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Abstract

We tweak the conventional Merton model to account for the asymmetric properties of assets returns

and investors asymmetric behavior toward the upside potential of gain versus the downside risk of loss.

Using an asymmetric split normal distribution, we capture empirical asymmetries in the underlying

return distribution, while we conserve the attractiveness of delivering closed-form pricing formulas that

collapse to the basic Merton model in the symmetric Gaussian case. The asymmetric specification

outperforms the symmetric one in matching high levels of historical credit spreads. We then link the

residual (non-default-model-implied) spread to two illiquidity risk factors. The first factor is extracted

from several measures of idiosyncratic illiquidity variables and the second factor is a systematic factor

obtained from a general index common to all studied bonds. Our model explains 70% of the BBB-AAA

spread and more than 72% of BBB and AAA credit spreads relative to the on-the-run Treasury rates.
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1 Introduction

Credit spreads reward investments on bond markets, and therefore, reflect the various risk compen-

sations shaping the conditional distributions of corporate bond yields. Several modelling frame-

works have been proposed to explain the observed historical time variation in corporate credit

spreads. Most of these models, while theoretically grounded, have delivered weak to average degrees

of empirical success. The discrepancy between model-implied bond spreads and their corresponding

historical levels is commonly referred to as the credit spread puzzle (Collin-Dufresne, Goldstein,

and Martin, 2001; Elton, Gruber, Agrawal, and Mann, 2001; Huang and Huang, 2012; among oth-

ers). This puzzle may reflect the fact that distributional assumptions in many credit spread models

are not flexible enough to explicitly account for higher-order distributional properties, for instance

asymmetric patterns. Moreover, there is a strong evidence that investors’ preferences induce asym-

metric responses toward upside potential of gains versus downside risk of losses. Credit valuation

models often ignore higher-order risks and corresponding higher-order risk attitudes, which if they

are priced, may have significant impacts on corporate bond prices. Obviously, accounting for these

dimensions could provide a better understanding of the credit spread puzzle.

We tackle this challenge, first by characterizing the importance of higher-order risks in explaining

the observed credit spreads. Our goal is to capture the premium due to risks of an order higher

than the conventional volatility. To fulfill this objective, we borrow from the literature linking the

credit spread puzzle to the equity premium puzzle. Specifically, as in Chen et al (2009) we assume

that bondholders are exposed to the same source of risk as the equity holders, using the argument

that equities and bonds of a particular firm are affected by the same systematic risk factors given

that both assets are contingent claims to the same firm value.

Next, we tweak the Merton (1974) model version in Chen et al (2009) by embedding a split

normal asymmetric underlying distribution instead of the Gaussian symmetric distribution. This

specification is intended to provide a flexible distributional framework nesting standard benchmarks

and introduces asymmetry in returns and unit risk premia. We demonstrate that our setting is

a generalization of the standard Merton model by deriving closed-form solutions that collapse to

well-known formulas in the symmetric case. We then analyze the ability of both specifications to

generate realistic credit spreads. Throughout the paper we will refer to the split normal-based

specification as the asymmetric model and to the Gaussian-based specification as the symmetric

model.
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Finally, we try to explain the remaining spread (the non-default part of our model-implied

spread) by inquiring into the contentious role of liquidity risk in widening total corporate bond

spreads during the recent financial crisis. Dick-Nielsen, Feldhütter, and Lando (2012) analyzed

the dynamic of bond spreads around the subprime crisis and found that the liquidity component

increased significantly during the crisis for all bonds except for AAA bonds. Namely, for BBB

bonds this liquidity component increased from 5 basis points (bp) before the crisis to 93 bp during

the crisis. Their model does not explicitly account for the effect of systematic liquidity which

may have also altered the level of AAA-Treasury spreads. In addition, the effect of the bond

level liquidity on the AAA bonds is by construction insignificant. In particular, these authors

define the bond illiquidity premium as a spread relative to the premium of benchmark bonds

ranked in the lowest 5th percentile by their illiquidity factor. This benchmark is very likely to be

heavily loading on AAA bonds. In recent empirical studies, the effect of systematic component of

liquidity risk on bond spreads has not been studied in details. Our approach to solve the bond

spread decomposition challenge addresses this gap. We consider idiosyncratic illiquidity factors

constructed using bond level liquidity variables, as documented in Dick-Nielsen, Feldhütter, and

Lando (2012). We then introduce a systematic measure of illiquidity by constructing a more general

index measuring illiquidity for the full universe of corporate bonds, that is, covering bonds rated

from AAA to BB. For recent developments on liquidity risk, see Bao, Pan and Wang (2010), and

Friewald, Jankowitsch and Subrahmanyam (2012), among others.

