs are also significant at 
many exchanges, although they have decreased due to recent competition 
between exchanges. The fact that all these potential costs were overlooked 
may have generated an overestimation of the latency arbitrage profit
ability presented in the literature (Budish et al., 2015; Dewhurst et al., 
2019; Tivnan et al., 2019; Wah, 2016, among others). 

As Chen, Da, and Huang (2019) assert, the understanding of arbi
trage activity in the empirical research is still limited. To our knowledge, 
we are the first to quantify the importance and the economic value of 
providing liquidity in the context of arbitrage while considering the 
limit order book (LOB) queue positions and limit orders instead of 
market orders exclusively. Our approach is consistent with the revisited 
HFT market maker definition proposed by O’Hara (2015): “HFT market 
making differs from traditional market making in that it is often 
implemented across and within markets, making it akin to statistical 
arbitrage.”2 Our mean-reverting strategy is a form of statistical 
arbitrage. 

2 See also Rein, Rüschendorf, and Schmidt (2021) and Krauss (2017) on 
statistical arbitrage. 
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We test the model across three North American exchanges during the 
first six months of 2019: the New York Stock Exchange (NYSE) and the 
Chicago Mercantile Exchange (CME) in the United States, and the Tor
onto Stock Exchange (TSX) in Canada. We also discuss how the strategy 
is generalizable without additional restrictions to a much larger trading 
universe. As Gagnon and Karolyi (2010) note, over 3000 companies had 
two or more listings in 2008, highlighting the importance of interna
tional arbitrage in market equilibrium. Our results report a net annual 
profit of about C$8 million (US$6 million) for 2019 for this international 
arbitrage activity, with 36 profitable cross-listed stocks that can be 
managed by one trader in a large trading firm. The 36 profitable pairs of 
stocks were selected from 74 potential cross-listed stocks by using a 
dynamic decision tree model from machine learning. The gross annual 
profit was about C$19 million, and the main difference between the 
gross and the net annual profits is explained by latency in the trans
mission and processing of information, and the non-execution risk 
because we used limit orders. Trading fees were consequently not 
important, yet rebates were significant. We also show that international 
arbitrage opportunities with market orders are not profitable mainly due 
to transaction fees and the execution risk associated with latency. 

The rest of our paper is organized as follows. Section 2 presents the 
literature on arbitrage trading with high-frequency data. Emphasis is put 
on empirical studies that have estimated the profitability of this trading 
activity in an HFT environment. Section 3 outlines our strategy based on 
a mean-reverting model of arbitrage that can be executed with market 
orders or limit orders. We show the main differences between the two 
approaches with an emphasis on trading cost and rebates. Section 4 
presents the methodology used to study the effect of information latency 
in HFT and how we consider the multiple arbitrage costs and risks 
associated with high-frequency arbitrage. Section 5 details the data from 
TSX, NYSE and CME and how it is managed. It also documents the real 
latency costs, as well as the trading fees and rebates, the colocation and 
the proprietary data feed costs at the TSX, i.e., the trading location used 
in the application of this paper. Section 6 is dedicated to our empirical 
results and Section 7 discusses the performance of our arbitrage strategy. 
Section 8 concludes the paper. 

2. Related literature 

Two main issues are at the heart of research on HFT: profitability and 
fairness in trading. Both are interconnected and require appropriate 
research approaches that are fundamental to understanding the 
behavior of trading participants and making adequate policy recom
mendations when necessary. The structure of financial markets has been 
radically transformed by new technology over the last 25 years. HFT is 
executed by extremely fast computers, and software programming for 
trading is often strategic. 

Liquidity and price discovery now arise in a more complex way, often 
owing to high speed. These changes have affected the market micro
structure and the formation of capital in financial markets. They may 
also have reduced fairness between market participants, warranting new 
regulatory rules. However, conclusions on the private net benefits of 
high-frequency trading and its fairness are not always based on solid 
academic research, according to O’Hara (2015) and Chen et al. (2019). 
In fact, the debate about the high-frequency trading arms race is still 
open (Aquilina, Budish, & O’Neill, 2022; Foucault & Moinas, 2019). 

Academic interest in latency arbitrage is a relatively recent phe
nomenon, and available studies have investigated it from different an
gles. The idea that price dislocations exist in fragmented markets is not 
new. In fact, contributions from the 1990s highlighted the issue in the 
US, even when market fragmentation was not as prevalent as it is today 
(Blume & Goldstein, 1991; Hasbrouck, 1995; Lee, 1993). More recent 
studies on that matter include Shkilko, Van Ness, and Van Ness (2008) 
and Ding, Hanna, and Hendershott (2014). Soon after, other articles 
began mentioning the possibility for high-speed traders to exploit these 
market anomalies. Foucault and Biais (2014) and O’Hara (2015) both 

mention that HFTers can capitalize on latency arbitrage opportunities 
but they conclude that strong empirical evidence is still necessary. 

Hasbrouck and Saar (2013) are among the first to investigate trading 
activities within the millisecond environment. Menkveld (2014, 2016) 
analyzes the behavior of a HFTer who is a market maker. He shows that 
the market maker reduces price variations for the same stock on 
different exchanges by doing arbitrage activities across trading venues. 
Budish et al. (2015) document the latency arbitrage opportunities be
tween the CME and the NYSE from 2005 to 2011. They demonstrate that 
correlation between a pair of related assets breaks down as speed be
tween quotes increases. They show that these breakdowns roughly yield 
an average of US$75 million a year from a simple latency strategy of 
arbitraging the spread of one pair of highly correlated assets: the S&P 
500 exchange-traded fund (ticker SPY) traded in New York and the S&P 
500 E-mini futures contract (ticker ES) traded in Chicago. That pair of 
instruments had an average of 800 daily arbitrage opportunities during 
that period, and the authors notice that the arbitrage frequency tracks 
the overall volatility of the market, with a higher number of opportu
nities during the financial crisis in 2008, the Flash Crash on May 6, 2010, 
and the European crisis in summer 2011. 

Budish et al. (2015) also find that the median ES-SPY arbitrage op
portunities duration declines drastically from 97 milliseconds in 2005 to 
7 milliseconds in 2011, which is explained by the high-speed arms race 
led by HFT firms. The median profits per arbitrage opportunity remain 
relatively constant over time even though competition clearly reduced 
the duration of arbitrage opportunities. Budish et al. (2015) mention the 
latency issue, but in a rather incomplete fashion. Their approach does 
not consider latencies such as the real information transportation cost 
between the two exchanges nor the information treatment time of a 
round trip. They may have overestimated the real profits generated by 
their trading strategy and underestimated the execution risk since they 
used market orders in their application. In their study, around 85% of 
latency arbitrage opportunities had a duration of ≤10 milliseconds in 
2011. It is possible that this proportion has grown since then, given the 
technology developments since 2011. This emphasizes the importance 
of including new latency assumptions for our more recent period of 
analysis. Finally, as they mention, their strategy only considers bid-ask 
spread costs, whereas a richer estimate of arbitrage opportunities must 
also include, at least, exchange fees, and all latency costs. Their study 
inspired our paper, which seeks to generalize high-frequency arbitrage 
between pairs of correlated assets and to incorporate practical aspects 
that are important barriers to the profitability of statistical arbitrage. 

Wah (2016) examines latency arbitrage opportunities on a larger 
scale for cross-listed stocks of the S&P 500 in eleven US stock exchanges 
in 2014. The strategy uses crossed market prices (i.e., when the bid price 
in an exchange is higher than the ask price in another exchange for the 
same stock) to locate arbitrage opportunities documented in MIDAS 
trades and quotes data from the SEC.3 Considering one infinitely fast 
arbitrageur operating on these eleven markets, the author estimates that 
arbitrage opportunity profits were US$3.03 billion in 2014 for the S&P 
500 tickers alone. However, round trip information transportation and 
information treatment time are not considered in the profitability of the 
strategy, nor are the other trading costs (except for the bid-ask spread 
cost, due to the use of market orders). Wah (2016) influenced the pre
sent study by prompting us to reconsider the latency assumptions made 
in past papers. A better understanding of latency’s importance in high- 
frequency trading is needed, and this is a central aspect of our 
contribution. 

Tivnan et al. (2019) and Dewhurst et al. (2019) also examine latency 
arbitrage on cross-listed stocks in the US National Market System, but 
with MIDAS data from 2016. These two studies consider actionable 
dislocation segments in their computations, i.e., latency arbitrage 

3 MIDAS is the US Securities and Exchange Commission’s Market Information 
Data Analytics System. 
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opportunities that last longer than the two-way travel time for a fiber- 
optic cable between exchanges’ servers. At this trading speed, the 
transportation time assumption is especially important, even more so 
when exchanges are far apart, as in our application. Tivnan et al. (2019) 
and Dewhurst et al. (2019) have a more realistic approach when 
compared with Wah (2016) but they do not consider information 
treatment time nor trading costs. 

3. Methodology 

3.1. Arbitrage process 

We propose an innovative approach involving cross-listed stocks 
between two exchanges with differing currencies. In its simplest form, 
this approach is based on the identification of mean-reverting arbitrage 
opportunities from a basket of equities traded on their home exchange 
(noted as Exchange 1), their cross-listed peers at another exchange 
(noted as Exchange 2), and the currency-futures contract between the 
two currencies (noted as Currency 1 and Currency 2) for hedging pur
poses. This strategy also encompasses the simpler case where the two 
exchanges are using the same currency. That particular application does 
not require currency hedging, but still relies on the formulations pro
vided in this paper. We will also discuss how the proposed strategy can 

be generalized to more than two exchanges and two currencies, thus 
expanding the overall tradable universe. 

We first compute a synthetic instrument calculated as the ratio of the 
stock’s simultaneous prices at Exchange 2 and at Exchange 1 (the syn
thetic, henceforth) obtained from the combination of opposite positions 
of the same stock being traded on both exchanges. As for internationally 
cross-listed stocks, the stock prices share two underlying factors: the 
firm’s fundamental value and the exchange rate (Scherrer, 2018). Given 
that we use the same stock in the two exchanges, the idiosyncratic dif
ferences are minimal and should not affect the convergence in pairs 
trading, contrary to what is often observed with different stocks in the 
literature (Engelberg, Pengjie, & Jagannathan, 2009; Frazzini, Israel, & 
Moskowitz, 2018; Pontiff, 2006). 

