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Portfolio Response to a Shift in a Return Distribution:
Comment

Abstract

In this paper we show how a shift in a return distribution affects the composition of an
optimal portfolio in the case of one riskless asset and two risky assets. We obtain that, in
general, such a shift modifies the composition of the mutual fund. We also show that the
separating conditions presented in the finance literature for the setting of the optimal
portfolios, are not robust to the comparative statics following distributional shifts if we
want to obtain intuitive results. This conclusion contrasts with that of Mitchell and
Douglass (1997) who limited their analysis to portfolios with risky assets. Our discussion
applies to a first order shift (FSD) but the same result can be obtained for increases in risk.

JEL classification: D80.

Résumé

Dans cette recherche, nous montrons comment un déplacement de premier ordre de la
distribution des rendements affecte la composition d'un portefeuille optimal composé d'un
actif sans risque et de deux actifs risqués. Nous obtenons que ce type de déplacement
modifie la composition du fonds mutuel. Nous montrons également que les conditions de
séparation présentées dans la littérature pour l'établissement d'un portefeuille optimal ne
sont pas robustes à la statique comparative si nous voulons obtenir des résultats intuitifs.
Cette conclusion contraste avec celle de Mitchell et Douglass (1997), qui ont limité leur
analyse à des portefeuilles composés d'actifs risqués. Nos résultats peuvent être étendus
directement aux accroissements de risque.

Classification JEL : D80.



1 Introduction

In the literature, recent contributions on portfolio choice and its response

to distribution shifts dealt with di¤erent situations: one riskless asset-one

risky asset (Rothschild and Stiglitz, 1971, Dionne et al., 1993), two risky

assets (Hadar and Seo, 1990, Meyer and Ormiston, 1994, Dionne and Gol-

lier, 1996), one riskless asset-two risky assets (Dionne et al:; 1997) and,

recently, an arbitrary number of assets (Mitchell and Douglass, 1997): This

last contribution, however, relies on the stability of the mutual-fund separa-

tion. Here we show that such stability is not always possible and we propose

a general result to mutual-fund variation following a …rst order stochastic

dominance when the portfolio contains a safe asset.

In Mitchell and Douglass [1997] ; the problem is the following: an agent

is allocating his initial wealth among n-risky assets: ~xi, i = 1; :::; n: They

show that there exists Á1; :::; Án¡1 and Ã2; :::; Ãn¡1 and two funds ey1 and ey2
such that

ey1 = Á1~x1 + Á2~x2 + ::: + Án¡1~xn¡1 +
¡
1 ¡ Á1 ¡ Á2 ¡ ::: ¡ Án¡1

¢
~xn;

ey2 = Ã2~x2 + ::: + Ãn¡1~xn¡1 +
¡
1 ¡ Ã2 ¡ ::: ¡ Ãn¡1

¢
~xn;

where the n-assets problem can be reduced to a two-fund problem. Under

their assumption of mutual fund stability (following a distributional shift),

one can verify easily that the solution would yield the following identities:

®j (r) =
Áj ¡ Ãj

Á1
®1 (r) + Ãj for j = 2; :::; n; (1)

where ®j is the amount invested in asset ~xj and r is a shift parameter. Note

that parameters Áj and Ãj are independent of r: These necessary conditions

are valid when the utility function is quadratic or when the returns are

normally distributed and the utility function is exponential. (See Appendix

for these two examples.). However the above conditions are not necessarily

veri…ed for all utility functions that are in the class permitting two-fund
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separation (Cass and Stiglitz, 1970). In the next section we show that for

CRRA; (1) does not hold when the portfolio contains a safe asset. In fact,

we obtain that ®2 (r) = h (r)®1 (r). Moreover, the necessary conditions

in (1) ; when they hold, are not su¢cient to extend the theorem of Meyer

and Ormiston [1994] when all Ãj are not restricted to be positive. This

is true since ~y2 is restricted to be positive in Meyer and Ormiston article.