Our key contributions to the existing literature are two-fold. First, we show both theoretically

and empirically that asymmetrical attitudes towards risk matter in matching observable historical

default spreads. To compare our results with the existing work by Chen et al. (2009), we initially

consider the same period of 1974-1998. Using the asymmetric split normal distribution model,

we obtain a 43.53% increase in the 4-year BBB-AAA default spread (78.8 bp) as compared to

the symmetric Gaussian specification (54.9 bp). For BBB-AAA total spread, the asymmetric split

normal model explains 72.29% (of the 109 bp) relative to 50.36% for the symmetric case. We also use

the 10-year maturity bonds and we obtain similar results. Altogether, the asymmetric specification

generates a spread that is on average much higher than the spread induced by the symmetric

specification. We extend our test to the full universe of bonds traded in the secondary market and

available from TRACE database, which covers nearly all corporate bond trading activities. Our

new sample period ranges from January 2008 to December 2014. For this period, the asymmetric

model explains 58 bp of the historical 4-year BBB-AAA spread (157 bp) while the symmetric model
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explains only 39 bp of the historical spread.1

Second, we take advantage from bond level trading data and refine our analysis by focusing

on the non-default spread component, which helps us distinguish periods with elevated liquidity

disruption risk and periods with high default risk. For instance, our model generates credit spreads

that spike especially during the 2008-2009 financial crisis. Our results clearly indicate that default

risk is not the major driver of credit spreads during that episode. These findings also reveal

that the liquidity risk component of the bond spread is substantial during the crisis and remains

relatively significant afterwards. Using the Merton asymmetric default model along with trading

based liquidity indexes, we are able to better-match observed historical bond spreads. We explain

70% of the BBB-AAA spread. This improvement is not only due to the change in the level of

BBB-Treasury spread, but also pertains to the change in the level of the AAA-Treasury spread.

For instance, relative to the on-the-run Treasury rates we explain 72% of the BBB-Treasury spread

and 77% of the AAA-Treasury spread. This evidence differs from the findings in Dick-Nielsen,

Feldhütter, and Lando (2012) and suggests that AAA bonds are also affected by changes in liquidity

risk in our period of analysis, yet most importantly, by the systematic part of it.

The rest of the paper is organized as follows. Section 2 reviews the recent literature on credit

risk with an emphasis on the recent contributions regarding liquidity risk. Section 3 presents the

asymmetric- Merton default model. Section 4 documents the empirical performance of asymmetric

and symmetric credit default models in matching observed credit spreads. Results are provided

for the Chen et al.’s (2009) study period ranging from 1974 to 1998 and for the most recent

period ranging from 2008 to 2014. Section 5 documents the construction of the idiosyncratic

and systematic illiquidity factors and examines their contribution in explaining the residual non-

default credit spreads. Section 6 concludes. Appendix A delineates the equilibrium framework that

explicitly characterizes the role of higher-order risks and higher-order risk attitudes in explaining

credit spreads. It also provides details on how higher-order risks and higher-order risk behaviors (see

for instance Kimball, 1990 and Modica and Scarsini, 2005) such as prudence and aversion towards

downside risk are used to price risky assets specifically corporate bonds and corporate bond spreads

and to address the credit spread puzzle. Appendix B presents the principal component analysis

results used to construct our illiquidity factors.

1We should emphasize that default probabilities are much lower during this second period than during the 1974-

1998 period.
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2 Literature review on yield spread decomposition

Before the 2000s, credit risk was considered as synonym to default risk. Yet, research has shown

that credit risk cannot only be explained by historical default related variables.