Second, we hedge the synthetic instrument with an opposite position 
in the currency future. Defining the relative spread (SPRD) as equal to 
the ratio of the synthetic over the currency future, we must test for the 
SPRD stationarity, a sine qua non condition for mean-reverting strate
gies. At equilibrium, SPRD must converge to a value close to 1.0 for each 
pair in all trading days, with very few exceptions. Spot and futures prices 
should diverge slightly, only by the basis value, which accounts for 
maturity differences in the two instruments. 

As a distance criterion, we propose a nonparametric threshold rule 
adjusted for the strategies’ net costs in order to uncover economically 
relevant opportunities. This is an alternative to standard deviation 
multiples (Gatev et al., 2006; Stübinger & Bredthauer, 2017). The cho
sen distance approach is simple and transparent, and allows for large- 
scale empirical applications (Krauss, 2017). 

As market makers on neither exchange might be perfectly integrated, 
we have to consider the differences between the functioning of the mi
crostructures. These sources of divergences may influence limit order 
books (depth, granularity, imbalance, and bid-ask spread) and market
able orders (trade intensity and potential directional or bouncing 
behavior). 

Data from geographically distant exchanges may be asynchronous. 
We propose a synchronization procedure to replicate an arbitrageur’s 
information processing lag. We implement a two-regime shift incurred 
by transport delays of information to and from the exchange servers, and 
we correct the timestamps for the exchanges’ processing time and 
matching delays. The synchronization is effective at Exchange 1’s 
colocation server. 

Our strategy does not hold overnight positions.4 This prevents 
hedging overnight gap risk and tying up capital due to end-of-day 
margin requirements (Menkveld, 2014). This also avoids being forced 
to unwind positions due to margin squeezes (Brunnermeier & Pedersen, 
2008). We use the exchanges’ appropriate trading fees and rebates to 
evaluate net arbitrage performances, as well as colocation and trading 
platform expenses. Details on these costs are provided in Table 1. 

3.2. Relative spread 

Arbitrage opportunities are identified by constructing a relative 
spread (SPRD) equal to the ratio of the synthetic spread to the hedging 
instrument, the currency futures: 

γt ≡
S2,t

/
S1,t

rt
,

where γt is the mathematical notation for SPRD value at time t, S1,t and 
S2,t are the cross-listed stock values at Exchange 1 and Exchange 2, and rt 

Table 1 
Arbitrage costs.  

Definition Description Measurement In Deltix 

Information 
transportation 
time between 
exchanges 

Transportation time 
details: 
Toronto – Chicago: 
Fiber paths 
Toronto – New York: 
Microwave path 
(regular) 
Fiber path (extreme 
situations) 

See Table 2 

Adjusted raw 
dataset 
timestamp fed 
to Deltix 

Information 
treatment time 

Timespan required to 
receive and analyze 
incoming information 
from the exchanges, 
followed by the 
decision to trade or 
not. 

See Table 2 

Adjusted raw 
dataset 
timestamp fed 
to Deltix 

Exchange trading 
fees 

TSX member trading 
fees per sharea  

NYSE Type A stocks 
per shareb  

CME Globex C/US FX 
futures per contractc 

Removing: 
$0.0015 
Providing: 
($0.0011)  

Removing: 
$0.00275 
Providing: 
($0.00120)  

$100 k notional 
value: $0.32 
$10 k notional 
value (e-micro): 
0.04$ 

Applied to 
matched orders 

Colocation cost 
Colocation with 
exchange 
connectivity rates 

Half cabinet (21 
U, 3 kw 
maximum): 
$5250 monthly 
Initial set-up fee: 
$5250 one-time 

Included in 
monthly 
portfolios 
performance 

Proprietary data 
feed 

TSX & Venture level 1 
Distribution 
Trading use case 
license 

$4000 monthly 

Included in 
monthly 
portfolios 
performance  

a https://www.tsx.com/resource/en/1756/tsx-trading-fee-schedule-effe 
ctive-june-4-2018-en.pdf 

b https://www.nyse.com/markets/nyse/trading-info/fees 
c https://www.cmegroup.com/company/clearing-fees.html 

4 In our application, we also considered not closing open positions at market 
close. But, because of the fast mean-reversion time of the signals, and the fact 
that we stop opening new positions 15 min before market close (see Online 
appendix B for more practical considerations), overnight positions were very 
rare and small in volume. This modification did not significantly modify the 
strategy’s performance and is not further analyzed. 
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is the exchange rate computed from the currency hedging instrument’s 
value. We define simultaneous prices as prices from a unique time frame 
of observation that considers the information transportation and treat
ment time between trading venues, which is known as latency. 

We write: 

γShort
t =

SBid
2,t

/
SAsk

1,t

rAsk
t

and γLong
t =

SAsk
2,t

/
SBid

1,t

rBid
t 

as the time series of the short and long relative spreads, where the 
exponents Bid and Ask are the stock prices on the bid and ask side. We 
will denote 

{
Γi

t
}
, i ∈ {Short, Long} as the processes with observations 

{
γi

t
}
.

3.3. Market order arbitrage strategy 

A potential arbitrage opportunity arises when the synthetic is not in 
equilibrium with the observable exchange rate at time t, that is when: 

γi
t ∕= τi, i ∈ {Short, Long},

where τi is the mean equilibrium value expected from the mean- 
reverting processes. The arbitrage opportunity ends when the equilib
rium is restored at time t′ > t where t′ is defined as: 

t′ ≡ argmins>t
{

s | γi
s = τi}, i ∈ {Short,Long}.

The synthetic is potentially overvalued when: 

γLong
t =

SAsk
2,t

/
SBid

1,t

rBid
t

> τLong.

In that case, since 
{

ΓLong
t

}
is assumed to be mean-reverting, this 

mispricing can be exploited by shorting 1/τLong shares of Exchange 2 
stock, taking a long position of one share in Exchange 1 counterpart 
(which means that we short the synthetic), and taking a long position in 
the currency future of the same value as the Exchange 2 stock position in 
order to hedge our position, all transactions at time t. Then, we must 
revert the three positions at time t′ using market orders to lock the profit 
per Exchange 1 stock (Pt′) in Currency 1 at time t′: 

Pt′ =
1

τLongrAsk
t′

(
SBid

2,t − SAsk
2,t′

)
+
(

SBid
1,t′ − SAsk

1,t

)
+

SBid
2,t

τLongrAsk
t′

(
rBid

t′

rAsk
t

− 1
)

− cLong
t′ ,

where cLong
t′ measures the trading costs in Currency 1. Considering that 

the foreign currency market is known for its high liquidity (Campbell & 
Huang, 1991), it is reasonable to assume a narrow bid-ask spread in 
currency futures, i.e., rAsk

t ≈ rBid
t , and obtain the following 

approximation5 

Pt′ ≈
1

τLongrBid
t′

(
SBid

2,t − SAsk
2,t′

)
+
(

SBid
1,t′ − SAsk

1,t

)
+

SBid
2,t

τLongrBid
t′

(
rBid

t′

rAsk
t

− 1
)

− cLong
t′

(1) 

Supposing a perfect hedge, we only buy a fraction of the currency 
futures of nominal NFX (in Currency 2) that equals the amount invested 
in Exchange 2 stock at time t. So only a fraction of the constant futures’ 
trading price is paid on this cost-per-share basis. The trading costs paid 
for opening and closing our positions in Currency 1 at time t′, cLong

t′ , are 

approximated by: 

cLong
t′ ≈ 2c1 + 2

c2

τLongrBid
t

+ 2
cFX

NFX
⋅
SBid

2,t

τLong  

where c1 and c2 are the constant per-share trading fees for market orders 
on Exchange 1 (in Currency 1) and Exchange 2 (in Currency 2) respec
tively, and cFX is the per-contract trading costs (in Currency 1) with 
nominal NFX. 

When the three instruments return to equilibrium, the definition of t′ 
implies that: 

SAsk
2,t′

/
SBid

1,t′

rBid
t′

= τLong⟹
SAsk

2,t′

τLongrBid
t′

= SBid
1,t′ .

Using this last equality in (1), we get: 

Pt′ ≈
SBid

2,t

τLongrAsk
t

− SAsk
1,t − cLong

t′ ,

which means that to generate a positive profit at time t′, we at least need 
to have: 

Pt′ > 0 ⇔
SBid

2,t

τLongrAsk
t

− SAsk
1,t > cLong

t′  

and we can rewrite the last inequality as 

γLong
t

rBid
t SBid

1,t

SAsk
2,t

SBid
2,t

τLongrAsk
t

− SAsk
1,t > cLong

t′  

γLong
t > τLong rAsk

t SAsk
2,t

rBid
t SBid

2,t

SAsk
1,t + cLong

t′

SBid
1,t

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
>1,in usual market conditions

≡ κOver
t . (2) 

Eq. (2) gives us a dynamic nonparametric upper threshold 
κOver

t indicating when a short position in our relative spread (SPRD) is 
profitable because it is overvalued considering trading costs and bid-ask 
spreads when only market orders are used. This profitability holds when 
there is a return to equilibrium to close the positions. The same logic 
with opposite positions also holds when the synthetic is potentially 
undervalued, or when: 

γShort
t =

SBid
2,t

/
SAsk

1,t

rAsk
t

< τShort.

This results in a dynamic nonparametric lower threshold at which a 
long position in the synthetic is profitable considering trading costs and 
bid-ask spreads when market orders are used: 

γShort
t < τShort r

Bid
t SBid

2,t

rAsk
t SAsk

2,t

SBid
1,t − cShort

t′

SAsk
1,t

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
<1,in usual market conditions

≡ κUnder
t (3)  

where 

cShort
t′ ≈ 2c1 + 2

c2

τShortrBid
t

+ 2
cFX

NFX
⋅
SAsk

1,t

τShort.

Once again, the profitability of the strategy holds when there is a 
return to equilibrium to close the long position of SPRD. 