Such considerations were not taken into account explicitly in Mitchell and

Douglass [1997] :

2 A general result: the case of one risk free asset

and two risky assets

In this section we show that the stability assumption is strong in the case of

two risky assets-one risk free asset. In other words, the ratio of the two risky

assets can be a¤ected by a …rst order shift which means that the composition

of the risky portfolio can be modi…ed contrarily to the result in Mitchell and

Douglass.

We consider a risk averse agent who allocates his wealth (normalized

to one) between one risk free asset (with return x0) and two risky assets

with returns ~xi for i = 1; 2: We denote the cumulative distribution on asset

~x1 as F (x1=r) ; and the cumulative distribution of the returns on asset ~x2

as G (x2) : For ease of presentation we suppose that F (x1=r) and G (x2)

have density function given respectively by f(x1=r) and g (x2) and that the

derivative of f (x1=r) with respect to r exists. The portfolio share of asset

~xi is ®i: Here we deal only with the case where ®i ¸ 0; i = 1; 2 and we

assume that ~x1 and ~x2 are independent random variables. The agent’s end

of period wealth W is then equal to

W = 1 + x0 + ®1 (x1 ¡ x0) + ®2(x2 ¡ x0);

by using the fact that 1 = ®0 + ®1 + ®2:
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From now on we write W as ®1 (x1 ¡ x0) + ®2(x2 ¡ x0): This will not

result on any loss of generality since 1+ x0 is constant. Optimal portfolio

solves the following program (P ):

max
®1;®2

Z x1

x1

Z x2

x2

u (®1 (x1 ¡ x0) + ®2 (x2 ¡ x0)) dF (x1=r) dG (x2)

where [x1; x1] and [x2; x2] are respectively the support of ~x1 and ~x2.

Assume we have interior solutions, the …rst order conditions of the above

problem are:
Z x1

x1

Z x2

x2

(x1 ¡ x0)u
0
(®1 (x1 ¡ x0) + ®2 (x2 ¡ x0))dF (x1=r)dG (x2) = 0;

(2)Z x1

x1

Z x2

x2

(x2 ¡ x0)u
0
(®1 (x1 ¡ x0) + ®2 (x2 ¡ x0))dF (x1=r)dG (x2) = 0:

(3)

In particular, if the mutual-fund separation applies then the ratio ®2
®1

is independent of the agent risk aversion and the mutual-fund has weights
®1

®1+®2
and ®2

®1+®2
on ~x1 and ~x2 respectively.

De…nition 1 Let I be an open set in <: We say that ff (:=r)gr2I veri…es

the monotone likelihood ratio property (MLRP ) if fr(x1=r)
f(x1=r)

is decreasing in

x1 for all r 2 I:

The MLRP is a special case of …rst order stochastic dominance (FSD).

See Eeckhoudt and Gollier [1995] for details.

We have the next result.

Theorem 1 Assume that (a) the utility function is CRRA; and (b) ff (:=r)gr2I
veri…es the MLRP condition. Let ®¤1 (r) and ®¤2 (r) represent optimal in-

vestment decisions in the risky fund for a given level r. Then ®¤2
®¤1

(r) is

increasing in r.

Theorem 1 shows that a FSD contraction that a¤ects one asset will

reduce the weight of this asset in the optimal fund. This FSD may reduce
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both ®¤1 and ®¤2 but the relative e¤ect on ®¤1 is more important. It should be

noti…ed that ®¤2
®¤1

is increasing in r for all u (¢) that are CRRA and whatever

the level of risk aversion. This means that the two-fund separation theorem

holds for all r since CRRA functions are in the class of utility functions that

permit mutual-fund separation. The additional restriction on MLRP is to

yield a particular direction on the variation of the ratio ®¤2
®¤1

. Consequently,

when the two-fund conditions hold, following a FSD shift, the investor must

…rst evaluate the variations in the proportions of the risky asset and then

decide how to divide his total wealth between risky and safe assets.

Proof of Theorem 1.