Several structural models try to explain the default premium, which only represents a fraction

of the total corporate yield spread. Recent developments in the structural modelling of credit

spread suggest the inclusion of additional factors. This new strand of the literature has been able

to explain around 25% to 50% of the yield spread, depending on the bond rating, the observation

period, the nature of the available data, and the set of factors under consideration, such as the

business cycle (Elton et al., 2001, Colin-Dufresne et al., 2001, Huang and Huang, 2003, Longstaff,

Mithal, and Neis, 2005). The empirical challenge faced by existing models in matching observed

corporate yield spreads is labeled as the credit risk puzzle. In their attempt to solving this puzzle,

Chen et al. (2008) argue that default rates and Sharpe ratios share a positive correlation, as they

both rise during recessions and are low during booms. However, neither do they account for the

asymmetry in the underlying return dynamics (Ang and Chen, 2002, Ang and Bekaert, 2002) nor do

they consider other risk factors beyond default (Schwarz 2015) to explain the spread. Their model

can explain the default BBB-AAA spread, but not the credit BBB-Treasury spread. Therefore,

they offer a satisfactory channel to understand the default risk puzzle, but they do not fully explain

the credit risk puzzle.

Interestingly, liquidity risk is documented as one of the most important determinants of cor-

porate bond credit spreads. The global financial crisis stemmed from the US subprime mortgage

market in 2006-2007, but has spread to virtually every financial markets around the world. The

most important aspect of this crisis is the deterioration rate of liquidity provision and credit con-

ditions for several asset classes. Structured financial products such as Asset-backed Commercial

Paper (ABCP), Collateralized Debt Obligations (CDO), Corporate Bonds, and even Credit Default

Swaps (CDS) became highly illiquid supporting the idea that illiquidity risk is also an important

driver of the credit market.

While clearly both illiquidity and default risks are key determinants of asset prices, it remains

important to quantify their relative effects. It is also relevant to ask if there are interactions between

these factors, and whether these relations changed substantially in magnitude and quality for pre-

and post-crisis periods. Early contributions on decomposing credit spreads have been limited by

the availability of bond data. Detailed data on high frequency bond transactions in the US are
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now available in TRACE starting from 2004. Longstaff, Mithal, and Neis (henceforth LMN, 2005)

use information on credit default swaps to disentangle the relative contributions of default and

non-default components in corporate yield spreads. Their analysis relies on the assumption that

the CDS premium is an appropriate measure of default risk because it is not affected by liquidity

risk. LMN (2005) find that a large percentage of corporate yield spread is due to default risk. This

result holds for all studied rating categories and is robust to the definition of the riskless curve.

In particular, using credit spreads over Treasury yields, the default component attracts on average

51% of the yield spread. It is important to emphasize that their study period ends before the

latest financial crisis. Furthermore, LMN (2005) find a significant non-default component for all

firms in theie sample. This non-default spread ranges from about 20 to 100 basis points. They

document that the time variation in the non-default corporate bond spread is strongly related to

the dynamics of bond-specific illiquidity measures such as the bid/ask spread and the principal

amount outstanding of corporate bonds.

There is now a growing literature arguing that traditional illiquidity measures of liquidity, do not

capture all liquidity effects, and that well-known measures of credit risk may reflect more than just

default risk. These biases can lead to an underestimation of liquidity effects and an overestimation

of default effects, especially in times of crisis. Intuitively, investors prefer to hold higher yielding

bonds only if they represent compensation for poor liquidity and high default risk. Thus, the

default-versus-liquidity decomposition is clearly important. Many authors proxy pure default risk

with CDS spread. Nonetheless, these spreads did not necessary isolate default risk during the

financial crisis and may have been associated to CDS liquidity risk and issuer solvency risk. For

instance, wide and volatile interest rate spreads were observed in the 2007-2009 financial crisis.

To identify the relative contribution of default and liquidity components in interest rate spreads,

Schwarz (2015) proposes new measures of market illiquidity and interbank credit risk. The author

finds that market illiquidity accounts for a sizeable fraction of credit spreads. Moreover, interbank

bond spreads are three times more sensitive to liquidity risk than credit risk.

As discussed by Friewald, Jankowitsch and Subrahmanyam (2012), corporate bond markets are

less liquid than equity markets, since only a very small proportion of the universe of corporate

bonds trades even as often as once a day. In addition, since corporate bonds commonly trade

in OTC markets, there is no central market place. Hence, conventional transaction metrics of

liquidity do not have the same meaning in these venues, as compared to exchange traded markets.