From eqs. (2) and (3), we have a set of two signals, γLong
t and γShort

t , 
where γLong

t > γShort
t ∀t, implying that τLong > τShort in usual market con

ditions (the best bid price is lower than the best ask price in the same 
LOB) and with their respective dynamic nonparametric thresholds, κOver

t 

and κUnder
t , where κOver

t > τLong > τShort > κUnder
t ∀t. 

The arbitrage strategy can be summarized as follows: 

5 For example, the average bid-ask spread was around 1.23 bps for the CAD/ 
USD futures, 0.82 bps for the EUR/USD futures, and 1.56 bps for the JYP/USD 
futures at CME in 2015–2016, which results in approximations precise up to 
10− 4. See CME Group (accessed February 22, 2023). The approximation is 
necessary to eliminate terms observed at t′ in the development of non- 
parametric thresholds. 
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• When γLong
t crosses κOver

t from below: short 1/τLong shares of S2,t, long 
S1,t and long the currency future for the same value as the one 
invested in Exchange 2 stock,  

• When γShort
t crosses κUnder

t from above: long 1/τShort shares S2,t, short 
S1,t and short the currency future for the same value as the one 
invested in Exchange 2 stock,  

• Close the positions when the equilibrium is restored at t′,  
• Repatriate the profits generated at Exchange 2 to Exchange 1 

whenever they cross NFX. 

Finally, we add the per-share fixed colocation cost and proprietary 
data feed cost to compute net profit on a given period. 

The strategy does not open a new position if the previous one has not 
been closed. Considering that the elapsed time between opening and 
closing a position, i.e., t′ − t, can be large, risk management procedures 
are put in place to minimize the effect of potentially long mean- 
reversion periods. See Appendix B for further details. 

3.4. Limit order arbitrage strategy 

We now switch to limit orders, as paying the bid-ask spread on the 
three instruments can be very costly. The strategy remains the same as 
with market orders. The main difference is in the profitability equation 
used to find entry thresholds. The relative spread is potentially over
valued when: 

γShort
t =

SBid
2,t

/
SAsk

1,t

rAsk
t

> τShort.

In that case, we short SPRD at time t and revert the three positions 
when the equilibrium of 

{
ΓShort

t
}

is restored at time t′. This results in a 
profit in Currency 1 of: 

Pt′ =
1

τShortrAsk
t′

(
SAsk

2,t − SBid
2,t′

)
+
(

SAsk
1,t′ − SBid

1,t

)
+

SAsk
2,t

τShortrAsk
t′

(
rAsk

t′

rBid
t

− 1
)

− c̃Short
t′ (4)

per Exchange 1 stock, where ̃cShort
t′ has the same formulation as cShort

t′ , but 
instead of c1 and c2 being the per-share trading costs for market orders, 
they are now per-share trading fees (or trading rebates) for using limit 
orders. 

Employing the same logic as previously used to obtain the 
nonparametric entry thresholds κOver

t and κUnder
t , we find that the dy

namic upper threshold indicating a profitable short position in our 
relative synthetic spread using limit orders is given by: 

γShort
t > τShort r

Bid
t SBid

2,t

rAsk
t SAsk

2,t

SBid
1,t + c̃Short

t′

SAsk
1,t

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
multiplicative term

≡ κ̃Over
t ,

(5)  

and the dynamic lower nonparametric threshold for long positions in 
our relative synthetic spread using limit orders is given by: 

γLong
t < τLongrAsk

t SAsk
2,t

rBid
t SBid

2,t

SAsk
1,t − c̃Long

t′

SBid
1,t

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
multiplicative term

≡ κ̃Under
t .

(6) 

Notice that the term multiplying the equilibrium level in eq. (2) is 
always greater than the multiplicative term in eq. (5). This means that 
arbitrage opportunities are available at a lower level of γShort

t with limit 
orders, and thus should be more frequent. This is true since limit orders 
greatly reduce the costs related to the strategy. The same observation 
can be made for the long position nonparametric thresholds of eqs. (3) 
and (6): limit orders push the entry thresholds to a more easily attain
able level compared with market orders. 

From eqs. (5) and (6), we have a set of two signals, γShort
t and γLong

t 

with their respective dynamic nonparametric thresholds, ̃κOver
t and ̃κUnder

t . 
The arbitrage strategy can be summarized as follows:  

• When γShort
t crosses ̃κOver

t from below: short 1/τShort shares of S2,t, long 
S1,t and long the currency future for the same value as the one 
invested in Exchange 2 stock,  

• When γLong
t crosses κ̃Under

t from above: long 1/τLong shares S2,t , short 
S1,t and short the currency future for the same value as the one 
invested in the Exchange 2 stock,  

• Close the positions when the equilibrium is restored at t′,  
• Repatriate the profits generated at the Exchange 2 to the Exchange 1 

whenever they cross NFX. 

3.5. Strategy at the portfolio level and aggregate hedging 

Consider a universe Ω of N cross-listed stocks on Exchange 1 and 
Exchange 2, ∣Ω∣ = 2N. We wish to execute the cross-listed stocks arbi
trage strategy defined in the previous sections, on every pair contained 
in that universe. This extension is applicable with both market orders 
and limit orders and is important for the application of the two previous 
strategies. 

Due to the development of our strategy, aggregating every position 
in a single portfolio offers a built-in hedging effect against movements of 
the exchange rate whenever positions are open in both 

{
ΓShort

t
}

and 
{

ΓLong
t

}
, because the aggregated position in Exchange 2’s market is 

reduced compared to the sum of the absolute position of every inde
pendent portfolio for each pair. The hedge can be optimized with the use 
of currency futures. This section explores that extension. 

Let us define v(n)1,t , v
(n)
2,t ∈ ℝ, n ∈ {1,…,N} the size of the position in the 

cross-listed stock n in both markets at time t. A position is long when the 
size is positive, a position is short when the size is negative, and the size 
is zero when no position is open in the asset. Let us also define the total 
non-repatriated profits, in their respective currency, generated at Ex
change 2 and the FX Exchange at time t respectively by G2,t ,GFX,t ∈ ℝ. 
Hence, the portfolio’s exposures in Currency 1 at Exchange 1, Exchange 
2 and FX Exchange at time t are respectively given by: 

V1,t =
∑N

n=1
v(n)1,t S(n)

1,t ,

V2,t =
∑N

n=1
v(n)2,t

S(n)
2,t

rt
+

G2,t

rt
,

VFX,t =
v*

FX,tNFX

rt
+GFX,t,

where v*
FX,t ∈ ℝ is the optimal position size in the currency futures at 

time t that we are trying to obtain. The total value of the portfolio in 
Currency 1, Vt, is given by: 

Vt = V1,t + V2,t + VFX,t.

By taking a position in the currency future that is the inverse of the 
position in Exchange 2, we obtain: 

VFX,t = − V2,t⟺ v*
FX,t = − rt

V2,t + GFX,t

NFX
, (7)  

which results in a neutral aggregated position in Exchange 2’s market: 
V2,t + VFX,t = 0. The portfolio’s value is now simply given by Vt =

V1,t⟹dVt
drt

=
dV1,t
drt

= 0. The last equality supposes the mathematical in
dependence of Exchange 1 stocks’ prices and the exchange rate. In the 
universe Ω, a portfolio invested in cross-listed stock pairs that follows 
the proposed strategy for every pair achieves an optimal hedge against 
currency risk at any time t when that portfolio has a neutral aggregated 
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position in Exchange 2’s currency. If the aggregated position in Ex
change 2 stocks is not neutral, we can take a position of v*

FX,t contracts in 
the currency future to get a perfect hedge. 

The hedging of the portfolio is done by rebalancing our position in 
the currency future to the optimal value, if necessary, whenever we open 
or close positions in pairs of cross-listed stocks, compared with the 
pairwise strategy that requires taking the inverse of the position taken at 
Exchange 2 at every arbitrage opportunity. 

3.6. Generalization of the strategy beyond two stock exchanges and a 
single exchange rate 

The proposed strategy and the formulated arbitrage signals can be 
applied to more general trading environments. Indeed, the arbitrage 
signals γ defined in this section can be computed for any cross-listed 
stock pair between any two stock exchanges and any currency for 
both stocks (shared or not) without any modification. The global trad
able universe for which the proposed strategy can be applied to is thus 
quite large, as discussed in the introduction. We now present different 
additional trading environments where the strategy can be applied. 

The first additional trading environment is when there are two stock 
exchanges with a single currency for the cross-listed stock’s pair. This 
can be done by setting rt = rBid

t = rAsk
t = 1, ∀t and ignoring the currency 

hedging instrument. The signals are thus solely based on the equilibrium 
between the two microstructures, which corresponds to the model of 
Budish et al. (2015): whenever a sudden jump occurs in one of the two 
stocks, the correlation between them breaks down and an arbitrage 
opportunity potentially opens up. In our case, the arbitrage signals 
consider both the closing conditions and the trading costs associated 
with sending orders to seize the arbitrage opportunity. 

The second trading environment is when there are more than two 
stock exchanges and a single currency for the cross-listed stocks. Once 
again, this can be done by using the same constraint on rt and ignoring 
currency hedging as previously discussed. But a second constraint needs 
to be put in place to select which arbitrage opportunity to capture 
whenever multiple opportunities occur at the same time for the same 
stock and exchange. This is necessary since each stock can be part of 
more than two exchanges, so multiple cross-listed pairs can contain the 
given stock. In that case, only the cross-listed pair with signal γ that is 
the furthest from equilibrium τ is executed (i.e. the pair with the 
maximum expected profitability). This relates closely to the model of 
Wah (2016), but the author did not consider latency, inventory man
agement, nor any trading cost. 

The final case is when there is more than two stock exchanges and 
multiple exchange rates hosted by any number of exchanges. The 
trading signals γ can be computed for every combination of cross-listed 
stocks pair and their applicable exchange rate. As in the previous case, 
multiple arbitrage opportunities can happen at the same time for the 
same stock at a single exchange. Again, only the pair with signal γ that is 
the furthest for its equilibrium τ is executed for that particular stock. To 
the best of our knowledge, this has not been studied in the literature yet. 