Di¤erentiating the …rst order condition (2) with respect to r yields:

Z x1

x1

Z x2

x2

(x1 ¡ x0)
2 u

00
(:) f (x1=r) g (x2)dx1dx2

d®¤1
dr

+

Z x1

x1

Z x2

x2

(x1 ¡ x0) (x2 ¡ x0)u
00
(:) f (x1=r) g (x2)dx1dx2

d®¤2
dr

+

Z x1

x1

Z x2

x2

(x1 ¡ x0)u
0
(:) fr (x1=r) g (x2)dx1dx2

= 0: (4)

The second term in the above equation can be rewritten as:
Z x1

x1

Z x2

x2

(x1 ¡ x0) (x2 ¡ x0)
u
00
(:)

u0 (:)
u
0
(:) f (x1=r) g (x2) dx1dx2: (5)

By the assumption of constant relative risk aversion (CRRA) we have:

(x2 ¡ x0)
u
00
(:)

u0 (:)
=

c

®¤2
¡ ®¤1

®¤2
(x1 ¡ x0)

u
00
(:)

u0 (:)
: (6)

Substituting (6) in (5) ; we get, after some simpli…cations:

c

®¤2

Z x2

x2

Z x1

x1

(x1 ¡ x0) u
0
(:) f (x1=r) g (x2)dx1dx2

¡®¤1
®¤2

Z x2

x2

Z x1

x1

(x1 ¡ x0)
2 u

00
(:) f (x1=r) g (x2) dx1dx2: (7)
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The …rst term in (6) is nil by the …rst order condition associated to the

choice of ®1.

The expression in (4) can now be written as:

Z x1

x1

Z x2

x2

(x1 ¡ x0)
2 u

00
(:) f (x1=r) g (x2)dx1dx2

·
d®¤1
dr

¡ ®¤1
®¤2

d®¤2
dr

¸

+

Z x1

x1

Z x2

x2

(x1 ¡ x0) u
0
(:) fr (x1=r) g (x2)dx1dx2

= 0: (8)

Since
d

³
®¤2
®¤1

´

dr
=

®¤1
d®¤2
dr ¡ ®¤2

d®¤1
dr

(®¤1)
2 ;

then, by (8)

Sign

0
@

d
³
®¤2
®¤1

´

dr

1
A = ¡Sign

ÃZ x1

x1

Z x2

x2

(x1 ¡ x0)u
0
(:) fr (x1=r) g (x2) dx1dx2

!
:

Now we prove that

Z x1

x1

Z x2

x2

(x1 ¡ x0) u
0
(:) fr (x1=r) g (x2)dx1dx2 · 0

under MLRP .

In fact,

Z x1

x1

Z x2

x2

(x1 ¡ x0)u
0
(:) fr (x1=r) g (x2)dx1dx2

=

Z x1

x1

"
(x1 ¡ x0)

Z x2

x2

u
0
(:) g (x2) dx2

#
fr (x1=r)dx1

=

Z x1

x1

K (x1) fr (x1=r)dx1; (9)

where

K (x1) = (x1 ¡ x0)

Z x2

x2

u
0
(:) g (x2)dx2:
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Note that K (x1)

(
· 0 8x1 · x0

¸ 0 8x1 ¸ x0:
Let’s de…ne

k (u) =
K (u) f (u=r)

¡
R x1
x0

K (v) f (v=r) dv
for u 2 [x1; x0] :

By the …rst order condition (2) we have:
Z x1

x0

K (x1) fr (x1=r)dx1 = ¡
Z x0

x1

K (x1) fr (x1=r)dx1 ¸ 0;

which implies that
Z x0

x1

k (u) du = 1 and k (u) ¸ 0 for u 2 [x1; x0] : (10)

Now using (10) we can write the last term in (8) as:
Z x0

x1

k (u)
fr (u=r)

f (u=r)

½
¡

Z x1

x0

K (v) f (v=r)dv

¾
du

+

Z x1

x0

K (v) f (v=r)
fr (v=r)

f (v=r)