Edwards, Harris, and Piwowar (2007) investigate the properties of the bid-ask spread. Although the
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bid/ask spread is a direct and potentially important illiquidity indicator, it does not fully capture

many important aspects of liquidity, such as market depth and resilience (Bao, Pan, and Wang,

2011). Using TRACE data, Friewald, Jankowitsch and Subrahmanyam (2012) and Dick-Nielsen,

Feldhütter and Lando (henceforth DFL, 2012) combine several illiquidity proxies to better-account

for the different dimensions of the liquidity risk. Bao, Pan, and Wang (2011) also exploit TRACE

data to construct a variant of the Roll measure of illiquidity.

We now focus our discussion on the salient findings of a few papers. Friewald, Jankowitsch,

and Subrahmanyam (2012) investigate whether liquidity is an important price factor in the US

corporate bond market. In particular, they focus on whether liquidity effects are more important

in periods of financial crises (the GM/Ford crisis and the subprime crisis, both before the 2007-2008

financial crisis) especially for bonds with high default risk. The main focus of their research is to

determine the quantitative impact of liquidity factors, while controlling for default risk, based on

credit ratings and other risk characteristics. They use the yield spread of a corporate bond, defined

as its yield differential relative to that of a risk-free benchmark of similar duration. The benchmark

could be either the Treasury bond or the swap rate curve. Their data cover more than 20,000

bonds, between October 2004 and December 2008. They employ a wide range of liquidity measures

such as observable trading activity variables and several alternative liquidity measures such as the

Amihud, Roll, zero-return, and price dispersion measure. They also employ market valuations from

Markit, bond characteristics from Bloomberg and credit ratings from Standard & Poor’s. They find

that liquidity effects account for approximately 14% of the explained market-wide corporate yield

spread changes. While the trading activity variables are important in explaining the bond yield

spread changes, the liquidity measures exhibit even stronger effects in terms of economic impact.

In particular, measures of trading costs based on transaction data show the strongest effects. They

conclude that the economic impact of the liquidity measures is significantly larger in periods of

crisis, particularly for speculative grade bonds. But their period of analysis ends in 2008.

DFL show how the increase in corporate bond spreads during the subprime crisis can be at-

tributed to escalating bond illiquidity. They performed a principal component analysis over eight

liquidity risk proxies that combine pure price effects and quantity-price effects. They retained the

first factor as a measure of illiquidity. This factor is an equally weighted sum of four liquidity

variables normalized to a common scale. The four illiquidity variables are measured quarterly

and include the Amihuds measure of price quantity impact, a price measure of roundtrip cost of

trading and the variability of the two measures. To analyze variations in credit spreads they con-
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sider different control variables such as default risk, taxes, and the general economic environment.

They did not use CDSs sold on these bonds to measure default risk. Their main conclusion is

that liquidity risk became very important after the subprime crisis especially for investment grade

bonds. For speculative grade bonds, the total spread explained by liquidity risk was 24% during

the pre-subprime period and 23% during the post-subprime crisis. For investment grade bonds,

the ratio increased significantly between the two periods ranging from 3% to 8% during the pre-

subprime period (according to the ratings) to 23% to 42% during the post-subprime crisis. DFL

also looked at the effect of the nature of the bond underwriter and the industry origin on bond

illiquidity. Specifically, they analyzed the illiquidity of bonds underwritten by Bear Stearns and

Lehman Brothers and compared them with the illiquidity of bonds underwritten by other banks.

They found a small effect for Bear Stearns, which was acquired by J.P.Morgan. However, they

document a big jump in the illiquidity index of bonds underwritten by Lehman Brothers during

the period around the default of the bank followed by some persistence after the bankruptcy date

(September 15, 2008). By comparing the illiquidity index of bonds of industrial firms with the

index of bonds of financial firms, they find that bonds of financial firms were more liquid before the

onset of the financial crisis in July 2007 and became less liquid after that date. In conclusion, these

authors observed that bond spreads increased considerably during the financial crisis and found

that bond illiquidity contributed significantly to that widening.