Overall, by adding simple constraints to the proposed strategy, either 
on the observable exchange rate rt , currency hedging, or on the selection 
of arbitrage opportunities computed by our signals γ, the strategy can be 
applied to any stock pair. 

4. Latencies, arbitrage costs, and arbitrage risks 

4.1. Latencies and arbitrage costs 

A factor of interest in this contribution is latency. In trading terms, 
latency refers to the time it takes for an agent to interact with the 
market. We closely follow Hasbrouck and Saar’s (2013) measure of la
tency based on three components: the time it takes for a trader to learn 
about an event, generate a response, and have the exchange act on that 

response. (See also Foucault & Moinas, 2019). We split that definition 
into two separate quantities so that we can have more granularity on the 
impact of latency on the high-frequency trading strategies. 

The first quantity of importance is the latency of a message from any 
exchange to Exchange 1, which includes the one-way transportation 
time of the information to Exchange 1, and the information treatment 
time needed by the agent’s servers collocated at Exchange 1 and having 
access to a proprietary data feed. The second quantity of importance is 
the latency of a message from Exchange 1 to another exchange, which is 
comprised of the one-way transportation time of information from Ex
change 1 to the receiving exchange, and the matching engine delay of 
that last exchange. 

Information treatment time refers to the timespan required to receive 
and analyze incoming information from the exchanges, followed by the 
decision to trade or not. Exchange server procedure considers informa
tion reception at the exchange gates, limit order book (LOB) positioning 
or matching of an incoming limit order (with the LOB) and issuing 
traders’ confirmation to the server gates. Round-trip latency measures 
the total latency delay for a message between two exchanges. 

We apply a two-regime model associated with regular and extreme 
market conditions based on quote and trade message intensity. The 
regime shifts, from the regular state to the extreme one, are often due to 
bursts in the events stream, phenomena well documented in the litera
ture (Friederich & Payne, 2015; Menkveld, 2016; Egginton, Ness, & 
Ness, 2016; Dixon, Polson, & Sokolov, 2019; Shkilko & Sokolov, 2020). 
To help us recreate this behavior, we use a latency regime variable that 
varies depending on the number of messages a certain exchange 
received in the last millisecond on a per-asset basis. This quantity is a 
good proxy of an exchange’s server traffic, which has a positive rela
tionship with computational delays occurring during the information 
treatment time and the matching engine time components of latency. 
The regular regime generates a minimal, baseline, value of the latency 
that exists between two exchanges and a bonus on that minimal latency 
is added for the extreme regime. 

The latency regime variable for a given asset remains in its regular 
state up to a certain static threshold for the number of messages in a 
single millisecond for that asset, which we set as the 95th percentile of 
its empirical distribution. 

Let us define qi
95% as the 95th percentile of the empirical distribution 

of the number of messages in one millisecond for asset i and define qi
j the 

number of messages during the millisecond preceding and ending at 
message j ∈

[
1,Ni] where Ni is the total number of messages for asset i 

during the full period. Let us also define Li
j ∈ {regular, extreme} the la

tency regime of asset i at message j. Then, its value is computed as fol
lows: 

Li
j =

⎧
⎨

⎩

regular if qi
j < qi

95%

extreme if qi
j ≥ qi

95%
∀i, j.

By adding the corresponding latency to the original exchange time
stamp of every message, we can approximately synchronize the data 
feeds of geographically distant exchanges into a single point of obser
vation (e.g., Exchange 1) as they would be in practice because of the 
natural and technological limits of information propagation. Our 
methodology emulates that relativistic effect so that what is observed by 
the trading algorithm at any point is a past state of markets. The same 
idea applies when the algorithm sends an order to a given exchange. We 
add the corresponding latency so that the agent does not interact 
immediately with that exchange. This makes it possible to study the 
influence of latency on the performance of high-frequency trading 
strategies. 

C. Poutré et al.                                                                                                                                                                                                                                  



International Review of Financial Analysis 89 (2023) 102777

8

4.2. Arbitrage risks 

4.2.1. Execution risk 
The choice between limit and market orders relies, in part, on the 

difference between non-execution risk and execution risk (Brolley, 
2020; Dugast, 2018; Kozhan & Tham, 2012; Liu, 2009; Mavroudis, 
2019). To empirically solve this trade-off, we first evaluated our algo
rithm’s performance using market orders exclusively. As we will see, 
using only market orders leads to a negative economic value with our 
data in the sense that the cost of immediacy (conceding the bid-ask 
spread) cannot be borne by the arbitrageur in most trades. This high 
cost also results in a very low number of potential arbitrage opportu
nities, since the divergence of SPRD is rarely large enough to compen
sate it. This means that traders must always control for market 
conditions (Foucault & Moinas, 2019). We then constrained our algo
rithm to limit orders, except for the liquidation of positions to avoid 
overnight exposures. We also use marketable limit orders to offset 
unexecuted legs. There remain two additional risks. 

4.2.2. Non-execution risk 
We evaluate non-execution risk costs by managing the LOB queuing 

priorities. We mitigate the risk of non-execution by dynamically keeping 
our limit orders to the LOB’s level one. This is implemented conditional 
on the persistence of an expected profitable arbitrage. Otherwise, we 
liquidate positions, if any, by issuing marketable limit orders (Dahlström 
& Nordén, 2018). 

4.2.3. Mean-reversion risk 
Mean-reversion risk arises after initial positions are taken. It mate

rializes when the circuit breaker timer is triggered. All arbitrage legs are 
then liquidated via marketable limit orders. As we will see, this risk is 

very low in our data since the processes 
{

ΓShort
t

}
and 

{
ΓLong

t

}
are sta

tionary for almost all stocks and trading days. 

5. Data, data synchronization, trading and quoting emulator, 
empirical latencies, and other trading costs 

5.1. Data 

We use LOB level one data and trade data that we obtained from: the 
TAQ NYSE OpenBook and the TAQ NYSE Trades historical data time
stamped to the microsecond, the CME Market Depth FIX Canadian 
Dollar Futures historical data timestamped to the nanosecond, and 
Trades and Quotes Daily historical data from TMX Group timestamped 
to the nanosecond. All the data was timestamped at the respective ex
changes, and span from January 7, 2019, to June 28, 2019, inclusively. 
We only selected dates where the three exchanges were open, meaning 
that we eliminated every holiday from our sample.6 The timestamps 
were truncated and rounded to the nearest millisecond above so that 
potential microscopic errors in the timestamps do not affect the results. 

Overall, there are 120 trading days in our data set. We have access to 
74 pairs of cross-listed stocks that were listed on both the TSX and the 
NYSE during at least two weeks of that period. Pairs where one of the 
stocks got delisted from an exchange at any point were kept in the 
sample, but the strategy was only applied to periods where both stocks 
of the pair were listed and active. All cross-listed S&P/TSX 60 stocks are 
present in our sample during the six months. Table A2 of Online ap
pendix A describes every available pair and Table A3 includes their 
aggregated statistics during the period of analysis. 

The time series of daily number of trades and quotes in the two 

exchanges for some pairs of stocks of interest are presented in Fig. D1 of 
Online appendix D. The four rows of graphs in Fig. D1 present the trades 
and quotes data of some of the most often selected stocks for arbitrage. 
We do not observe any pattern between the number of trades and the 
number of quotes. The main differences seem to be related to the type of 
industry. 

We use the quarterly CAD/USD futures listed on CME: 6CH9 expiring 
March 19, 2019; 6CM9 expiring June 18, 2019; and 6CU9 expiring 
September 17, 2019. We do not use monthly futures because they have a 
smaller open interest. A continuous futures contract is created by 
concatenating the three futures’ data and by adjusting the LOB level one 
and trade prices of the consecutive contracts so that no jumps are arti
ficially created. The concatenation dates are determined based on the 
daily transaction volume of consecutive futures. That is, whenever the 
futures contract with the furthest expiration date generates a signifi
cantly higher daily transaction volume than its predecessor and remains 
more actively traded, we switch to those futures’ trades and quotes for 
the continuous futures that we use in the strategy. To have a greater 
hedge, we employ the Micro C/US futures contract with a nominal of C 
$10,000, which we approximate by dividing the prices of our continuous 
futures by 10, because of its nominal of C$100,000. 

5.2. Data synchronization 

The strategy is launched each week, from Monday to Friday, starting 
at 9:30 a.m. and ending at 4:00 p.m. Eastern Time when the three ex
changes are all open to continuous trading. Both the TSX and NYSE are 
in the Eastern Time zone, but the CME is in the Central Time zone, one 
hour behind. Hence, we add an hour to the time stamps of the CME data 
to synchronize the three exchanges’ clocks. 

5.3. Trading and quoting emulator 

Our methodology and the different trading strategies are imple
mented in Deltix’s QuantOffice, a trading software suite used by mul
tiple traders, which brings us closer to real trading practice. The Deltix 
trading suite allows us to replay the synchronized events of the three 
stock markets (level one LOB and trades) as they were obtained in 
streaming by traders. By handling these events and following our orders 
position in the queues, we can determine as realistically as possible the 
real-time performance that would have been obtained with our strate
gies. Note that a single ex-ante set of parameters was tested. This 
implementation makes it possible to consider trading fees and rebates, 
latency costs and other trading risks and costs presented above. It con
firms the order status (creation, cancelation, or execution) just as it 
would have happened in streaming trading considering market frictions 
and ever-changing market states. Standard reports, such as a trade 
report and a performance report, are generated at the end of a strategy’s 
execution and these are used to compute our results. 

Moreover, we can manage the individual and aggregated positions, 
and calculate the respective Profit and Loss Reports (PnL) altogether 
with performance statistics. These PnLs represent the economic value of 
our arbitrage opportunities. Using our performance as a benchmark, we 
can evaluate the economic impact of latency risk by varying the latency 
parameters. The general rules of the trading and quoting emulator on 
LOB level one data and information on how executions and non- 
executions occur are presented in Online appendix F. 