(Z x0

x1

k (u)du

)
dv

= ¡
Z x0

x1

Z x1

x0

k (u)K (v) f (v=r)
fr (u=r)

f (u=r)
dudv

+

Z x0

x1

Z x1

x0

k (u)K (v) f (v=r)
fr (v=r)

f (v=r)
dudv

=

Z x0

x1

Z x1

x0

k (u)K (v) f (v=r)

µ
fr (v=r)

f (v=r)
¡ fr (u=r)

f (u=r)

¶
dudv: (11)

Since k (u) ¸ 0; K (v) ¸ 0 for u 2 [x1; x0] ; v 2 [x0; x1] and by MLRP

we also have

fr (v=r)

f (v=r)
· fr (u=r)

f (u=r)
for (u; v) 2 [x1; x0] £ [x0; x1] :

The term in (11) is negative. Consequently, we have:

d
³
®¤2
®¤1

´

dr
¸ 0:
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3 Conclusion

In this note, we have shown that it is not appropriate to limit the adjustment

of total wealth between the risky portfolio and the safe asset following a FSD

shift in a return distribution, even when the two-fund separation theorem

holds. The investor must …rst evaluate the e¤ect of the shift on the relative

proportions of the risky assets in the risky portfolio and then decide how

to adjust his total investment between the safe asset and the adjusted risky

portfolio. The same conclusions holds for mean preserving spreads (Dionne,

Gagnon and Dachraoui, 1997). Another conclusion is that the separation

of conditions on both utility functions and distribution functions does not

hold to obtain intuitive variations in risky assets following a distribution

shift. In other words, it is not possible to limit conditions either on u (¢)
or on F (x=r) to obtain the desired results. This means that the separating

conditions presented in the …nance literature hold for the setting of the

optimal portfolios but are not robust to the comparative statics following

distributional shifts if we want to obtain intuitive results.

References

[1] Cass, D. and J. Stiglitz, “The Structure of Investor Preferences and Asset

Returns, and Separability in Portfolio Allocation: A Contribution to the

Pure Theory of Mutual Funds,” Journal of Economic Theory 2, 1970,

122-160.

[2] Dionne, G., L. Eeckhoudt and C. Gollier, “Increases in Risk and Linear

Payo¤s,” International Economic Review 34, 1993, 309-319.

[3] Dionne, G., F. Gagnon and K. Dachraoui, “Increases in Risk and Opti-

mal Portfolio,” Working Paper, Risk Management Chair, HEC Montréal,

1997.

8



[4] Dionne, G. and C. Gollier, “A Model of Comparative Statics for Changes

in Stochastic Returns with Dependent Risky Assets,” Journal of Risk

and Uncertainty 13, 1996, 147-162.

[5] Eeckhoudt, Louis and C. Gollier, “Demand for Risky Assets and the

Monotone Probability Ratio Order,” Journal of Risk and Uncertainty

11, 1995, 113-122.

[6] Hadar, J. and T.K. Seo, “The E¤ects of Shifts in a Return Distribution

on Optimal Portfolios,” International Economic Review 31, 1990, 721-

736.

[7] Meyer, J. and M. B. Ormiston, “The E¤ect on Optimal Portfolios of

Changing the Returns to a Risky Asset: The Case of Dependent Risky

Returns,” International Economic Review 35, 1994; 603-612.

[8] Mitchell, D. W. and S. M. Douglas, “Portfolio Response to a Shift in

a Return Distribution: The Case of n-Dependent Assets,” International

Economic Review 38, 1997; 945-950.

[9] Rothschild, M. and J. Stiglitz, “Increasing Risk: II. Its Economic Con-

sequences,” Journal of Economic Theory 3, 1971, 66-84.

9



4 Appendix

Example 1 Suppose that the utility function is quadratic or that the re-

turns distribution is normal and the utility function is exponential. De…ne

fF (x1=x2; :::; xn; r)gr as a mean preserving spread, then conditions in (1)

are veri…ed and the composition of the two funds remains stable following a

mean preserving spread.