Bao, Pan, and Wang (2011) examine the liquidity of corporate bonds and its asset-pricing

implications using an empirical measure of illiquidity based on the magnitude of transitory price

movements. In their measure, illiquidity arises from market frictions, such as costs and constraints

for trading and capital flows, and its impact to the market is transitory. Relying on transaction-

level data for a broad cross-section of corporate bonds from 2003 through 2008, they find the

illiquidity in corporate bonds to be significant, substantially greater than what can be explained

by bid-ask bounce, and closely linked to liquidity-related bond characteristics. More importantly,

they find a strong commonality in the time variation of bond illiquidity, which rises sharply during

market crises and reaches a high in 2008 during the credit market turmoil. They conclude that the

effects of liquidity during the recent financial crisis actually dominate those of default risk. They

construct their empirical measure of illiquidity by extracting the transitory component in the price

movement of corporate bonds. Their measure of illiquidity is a variant of Roll measure. Roll’s

model transitory price movements arise purely from bid-ask bounce. Here the authors assume that

directions of trades are serially dependent. For a given bid-ask spread, positive serial correlation
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in trade directions, which could be the case when liquidity is lacking and traders break up their

trades, tends to increase the implied bid-ask spreads. In other words the lack of liquidity in an

asset may rise to transitory components in its prices. Since transitory price movements lead to

negatively serially correlated price changes, the negative of the autocovariance in price changes

provides a simple empirical measure of illiquidity. So their model captures a broader impact of

illiquidity on prices, beyond the effect of bid-ask spread, and it does so without relying on specific

bond pricing models. They find important implications of illiquidity on bond yield spreads. They

find a strong positive relation between their illiquidity measure and the age of a bond. Bonds

with smaller issuance tend to have higher illiquidity and the same is true for bonds with higher

idiosyncratic return volatility and smaller average trade sizes. When they aggregate their illiquidity

measure across bonds to examine its time-series properties, they obtain strong commonality in bond

illiquidity that is closely related to market conditions, especially during credit-market crises. This

implies that an important portion of their estimated bond market illiquidity is not contained just in

the bond market. Finally, they obtain that their illiquidity measure can explain up to 84 basis points

in the yield spread. They conclude that the negative autocovariance in price changes observed in

the bond market is much more substantial than merely the bid-ask effect. Our measure of illiquidity

captures more broadly the impact of illiquidity in the market.

Chen et al. (2015) develop a structural credit risk model to examine how the interactions

between liquidity and default affect corporate bond pricing. The model captures realistic time

variation in default risk premium and the default-liquidity spiral over the business cycle. The

authors simultaneously match the average default probabilities, credit spreads, and bid-ask spreads

observed in the data. A structural decomposition reveals that the default-liquidity dependence

account for 10 to 24% of the observed credit spreads. Up to now, the theoretical literature on

structural credit risk modeling has almost exclusively focused on the default component of credit

spreads. The credit spread puzzle refers to the finding that, after matching the observed default

and recovery rates, traditional structural models produce credit spreads for investment grade bonds

that are significantly lower than those in the data. These models do not consider liquidity risk.

This paper introduces liquidity risk into a model with macroeconomic fluctuations (Chen, 2010).

The authors propose a joint modeling of default and liquidity risk over the business cycle. Such

interactions give rise to endogenous default as well as endogenous liquidity, which helps to explain

why corporate bonds with higher credit ratings tend to be more liquid and why corporate bonds

are less liquid during economic downturns. In the model, investors face uninsurable idiosyncratic
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liquidity shocks, which increases their costs of holding corporate bonds. Market illiquidity arises

endogenously when investors have to search for dealers to intermediate transactions with other

investors not yet hit by liquidity shocks. In the meantime they incur costs of having to hold

onto the bonds. Moreover default risk affects the liquidity discount of corporate bonds. Heavier

liquidity discounts make it more costly for firms to refinance/roll-over their maturing debt, hence

raising the probability of default. Thus, a default-liquidity spiral arises: when secondary market

liquidity deteriorates, equity holders are more likely to default, which in turn worsens secondary

bond market liquidity even further. The calibration focuses predominantly on bonds with a 10-

year maturity although they authors also investigate 5-year maturity bonds. Usually models in the

finance literature consider default risk and liquidity risk as independent. The actual model is much

more general and considers that both liquidity and default are linked. To quantify the interaction

between default and liquidity, they propose a structural decomposition of credit spreads that nests

the common additive default-liquidity decomposition. As in Longstaff et al. (2015) they first

identify the default component in the total credit spreads of a corporate bond by pricing the same

bond in a perfectly liquid market but using the default threshold endogenously derived from the

full model with liquidity frictions. After subtracting this default component, they identify the

remaining credit spread as the liquidity component. In fact they have four components in the

credit spread: a pure default component, a pure illiquidity component, a liquidity-driven default

component, and default-driven illiquidity component. With the 10-year maturity, they find that

the interaction terms account for about 10% of the total credit spread of AAA/Aa rated bonds

and up to 24% of the total spread of BB rated bonds across the two aggregate states. Overall for