5.4. Empirical latencies and other costs 

Table 1 documents the 2019 latency costs, trading costs, rebates, 
colocation costs, and proprietary data feed (including a trading plat
form) costs used in this study. Orders and positions are managed at 
TSX’s colocation premises in Toronto (TSX, 2020). Information comes 
from the TSX, the NYSE, and the CME. We address asynchronicities by 
adjusting the TSX timestamps based on round-trip transportation time, 

6 TSX: February 18th: Family Day; April 19th: Good Friday; May 20th: Pa
triot’s Day. NYSE and CME: January 21st: Martin Luther King Jr. Day; February 
18th: President’s Day; April 19th: Good Friday; May 27th: Memorial Day. 
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arbitrageur information processing delays, and exchanges matching 
engine delays presented in Table 2. Table 1 also documents the positive 
trading fees for the removers of liquidity and rebates for the providers. 
Colocation costs in Toronto are considered in our monthly portfolio 
performance estimations, as well as proprietary data feeds which enable 
some trading firms to receive updates from the exchange faster than 
other traders who do not pay for this service. 

For both latency regimes, the latency to and from TSX is set as the 
sum of the intervals’ center of each of their components found in 
Table 2, for the respective market condition. We round latencies up to 
the closest integer. 

Table 3 details the empirical latencies used. Following the method
ology introduced in Section 4, our estimation of the empirical distri
bution of messages per millisecond used a random sample of six weeks, 
where each sampled week came from a different month contained in our 
data. 

6. Empirical results 

We now present the statistical results of our study in three steps. We 
first compute the performance of the trading strategy of Budish et al. 
(2015) applied to our data.7 The goal of this exercise is to isolate the 
importance of considering latencies, execution risk, and trading costs 
when evaluating the benefits of HFT arbitrage. It also serves as a 
benchmark to compare our trading strategies and test how previously 
proposed arbitrage strategies are profitable with our more recent data. 

We then present the results from our strategies. We show that arbi
trage with market orders is not profitable, while arbitrage with limit 
orders provides positive profits when latencies, rebates, exchange fees, 
and non-execution risk are considered. Other conclusions are discussed. 

6.1. Budish et al. (2015) contribution 

This contribution examines arbitrage opportunities between the two 
largest financial instruments that track the S&P 500 index, the SPDR 
S&P 500 exchange-traded fund (ticker SPY) and the S&P 500 E-mini 
futures contract (ticker ES), using millisecond-level direct feed data from 

different stock exchanges and the Chicago Mercantile Exchange. The 
application is consequently very different from arbitrage trading of the 
same stock in two different exchanges but some comparisons with our 
research are important given that this article suggests strong modifica
tions to the functioning of continuous HFT. The authors first demon
strate that the high correlation between the two securities observed from 
the bid-ask midpoints breaks down at very high-frequency time. This 
correlation breakdown creates technical arbitrage opportunities esti
mated at approximately US$75 million of gross profit per year for the 
two securities alone on all markets where the SPY is traded (not only at 
the NYSE). Their period of analysis includes many high volatility periods 
such as the 2007–2009 financial crisis. For a more regular year like 
2005, the total gross profit is US$35 million.8 Verifying from Bloomberg 
that the share of the NYSE for this market is 25%, the annual gross profit 
for 2005 is US$8.75 million for the NYSE alone. These numbers repre
sent gross profits because trading fees are not considered, nor are la
tencies and exchange fees. Only bid-ask spread costs are computed. 

The above numbers come from the following market environment: 
there is no arbitrageur entry in the market over the period considered 
and trading firm observes variations in the signal (perfectly correlated 
with the fundamental value of the stock) on the stock price with zero- 
time delay. There is zero latency in sending orders to the exchange 
and receiving updates from the exchange. This is a pure continuous 
trading environment with no asymmetric information and inventory 
costs where open positions at an exchange can be immediately closed at 
another exchange with a different asset. 

The strategy of Budish et al. (2015) is first implemented with their 
theoretical settings and minor modifications to adapt it to our data. In 
that sense, prices at the NYSE are continuously transferred to CAD 
following the CAD/USD futures observed at the CME. In addition, we 
used two hypotheses employed in their model: there is an absence of 
latency and open positions at an exchange can be immediately closed at 
another exchange, resulting in a trade. Table 4 Panel A presents the 
results obtained with our data and using the arbitrage strategy presented 
in Online appendix A.2 of their article with market orders only. The 
second column of Table 4 Panel A presents the results that are obtained 
following as closely as possible their theoretical framework. In the next 
two columns, latency is considered. 

We observe, in column 2 of Panel A, that gross profit is limited to C 
$1.4 million for six months of continuous trading or about C$2.8 million 
for a year, which is below the C$10.60 million (US$8.75) for the low 
volatility year of 2005 with their data. Many factors can explain the 
difference. The main difference is mostly related to the average daily 
trade volume of the assets. They document 800 daily arbitrage oppor
tunities in their data, while in our data we have 200 daily arbitrage 
opportunities with their strategy for the 74 stocks. 

We also observe that introducing trading fees does not significantly 
affect the profitability in the second column, but some opportunities do 

Table 2 
Latencies.a   

Transportation One Way to TSX Arbitrageur Transportation One Way from TSX Matching Engine Total 

Market condition Exchanges from–to Transportation time Information 
treatment 

Exchanges from–to Transportation time Exchange server Round-trip latency 

Regular TSX–TSX + 5 μs + 10–70 μs TSX–TSX + 5 μs + 100–300 μs 120–380 μs  
NYSE–TSX + 2.4 ms + 10–70 μs TSX–NYSE + 2.4 ms + 100–300 μs 4.91–5.17 ms  
CME–TSX + 5 ms + 10–70 μs TSX–CME + 5 ms + 1–5 ms 11.01–15.07 ms 

Extreme TSX–TSX + 5–10 μs + 200–500 μs TSX–TSX + 5–10 μs + 5–10 ms 5.21–10.52 ms  
NYSE–TSX + 4.8–9.6 ms + 200–500 μs TSX–NYSE + 4.8–9.6 ms + 5–10 ms 14.80–29.7 ms  
CME–TSX + 5–10 ms + 200–500 μs TSX–CME + 5–10 ms + 50–100 ms 60.20–120.50 ms  

a Latencies are obtained following discussions with a major Canadian financial institution trading actively in Canada and in the United-States. ms: millisecond; μs: 
microseconds. 

Table 3 
Latencies used when testing the strategies, depending on the latency regime, the 
origin of the message and the exchange where the message is sent.  

Latency regime Exchanges from–to Latency Exchanges from–to Latency 

Regular 
TSX–TSX 1 ms TSX–TSX 1 ms 

NYSE–TSX 3 ms TSX–NYSE 3 ms 
CME–TSX 6 ms TSX–CME 8 ms 

Extreme 
TSX–TSX 1 ms TSX–TSX 8 ms 

NYSE–TSX 8 ms TSX–NYSE 15 ms 
CME–TSX 8 ms TSX–CME 83 ms  

7 See Online appendix E for the analysis of the results obtained with Wah 
(2016) strategy. 

8 The CBOE Volatility Index (VIX) of the average closing price was equal to 
12.81 in 2005, 32.69 in 2008, and 15.39 in 2019. 
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Table 4 
Practical Budish et al. (2015) model with our 2019 data.  

Panel A 

1 2 3 4 

Model Budish Original Budish Original - With 1x Latency Budish Original - With 3x Latency 

Latency multiplier 0 1 3 
Pair selection No No No 
Gross profit $1,421,685.23 $998,328.25 $1,116,673.07 
Loss $0.00 -$11,492.18 -$18,696.78 
Trading fees -$75,167.39 -$57,973.82 -$67,232.10 
Trading rebates $0.00 $0.00 $0.00 
Total net profit $1,346,517.84 $928,862.25 $1,030,744.19 
Mean daily net profit $11,811.56 $8147.91 $9041.62 
Median daily net profit $1968.76 $1189.76 $1219.35 
Mean daily net profit per pair, per day $110.95 $76.54 $84.93 
p-value Kolmogorov-Smirnov testa  1.00 0.65 

1st most profitable day (date - profit) 2019/01/28 
$184,196.22 

2019/01/28 
$121,108.28 

2019/01/28 
$127,578.22 

5th most profitable day (date - profit) 2019/01/30 
$66,060.79 

2019/01/24 
$47,904.13 

2019/01/24 
$50,816.97 

1st most unprofitable day (date - profit) 
2019/06/24 

-$161.55 
2019/06/24 

-$450.32 
2019/06/03 
-$2222.67 

5th most unprofitable day (date - profit) 
2019/05/31 

-$77.85 
2019/06/27 

-$340.18 
2019/06/24 

-$681.72 
Average time in tradeb 00:00.0 00:00.0 00:00.0 
# net profitable trades 31,762 23,313 29,226 
# net unprofitable trades 1176 1336 1817 
# trades 32,938 24,649 31,043 
% net profitable trades 96.43% 94.58% 94.15% 
Average volume per trade 345.63 352.77 326.16 
Average net profit per trade $40.88 $37.68 $33.20 
Average profit per net profitable trades $42.75 $40.75 $36.32 
Average profit per net unprofitable trades -$7.97 -$15.91 -$16.99   

Panel B 

1 2 3 4 

Model Budish Practical Budish Practical - With 1x Latency Budish Practical- With 3x Latency 

Latency multiplier 0 1 3 
Pair selection No No No 
Gross profit $779,282.29 $441,466.25 $666,886.91 
Loss -$789,845.78 -$456,295.76 -$695,876.53 
Trading fees -$11,686.80 -$6957.61 -$11,089.11 
Trading rebates $0.00 $0.00 $0.00 
Total net profit -$22,250.29 -$21,787.12 -$40,078.73 
Mean daily net profit -$195.18 -$191.12 -$351.57 
Median daily net profit -$5.11 -$44.00 -$49.72 
Mean daily net profit per pair, per day -$1.83 -$1.80 -$3.30 
p-value Kolmogorov-Smirnov testa  0.18 0.80 
1st most profitable day 

(date - profit) 
2019/06/27 

$2473.72 
2019/06/28 

$2043.65 
2019/06/28 

$2158.73 
5th most profitable day 

(date - profit) 
2019/06/20 

$1219.50 
2019/06/21 

$292.03 
2019/06/20 

$233.39 
1st most unprofitable day 

(date - profit) 
2019/05/15 
-$9698.68 

2019/05/15 
-$5221.17 

2019/06/03 
-$7570.36 

5th most unprofitable day 
(date - profit) 

2019/06/03 
-$1718.65 

2019/05/21 
-$1294.97 

2019/06/05 
-$2132.83 

Average time in tradeb 126.06:12:08 127.12:57:37 127.14:15:11 
# net profitable trades 974 702 961 
# net unprofitable trades 958 708 987 
# trades 1932 1410 1948 
% net profitable trades 50.41% 49.79% 49.33% 
Average volume per trade 585.56 477.63 551.3 
Average net profit per trade -$11.52 -$15.45 -$20.57 
Average profit per net profitable trades $796.17 $625.62 $690.11 
Average profit per net unprofitable trades -$832.69 -$651.09 -$712.53 
Total Short Inventory Remaining @ Close (CAD) $354,467,602.46 $276,237,299.21 $309,494,680.19 
Total Long Inventory Remaining @ Close (CAD) $271,097,081.28 $211,074,656.88 $236,477,971.72 

aH0: F(x) ≤ G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits without and with latency, respectively: 0.18 for no latency vs 1x latency and 0.8 for 1x latency vs 
3x latency. 
bD.HH: MM: SS. U: days.hours: minutes: seconds: fractions of a second. 