Let us start with the quadratic utility function.

We consider the last n ¡ 2 …rst order conditions:

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

n¡1P
1

®¤j (:)
R

¢¢ ¢
R

(x2 ¡ xn) (xj ¡ xn) dF (x1=x2; :::; xn; r)dG (x2; :::; xn)

+
R

¢¢¢
R

xn (x2 ¡ xn)dF (x1=x2; :::; xn; r) dG (x2; :::; xn) = 0

:

:

:
n¡1P
1

®¤j (:)
R ¢ ¢¢ R (xn¡1 ¡ xn) (xj ¡ xn)dF (x1=x2; :::; xn; r) dG (x2; :::; xn)

+
R

¢¢ ¢
R

xn (xn¡1 ¡ xn)dF (x1=x2; :::; xn; r)dG (x2; :::; xn) = 0:

(12)

Since the increase in risk is a mean preserving spread then one can verify,

under the ceteris paribus assumption1, that
Z

¢ ¢ ¢
Z

(xl ¡ xn) (x1 ¡ xn)dF (x1=x2; :::; xn; r)dG (x2; :::; xn)

is independent of r for all l = 2; :::; n ¡ 1:

The same result applies for the terms
Z

¢ ¢ ¢
Z

xn (xj ¡ xn)dF (x1=x2; :::; xn; r)dG (x2; :::; xn) for j = 2; :::; n ¡ 1

1On the ceteris paribus assumption see Meyer and Ormiston [1994] and Dionne and

Gollier [1996].
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and
Z

¢ ¢ ¢
Z

(xl ¡ xn) (xj ¡ xn)dF (x1=x2; :::; xn; r)dG (x2; :::; xn) for l; j = 2; :::n¡1:

We can write the system in (12) as:

8
>>>>>>>>>><
>>>>>>>>>>:

n¡1P
1

a2j®
¤
j (:) + a2n = 0

:

:

:
n¡1P
1

an¡1j ®¤j (:) + an¡1n = 0:

The last system has n¡1 parameters and n¡2 equations that yield one

degree of freedom. The solution of the above system can be written as:
8
>>>>>>><
>>>>>>>:

®¤2 (:) = a2®
¤
1 (:) + b2

:

:

:

®¤n¡1 (:) = an¡1®¤1 (:) + bn¡1:

The most important fact here is that a2; :::; an; b2; :::; bn are independent

of r.

Notice that if bj > 0; for j = 2; :::; n ¡ 1; then we can extend the result

of Meyer and Ormiston [1994] to the case of n-assets.

As an example we consider the case where n = 3. We …nd that:

®¤2 = ¡¾233 + (m1 ¡ m3) (m2 ¡ m3)

(m2 ¡ m3)
2 + ¾222 + ¾333

®¤1 +
¾233 ¡ m3 (m2 ¡ m3)

(m2 ¡ m3)
2 + ¾222 + ¾333

; (13)

where

mi = E (~xi) ;

¾2ii = var (~xi) :
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As we can see from (13) ; the second term on the right hand side is

negative for a range of the parameters m2; m3 and ¾233: As a result, even if

the problem with three assets can be reduced to a problem with only two

assets, we need to restrict the support of the two assets to be always positive

if one wants to extend directly the result of Meyer and Ormiston [1994].

When the utility function is exponential and the returns distribution is

normal, we use the Stein’s lemma to write the last n¡2 …rst order conditions

as:

cov
¡
®¤1 (x1 ¡ xn) + ::: + ®¤n¡1 (xn¡1 ¡ xn) + xn; xj ¡ xn

¢

= ¡
E

³
u
0
´

E (u00)
E (xj ¡ xn) ; for j = 2; :::; n ¡ 1: (14)

Since u is exponential then ¡E
³
u
0´

E(u00)
is a constant and hence independent

of r, and, with the same argument as in the previous example, the term on

the left hand side of (14) is independent of r. The rest of the proof is as for

the quadratic utility function.
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