BBB-rated bonds, their model gives a satisfactory match for 10-year credit spreads: in good state,

the model predicts 182 bps while the data has 150 bps; in bad state, they have 261 bps in the

model versus 262 bps in the data. The match of default probabilities for BBB-rated bonds is also

good: the model predicts a 10-year cumulative default probability of 7.9% while it is 7% in the

data. They also have good results for AAA/AA bonds. The results are less satisfactory for 5-year

maturity.

3 Model

We extend Merton’s (1974) bond pricing model to explicitly account for the asymmetry in the

underlying distribution. We refer to the benchmark specification as the symmetric model whereas

the new specification is termed as the asymmetric model.
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3.1 Asymmetric distribution for bond pricing

To highlight the role asymmetry in the pricing of risky bonds, we use the split normal distribution

introduced by Gibbons and Mylroie (1973) to model random changes in the firm value over time.

We choose this distribution as it can accommodate empirically plausible values of asymmetry - a

key feature in our analysis -, nests the standard Gaussian distribution, and is analytically tractable.

See John (1982) for details. Recently, the split normal distribution has been successfully employed

by Feunou et al. (2013) to model downside equity market volatility.

Denote by I[•] an indicator function which takes values equal to either one or zero, depending on

whether the target condition is met or not. The density function of a split normal random variable

is given by

sn (z;m,σd, σu) = C

(
exp

(
−1

2

(
z−m
σd

)2
)
I[z≤m] + exp

(
−1

2

(
z−m
σu

)2
)
I[z>m]

)
, (1)

where m is the mode, C =
√

2/π (σd + σu)−1 is a normalizing constant, σd > 0 and σu > 0 are

the left (down) and right (up) hand side standard deviations, respectively. Specifically, up to a

constant term, σd =
√

(1− 2/π)−1 var (Z|Z ≤ m) is the standard deviation conditional on z being

less than the mode (downside standard deviation), whereas σu =
√

(1− 2/π)−1 var (Z|Z > m) is

the standard deviation conditional on z being greater than the mode (upside standard deviation).

It is obvious that the split normal distribution is flexible enough to accommodate various levels of

asymmetry. Actually, if σd > σu the split normal distribution is left-skewed - fatter left tail and

slimmer right tail than standard normal - and the ”balance of risk”, Pr (Z ≤ m) = σd
σd+σu

, is greater

that 0.5. Equivalently, when σd < σu we obtain the opposite feature, that is, slimmer left tail and

fatter right tail than standard normal. Finally, if σd = σu the split normal density reduces to the

standard - symmetric - normal which exhibits ”balanced downside and upside risks”.

Alternative parameterizations of the split normal distribution are discussed in Johnson et al.

(1994) and Britton et al. (1998). For instance, the split normal distribution can be parameterized

in terms of a mean E (Z) = µ, a variance var (Z) = σ2 and a normalized skew parameter termed as

Pearson mode skewness s = (µ−m) /σ. The functional relationships between these new parameters

and the initial ones are as follows

σ2 = (1− 2/π) (σu − σd)2 + σdσu,

s =
√

2/π (σu − σd) /σ, (2)

µ = m+ σs = m+
√

2/π (σu − σd) .
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Clearly, the distribution is skewed to the left for s < 0, that is when σd > σu. A right-skewed

distribution is induced by s > 0 or σd < σu. If σd = σu then s = 0 and the distribution boils down

to the - symmetric - normal distribution.

Note that the third standardized central moment measure of skewness (sk = E

((
Z−µ
σ

)3
)

) is

related to the Pearson mode skewness (s) according to

sk = s
(
1− (π − 3) s2

)
. (3)

Figure 1 shows three split normal densities for

(m = 0, σd = 1, σu = 1)⇔ (m = 0, σ = 1, s = 0)− standard normal −,m = 1, σd =

(√
8− 3π

2 +
√

π
2

)
2

, σu = σd −
√
π

2

⇔ (m = 1, σ = 1, s = −1)− left skew −,

m = −1, σd =

(√
8− 3π

2 −
√

π
2

)
2

, σu = σd +

√
π

2

⇔ (m = −1, σ = 1, s = 1)− right skew − .