C. Poutré et al.                                                                                                                                                                                                                                  



International Review of Financial Analysis 89 (2023) 102777

11

not cover the trading costs. The main difference in profitability is ob
tained when we introduce latency. This effect is observed in the next two 
columns where the total net profitability drops by ≥30% when latency is 
introduced. The daily net profitability is statistically greater when la
tency is ignored (see p-values). This is mainly explained by the fact that 
true cross-markets occasions observed at a single geographical point last 
a shorter amount of time and some are now nonexistent compared to a 
latency-free environment, thus decreasing the number of trades by 
around 25%. Captured arbitrage opportunities are also less profitable. 
Comparing the net profitability of column 2 with that in column 3, we 
can observe that profits were indeed inflated in column 2 because of a 
simplified market environment. 

Another hypothesis was made in the strategy of Budish et al. (2015): 
Exact opposite positions in different exchanges count as a trade and 
result in a null inventory in both accounts. The next panel of Table 4 
(Panel B) does not use this simplified environment, meaning that posi
tions can only be closed with an opposite position at the same exchange 
with the same stock. The second column does not include latency. The 
next two columns do. 

We observe in Panel B that the strategy does not generate any net 
profit when we abandon the hypothesis of a trade occurring when exact 
opposite positions are taken in two different exchanges. The net prof
itability is even more statistically reduced when latency is considered. 
Column 3 of Panel B would be the closest results obtained by an HFT 
firm using the strategy during our data period. Another salient point is 
the large inventory that needs to be managed. This is attributable to the 
fact that price discovery primarily occurs on the Canadian exchange 
(Chouinard & D’Souza, 2003; Eun & Sabherwal, 2003). Coupled with a 
positive directional market like in our period, the jumps in prices 
happened most of the times on the bid side of the book for the Canadian 

stock first.9 This resulted in taking the same short TSX positions and long 
NYSE positions repeatedly, thus rarely closing previous positions to 
generate a trade. This shows the importance of inventory management 
and currency hedging in an international arbitrage context. Overall, by 
not considering practical trading aspects such as latency or real market 
functioning, Budish et al. (2015) inflated latency arbitrage profitability. 

6.2. Our contribution with market orders 

Using the Augmented Dickey-Fuller test for stationarity, we obtain 

that both 
{

γShort
t

}T
t=1 and 

{
γLong

t

}T

t=1 
time series from January 7, 2019 to 

June 28, 2019 are stationary for almost all stocks in all trading days 
where the three exchanges are open at the same time, at a p-value of 1%, 
with continuous observation time. Details are presented in Table A.1 of 
Online appendix A. Given that the SPRD time series are stationary and 
exhibit strong mean-reversion, we define τi, i ∈ {Short, Long} as the 
equilibrium level of the mean-reverting processes 

{
Γi

t
}
. 

The main results from our strategy when using market orders are 
presented in Table 5. This strategy is not profitable because it is too 
expensive to obtain enough liquidity and orders are subject to execution 
risk (loss row). Trading fees affect the profitability of this strategy 
because the arbitrageur consumes liquidity with market orders. Thus, 
following our theoretical strategy with market orders is hazardous, 
especially when latency is considered. Indeed, we also observe, in col
umns three and four, that increasing latency reduces the net profitability 
even more and this effect is largely significant in both columns 

Table 5 
Results with market orders.  

1 
Model 

2 
Market orders 

3 
Market orders 1 

4 
Market orders 2 

Latency multiplier 0 1 3 
Pair selection No No No 
Gross profit $38,660.35 $41,508.69 $41,620.24 
Loss -$58,361.15 -$96,751.29 -$128,442.17 
Trading fees -$17,890.26 -$22,121.43 -$31,985.04 
Trading rebates $0.00 $0.00 $0.00 
Total net profit -$37,591.06 -$77,364.03 -$118,806.97 
Mean daily net profit -$329.75 -$678.63 -$1042.17 
Median daily net profit -$18,24 -$207.53 -$595.92 
Mean daily net profit per pair, per day -$4.46 -$9.17 -$14.08 
p-value Kolmogorov-Smirnov testa  1.00 1.00 

1st most profitable day (date - profit) 
2019/03/06 

$354.30 
2019/05/31 

$21.63 
2019/05/31 

$51.54 

5th most profitable day (date - profit) 2019/06/21 
$196.92 

2019/06/17 
-$2.54 

2019/04/29 
-$94.49 

1st most unprofitable day (date - profit) 2019/01/30 
-$4053.94 

2019/01/16 
-$4682.15 

2019/05/16 
-$4692.79 

5th most unprofitable day (date - profit) 
2019/03/26 
-$2095.20 

2019/01/29 
-$3504.39 

2019/01/28 
-$3785.02 

Average time in trade (excl. futures contracts)b 00:06:34.41 00:06:37.83 00:04:42.15 
Average time in trade 

(incl. futures contracts)b 02:12:28.60 00:59:30.36 00:57:59.53 

# net profitable trades 1284 1092 1590 
# net unprofitable trades 2130 2927 4814 
# trades 3414 4019 6404 
% net profitable trades 37,61% 27.17% 24.83% 
Average volume per trade 1529.78 1592.15 1449.57 
Average net profit per trade -$11.01 -$19.25 -$18.55 
Average profit per net profitable trades $26.46 $32.92 $21.99 
Average profit per net unprofitable trades -$33.60 -$38.71 -$31.94  

a H0: F(x) ≤ G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits for sample 1 and sample 2, respectively: p-value of 1.00 for no latency vs 1x latency and 1.00 
for 1x latency vs 3x latency. 

b HH: MM: SS. U: hours: minutes: seconds: fractions of a second. 

9 The only exception is TRQ which dropped by 25% in our period exhibiting 
an opposite trading behavior. 
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(significant p-values). Finally, the utilization of future contracts in
creases the average trading time. Our small number of arbitrage op
portunities, explained by the use of market orders, implies that intraday 
values of our realized profits do not vary sufficiently to modify our po
sitions in the futures contracts that hedge these quantities. This results in 
positions in the futures that are only closed hours, or even days, after 
being opened. 

6.3. Our contribution with limit orders 

The most interesting results from our contributions are from limit 
orders where arbitrageurs mainly provide liquidity to the markets. In 
Table 6, we observe a gross profit of C$ 9.6 million with selected pairs of 
cross-listed stocks obtained with supervised machine learning from our 
universe of 74 possible pairs (see Online appendix C), and for six months 
of trading.10 Adding latency in the next columns affects the profitability 
of our strategy by reducing the net profits by about 25%. However, the 
percentage of net profitable trades is rather constant between the three 
columns. The profitability (unprofitability) between days of trading is 
also quite stable and using futures contracts for hedging the exchange 
risk does not increase the average time of trade very much because of the 
constant movement of our realized profits that are repatriated at every C 
$10,000 of gain or loss. The average volume per trade is quite low and 
stable and is similar to that in Budish et al. (2015), as can be seen in the 
second column of Table 4. We could have used larger volumes with 
higher probability of non-execution risk. We chose to be conservative to 
minimize the impact on the price discovery process. The annual colo
cation cost and proprietary data feed total cost in Toronto is C$116,250. 

Consequently, international arbitrage of cross-listed stock is profitable 
with our proposed limit order strategy even when all latencies, costs and 
risks are considered. 

Therefore, the main question is the following: does a net annual 
profit of about C$8 million (US$6 million, column 3 Table 6, with real 
latencies and all costs) seem reasonable for this international arbitrage 
activity that can be managed by one trader in a large trading firm? Note 
that Budish et al.’s (2015) original model with market orders generated 
a gross annual profit of US$8.75 million from the NYSE in 2005 (C 
$10.60), in a year where the VIX was comparable to that of 2019. But 
their model made only about C$2 million gross annual profits with our 
data in 2019 because the market activity is much less intense with our 
selected cross-listed stocks than with their two very liquid financial as
sets. Moreover, as they claimed, their trading model was quite simple 
and they predicted that a more sophisticated one should generate higher 
profits, which we demonstrated here in an international context with 
limit orders. 

To eliminate the probability of back test overfitting (Bailey, Borwein, 
Lopez de Prado, & Zhu, 2014), we only tested one set of parameters for 
our strategies, which we deemed reasonable beforehand: β = 0.05 (See 
Online appendix B). It is applied to every pair and every day of our data. 
Of course, the probability that this set of parameters is the optimal one 
for any pair and any day is close to zero, and if we had back tested the 
strategies multiple times, we could have selected the set that generated 
the greatest profitability and performance metrics of our portfolio. 
However, by using a single set of parameters fixed before any testing, 
and reporting the results generated by it, we ensure that our findings are 
generalizable. Hence, the metrics that were shown in this section could 
be improved and our results thus offer a conservative, but reasonable, 
measure of the profitability of international arbitrage of cross-listed 
stocks between Canada and the US. 

Table 6 
Results with limit orders.  

1 
Model 

2 
Limit orders 

3 
Limit orders 1 

4 
Limit orders 2 

Latency multiplier 0 1 3 
Pair selection Yes Yes Yes 
Gross profit $9,608,178.87 $8,641,338.63 $8,363,528.28 
Loss -$4,757,168.60 -$5,041,665.26 -$5,168,902.58 
Trading fees -$78,132.64 -$82,067.16 -$83,537.87 
Trading rebates $553,201.20 $476,071.01 $458,542.50 
Total net profit $5,326,078.83 $3,993,677.22 $3,569,630.33 
Mean daily net profit $46,719.99 $35,032.26 $31,312.55 
Median daily net profit $44,453.98 $33,756.44 $29,610.42 
Mean daily net profit per pair, per day $2273.19 $1704.51 $1523.53 
p-value Kolmogorov-Smirnov testa  1.00 1.00 

1st most profitable day (date - profit) 
2019/05/09 
$100,142.51 

2019/05/09 
$82,330.71 

2019/05/09 
$77,292.31 

5th most profitable day (date - profit) 2019/05/13 
$78,509.62 

2019/06/20 
$58,157.95 

2019/05/07 
$53,633.28 

1st most unprofitable day (date - profit) 2019/06/04 
$15,061.17 

2019/03/13 
$12,210.91 

2019/03/13 
$9130.81 

5th most unprofitable day (date - profit) 
2019/03/18 
$22,810.62 

2019/03/18 
$15,997.46 

2019/03/18 
$13,349.39 

Average time in trade (excl. futures contracts)b 00:01:29.51 00:01:39:10 00:01:41.22 
Average time in trade (incl. futures contracts) 00:01:46.55 00:01:56.61 00:01:58.19 
# net profitable trades 1,063,897 930,388 892,772 
# net unprofitable trades 325,351 322,230 327,096 
# trades 1,389,248 1,252,618 1219,868 
% net profitable trades 76.58% 74.28% 73.19% 
Average volume per trade 188.10 187.99 188.36 
Average net profit per trade $3.83 $3.19 $2.93 
Average profit per net profitable trades $9.51 $9.76 $9.84 
Average profit per net unprofitable trades -$14.71 -$15.78 -$15.94 
% trade using marketable orders 16.42% 19.56% 20.50%  

a H0: F(x) ≤ G(x), H1: F(x) > G(x). F(x), G(x) = CDF of daily net profits for sample 1 and sample 2, respectively: p-value of 1.00 for no latency vs 1x latency and 1.00 
for 1x latency vs 3x latency. 

b HH: MM: SS. U: hours: minutes: seconds: fractions of a second. 

10 This method of pair selection was also applied to market orders. 
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7. Trading strategy performance 

7.1. Statistics 

In this section, we present a more detailed view of the performance of 
the limit order mean-reverting strategy in the real latency setting, pre
sented in column 3 of Table 6. We define a captured arbitrage oppor
tunity as an opportunity where the positions in a pair at TSX and NYSE 
are both opened and closed with limit orders following the arbitrage 
strategy described in Section 3. This excludes arbitrage opportunities 
where a least one leg had to be closed by the stop-loss or the chro
nometer circuit breakers implemented for risk management. 

Fig. 1 shows the mean daily number of captured arbitrage opportu
nities per ticker and the mean duration of the positions behind these 
opportunities. The number of captured arbitrage opportunities (Panel 
1a) exhibits some daily fluctuations, but the quantity remains stationary 
over the period. On average, there are 180 captured arbitrage oppor
tunities per ticker per day. The mean duration, computed as the mean of 
the daily means of captured opportunity pairs, is about 122 s (Panel 1b), 
and is also stationary during our period of analysis. Note that both 
quantities are anticorrelated (Pearson correlation coefficient: − 0.923). 
This is because the strategy does not enter a new position when the 
previous one is still open, this condition avoids building huge 

inventories which would involve, among others, significant price impact 
when ending arbitrage activities. Thus, a longer time to close both legs 
of the strategy directly leads to a lesser number of potential arbitrage 
opportunities to be captured. 

Figure 2 shows the daily net profit measured as the average per 
captured arbitrage opportunity as well as the total realized net profit per 
day over the selected assets in the first six months of 2019. The mean 
total daily realized net profit is C$67,369 (Panel 2a) and the mean net 
profit per captured arbitrage opportunity is around C$19 (Panel 2b), in 
line with the expected high-frequency quoting activities. Per ticker, the 
daily mean is equal to C$3411. 

Figure 3 shows the empirical cumulative distribution function (CDF) 
of the net profit per captured arbitrage opportunity in CAD. Based on 
this CDF, 99.7% of the captured arbitrage opportunities are profitable. 
The median is around C$11, and the 99 percentile is around C$110. This 
confirms the theoretical validity of the strategy, meaning that when an 
arbitrage opportunity is perfectly captured with limit orders, it is almost 
guaranteed to be profitable. The remaining 0.3% of unprofitable 
captured arbitrage opportunities are obtained because we cannot always 
close the positions at the exact equilibrium value, as explained in Online 
appendix B. 

Fig. 1. Captured arbitrage opportunities during the period of analysis.  
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Fig. 2. Profitability of captured arbitrage opportunities during the period of analysis.  

Fig. 3. Empirical CDF of net profit per captured arbitrage opportunity (CAD).  
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7.2. Regression analysis 

To better understand the stylized facts affecting the daily net 
profitability of the strategy, we employ a regression analysis. Using 
standard variables such as the intraday volatility of the assets’ mid-price 
traded at exchange i ∈ {TSX,NYSE,CME} on day t (voli,t), the average 
bid-ask spreads (spreadi,t), the total trading volumes (tradei,t), and the 
total quantity of messages resulting from the LOB level one updates 
(messagesi,t), all in their respective currency, we want to explain the 
average net profitability of the selected pairs on day t ( ¯profitst). We 
compute every variable with as the weighted mean of the stock-level 
variable in the selected pair on day t, where the weight accorded to a 
specific stock is the proportion of its daily traded value compared with 
the total traded value for every stock of the same exchange in our 
portfolio on that day (all in C$). Table 7 reports the descriptive statistics 
of these variables, and Table A5 reports their Pearson correlation 
coefficients. All variables are described in Table A4. 

The volatilities of the mid-price of cross-listed stocks have similar 
distributions on both stock exchanges. The same applies for the spread 
and the number of messages from LOB level one. On the other hand, the 
volume of trades at the TSX is almost three times greater than at the 
NYSE, which is expected from a portfolio composed entirely of Canadian 
stocks (Newey and West, 1987). 

From Table A5, we observe a significant and positive relationship 
between the strategy’s profitability and the volatility of the markets. The 
bid-ask spread of the stocks is the variable that is the most highly and 
positively correlated with the profitability of the strategy, which is ex
pected since the strategy uses limit orders. Finally, the numbers of up
dates of LOB level one are all statistically and positively correlated to the 
strategy’s profitability, which will be explained later in this section. 

As expected, the pairs of same variables on the TSX and NYSE ex
changes are highly correlated. To reduce potential multicollinearity, we 
combine each pair of equity variables into one variable by using the 
mean of the respective TSX and NYSE variable values, thus creating the 
variables v̄olstocks,t , ¯spreadstocks,t , ¯tradestocks,t and ¯messagesstocks,t . The linear 
regression model is written as follows, for day t ∈ {1,2,…,114}: 

¯profitst = b0 + b1volCME,t + b2v̄olstocks,t + b3spreadCME,t + b4 ¯spreadstocks,t 

+ b5tradeCME,t + b6 ¯tradestocks,t + b7messagesCME,t 

+ b8 ¯messagesstocks,t + εt,

where εt ∼ N
(
0, σ2), ∀t. The regression coefficients are obtained by or

dinary least squares, and the covariance matrix is estimated with the 
heteroskedasticity and autocorrelation consistent approach of Newey 
and West (1987). Table 8 summarizes the regression results. 

As the regression suggests, the number of LOB level one update 
messages, the size of the spread and the trading volume of the stocks 
contribute significantly to the daily net profits generated for our port
folio of cross-listed stock pairs. These results are consistent with our 
machine learning pair selection methodology (See Online appendix C for 
more details). A larger spread for the stocks is directly beneficial to our 

Table 7 
Descriptive statistics of variables used in the regression analysis to explain the daily net profit of the strategy with limit orders.  

Variable Mean Std. Dev. Min. Q1 Median Q3 Max. 

¯profits 3411 1237 1636 2543 3201 4002 8471 
volTSX 0.458 0.143 0.259 0.361 0.412 0.524 0.974 
volNYSE 0.467 0.151 0.269 0.357 0.420 0.548 1.007 
volCME 0.086 0.047 0.024 0.054 0.074 0.114 0.244 
spreadTSX 5.791 1.267 3.567 4.916 5.688 6.213 1.097 
spreadNYSE 6.854 1.279 4.800 5.835 6.732 7.385 1.079 
spreadCME 0.576 0.020 0.542 0.566 0.576 0.584 0.715 
tradeTSX 775,033 361,920 349,538 506,020 686,478 949,768 2,288,334 
tradeNYSE 280,935 153,312 118,714 183,374 226,571 296,655 973,461 
tradeCME 64,664 75,053 4195 27,383 34,537 46,817 297,363 
messagesTSX 59,136 13,474 35,229 48,619 58,494 67,034 94,736 
messagesNYSE 53,719 13,253 32,036 43,001 51,791 62,492 101,549 
messagesCME 192,958 55,922 66,246 150,944 186,874 223,187 346,698 
Observations 114  

Table 8 
OLS linear regression for the average daily net profitability of the limit order 
strategy with Newey-West covariance matrix estimation.  

Variable Coefficient p-value 

intercept  − 3823.011  0.202 
volCME  − 2533.717  0.103 
v̄olstocks  695.229  0.284 
spreadCME  − 1817.241  0.723 

¯spreadstocks  791.142  0.000 
tradeCME  0.001  0.518 
¯tradestocks  − 0.002  0.009 

messagesCME  0.003  0.139 
¯messagesstocks  0.069  0.000 

Adj.R2  0.662  
F stat  22.570  
Observations 114   

Table 9 
Monthly statistics of the cross-listed stocks returns, and the strategy’s respective statistics.a  

Statistic January February March April May June 

Avg. Returns 10.25% 3.01% 0.89% 1.17% − 6.60% 3.67% 
Std. Returns 12.51% 6.97% 6.97% 8.05% 10.45% 9.86% 

Stochastic Dominance Rankb 1 2 4 4 6 2 
Avg. Daily Net Profit $31,104.08 $29,753.21 $28,712.23 $22,189.34 $40,215.74 $37,382.49 

Avg. Daily # of Trades 12,834 11,652 13,711 8381 9004 11,206 
Avg. Volume Per Trade 199.59 186.45 201.19 164.28 144.28 160.23 

Avg. Net Profit Per Stock Traded $0.0121 $0.0137 $0.0104 $0.0161 $0.0310 $0.0208  

a Monthly returns are computed as the return from first to last trade price occurring in the specified month. 
b The stochastic dominance ranking from most dominant to less dominant. Found by applying the one-sided, two-sample Kolmogorov-Smirnov test at a p-value of 1% 

to every pair of monthly return distributions. The two-sided, two-sample Kolmogorov-Smirnov test was also applied to confirm when pairs had no statistically verified 
stochastic dominance from the one-sided Kolmogorov-Smirnov test. 
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limit order strategy, which can be explained by eqs. (4), (5) and (6). 
Together, these equations tell us that a larger spread lead to a higher 
profit for any given arbitrage opportunity and that the profitable arbi
trage opportunities are thus more frequent for days with larger spreads. 
As for the number of messages, the result is intuitive because a higher 
level one activity generally increases the likelihood of our active limit 
orders to be filled or canceled because of our risk management circuit 
breakers in the case where the prices deviate from our limit orders’ 
prices. Hence, the more messages we observe, the faster our orders can 
be executed or canceled and the faster the strategy can move on to the 
next opportunity (which was observed in Fig. 1), as opposed to days 
when markets are quieter and limit orders can remain in the LOB for 
longer periods of time. Lastly, a larger trading volume contributes 
negatively to our profitability, especially at the NYSE. The higher la
tency to that exchange prevents us from reacting very rapidly compared 
to other participants colocated at the NYSE. Thus, trades occurring 
before our limit orders included in the LOB (or even before the infor
mation was analyzed by our algorithm) can cause the mispricing to 
dissipate. 

7.3. Macroeconomic environment effects 

The goal of this section is to provide a robustness analysis of our 
model in different macroeconomic environments by comparing its 
profitability across our data. Table 9 analyzes the strategy’s results for 
six months of 2019 where statistically different stock-return distribu
tions occurred. We use first-order stochastic dominance to rank the 
monthly stocks-return distributions. Stochastic dominance quantifies 
whether one probability distribution is greater than another. Given two 
random distributions F and G, it is said that F has a first-order stochastic 

dominance over G if and only if F(x) ≤ G(x),∀x ∈ ℝ with strict 
inequality for some x. One popular test for first-order stochastic domi
nance is the one-sided Kolmogorov-Smirnov test (Schmid & Trede, 
1996). We apply this test to every pair of monthly returns and order 
them from most dominant (rank 1) to least dominant (rank 6). Hence, 
rank 1 is the month with the statistically highest return distribution. 
Some pairs of monthly return distributions cannot reject the two-sided 
Kolmogorov-Smirnov null hypothesis that the two distributions are 
identical, so these pairs are of equal rank. 

From Table 9, the performance of the strategy can be analyzed in two 
market extremes, namely, in the great uptrend market of January 2019 
(rank 1) and in the considerable downtrend market of May 2019 (rank 
6). In both months, the strategy fares well, but markedly so in May, 
where it generated the greatest average net daily profit out of the entire 
data sample. In down markets like May, bid-ask spreads increase 
(Chordia, Roll, & Subrahmanyam, 2001), which is an advantage for our 
strategy as shown in the previous section. This fact can be observed in 
the average net profit per stock traded which, in May, is almost triple 
that of January. But liquidity severely decreases during downtrend 
markets, as opposed to uptrend markets (Chordia et al., 2001), so the 
volume per arbitrage opportunity is significantly greater in January than 
in May, which counterbalances narrower bid-ask spreads and still results 
in a net profit. In more regular macroeconomic environments, e.g., 
February, March, April, and June 2019, the strategy remains profitable. 
The strategy is market neutral, so it should remain applicable in any 
macroeconomic environment, as Table 9 suggests. 

7.4. Profitability 

Figure 4 shows the net cumulated profits over the entire period on a 
trade basis. There is minimal intraday drawdown, and as was shown in 
Fig. 2 (Panel a), the net daily profits are stationary, which explains the 
quasi linearity of the function in Fig. 4. 

Figure 5 presents the daily maximum of net aggregated positions 
taken at each exchange for our portfolio of selected pairs. The maximum 
net open position in absolute value is around C$453,000 at the TSX, C 
$465,000 at the NYSE, and C$590,000 at the CME, meaning that an 
investment of C$1,000,000 to cover the margins is more than enough. 
Note that only a margin of US$1100 per C/US futures contract is needed 
at the CME. Given the annual net profit of C$8 million generated by the 
strategy in 2019, this results in an annual net return of 700%. When 
considering management fees of 5%, the annual net return is 660%. 

Figure 6 shows the empirical CDF of the needed aggregated net 
margin in C$. This margin at time t can be expressed as follows: 

Mt =
⃒
⃒VTSX,t

⃒
⃒+

⃒
⃒
⃒
⃒VNYSE,t −

GNYSE,t

rt

⃒
⃒
⃒
⃒+

1, 100
rt

⃒
⃒
⃒
⃒VCME,t −

GCME,t

rt

⃒
⃒
⃒
⃒

/

100, 000.

Fig. 4. Net cumulated profits (CAD) on a trade basis over the entire period.  

Fig. 5. Maximum daily net aggregated long and short positions of the selected pairs portfolio at the three exchanges.  
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where VTSX,t ,VNYSE,t and VCME,t are the portfolio exposure in CAD in their 
respective exchange. 

Once again, we can see that a capital of C$1,000,000 always covers 
the margins in the three exchanges, while C$185,000 covers 80% of the 
needed margins at any time, meaning that the high levels of aggregated 
positions are transitory. 

The annualized Sharpe ratio computed from the daily returns and the 
margin of C$1 million is 51.04 (48.5 when considering management 
fees). It is very high, but our daily profits are perfectly comparable to the 
trading profits of HFTers found in Baron, Brogaard, and Kirilenko 
(2014). Our result is mainly explained by the very low volatility of the 
profits as seen in Figs. 3 and 5. Also the Deflated Sharpe Ratio proposed 
by Bailey and López de Prado (2014) is approximately equal to 1. This 
very high value is mainly explained by the fact that we did not resort to 
multiple back testing trials, generating an absence of variance across the 
trials and a quasi-null likelihood of a false discovery. 

8. Conclusion 

We study the profitability of mean-reverting arbitrage activities of 
international cross-listed stocks on two stock exchanges and a de
rivatives exchange with a novel trading strategy that is generalizable to 
a broader cross-listed universe. The theoretical strategy signals when the 
prices of cross-listed stocks deviate enough from their relative equilib
rium that an economically viable arbitrage opportunity occurs. We 
apply the model to North American markets during the first six months 
of 2019, namely to the New York Stock Exchange (NYSE) and the Chi
cago Mercantile Exchange (CME) in the United States, and the Toronto 
Stock Exchange (TSX) in Canada. 

This paper is the first to examine stocks’ cross-country mean- 
reverting arbitrage. We work with a unique temporal frame of reference, 
meaning that we synchronize the data feeds from the exchange venues 
by explicitly taking into account the latency that comes from the 
transmission of information between the exchanges and the information 
processing time. We also consider all potential arbitrage trading costs. 
We show that mean-reverting arbitrage is profitable with order book 
transactions and queuing priorities. We consider the obtained profits as 
reasonable when compared with previous contributions in the literature. 
In previous studies, the profitability of latency arbitrage is often over
estimated by not considering both the practical aspects of arbitrage 
trading and the market frictions in their applications. International la
tency arbitrage with market orders is not profitable with our data. 

Our original goal was not to contribute to the normative discussion 

about the effect of continuous HFT on the general welfare of financial 
markets. Rather, it was to replicate the precise behavior of a trading firm 
to provide a better estimate of the arbitrage market functioning with 
high-frequency trading. Our research highlights the high-frequency ar
bitrageur’s economic incentive to act as a liquidity provider and the 
importance of considering real market frictions in HFT research. Our 
results could be useful to improve the understanding of the complex 
nature of high-frequency trading. Our model can be deployed in a real- 
time environment by institutional investors, professional arbitrageurs, 
market makers, hedgers, and regulators. Our approach provides a 
contemporary understanding of an economically viable arbitrage 
approach that helps restore equilibrium in financial markets. 

Arbitrage activities are very useful to restore equilibria in markets 
when price distortions are observed. These activities are usually carried 
out by the largest traders under strong competition. These traders pro
vide the markets with liquidity and are remunerated for this activity. Are 
the profits they earn too high? The results of this study do not provide a 
conclusive answer to this question, but we have demonstrated that large 
traders can make positive profits under fair trading conditions. 

Another issue often discussed in the literature is the costly race for 
high-speed trading. This race is almost over because the observed speeds 
for information transmission between exchanges by the largest traders 
are fast approaching their physical limits when compared with the speed 
of light (Buchanan, 2015). The same observation can be made for in
formation processing, where the inter-server latency is converging to the 
propagation delay of light (Thomas, Woelker, & Porter, 2018). It is not 
clear how additional regulation that targets speed reduction could 
improve economic welfare in current markets. 

Finally, do these arbitrage activities affect long-term investors who 
are not involved in arbitrage activities, which represent most stock in
vestors? We do not have sufficient data to answer this question, but our 
discussions with investors and traders seem to confirm that the effect is 
small. This issue warrants additional quantitative research. 
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