This asymmetric property of the split normal distribution is at the heart of our analysis which

aims at distinguishing the downside risk of loss from the upside potential of gains in the pricing of

a risky bond.

From the density formula, it follows that the cumulative distribution Pr (Z ≤ z) of a split normal

random variable is

SN (z;m,σd, σu) = C
√

2πσdΦ
(
z−m
σd

)
I[z≤m] +

[
1− C

√
2πσu

(
1− Φ

(
z−m
σu

))]
I[z>m], (4)

where Φ (•) is the cumulative standard normal distribution. Hence, the α-quantile of a split normal

distribution may be calculated as

SN−1
m,σd,σu

(α) = m+ σdΦ
−1
(

α
C
√

2πσd

)
I[α≤ σd

σd+σu
] + σuΦ−1

(
α+C

√
2πσu−1

C
√

2πσu

)
I[α> σd

σd+σu
], (5)

where σd
σd+σu

is the probability of the split normal variable being less than the mode.

3.2 Pricing formula

The cash flows at maturity T of a zero-coupon risky bond are

$1 if V (T ) > D

$ (1− L) if V (T ) < D (6)
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Figure 1: Standard Normal, Left-Skewed and Right-Skewed Split Normals
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This figure presents the standard normal (solid line), left-skewed (dotted line) and right-skewed (dash-dotted line)

split normal densities for different sets of parameters.
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where D is the default boundary, that is, the zero-coupon risky bond defaults only at maturity T if

the firm value at maturity V (T ) falls below D (Merton 1974).2 The loss given default L measures

various default costs. When default occurs, bondholders receive a constant fraction of the payoff

(1− L), also defined as recovery rate.

For simplicity, we consider the time-T cash flow to boundary log-ratio which is defined as

v (T ) = log

(
V (T )

D

)
. (7)

The corresponding stochastic process v (t) is defined over a physical probability space charac-

terized by (Ω,P,F), where {Ft}∞t=0 ∈ F are progressive filters on F . Girsanov’s change of measure

formula dQ
dP |FT = ZT , T <∞ allows to relate the risk neutral probability measure Q to the physical

measure P. Under both measures, the dynamics of v (t) are

dv (t) =

(
µ− δ − σ2

2

)
dt+ dZP, (8)

dv (t) =

(
rf − δ −

σ2

2

)
dt+ dZQ, (9)

where µ is the expected return, δ is the dividend yield and rf is the risk-free rate. We further

assume that dZP and dZQ, respectively under the P and Q probability measures, follow a zero-

mean split normal distribution sn
(
m = −

√
2/π (σu − σd)

√
T , σd

√
T , σu

√
T
)

with a mode (m), a

downside volatility (σd
√
T ) and an upside volatility (σu

√
T ). All parameters in Equations (8) and

(9) are constant. One can easily check that this split normal distribution is centered around its

mean µ = m +
√

2/π (σu − σd)
√
T = 0. This specification nests the benchmark model of Merton

(1974), which is obtained by setting σd = σu = σ. It follows that

v (T ) |v (0) ∼ SNP

(
mP
v , σ

2
dT, σ

2
uT
)
, (10)

∼ SNQ

(
mQ
v , σ

2
dT, σ

2
uT
)
, (11)

where σ2 = (1− 2/π) (σu − σd)2 + σdσu, mP
v = v (0) +

(
µ− δ − σ2

2

)
T −

√
2/π (σu − σd)

√
T ,

mQ
v = v (0)+

(
rf − δ − σ2

2

)
T −

√
2/π (σu − σd)

√
T , and SN (•) is the cumulative split normal dis-

tribution. Thus, the expected firm value at maturity under the physical measure (µPv) is EP (v (T )) =

v (0)+
(
µ− δ − σ2

2

)
T and its risk-neutral counterpart (µQv ) is EQ (v (T )) = v (0)+

(
rf − δ − σ2

2

)
T

or µPv − θσT , where θ = (µ− rf ) /σ stands for the Sharpe ratio.

2The default boundary D is set to the face value of debt in the standard setup of Merton (1974) model. Subsequent

studies by Leland (2004) and Davidenko (2006) argue that the default boundary is a portion (70% to 75%) of the

face value of debt.
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The cumulative density function Pr (v (T ) ≤ v∗) under the P-measure is

SNP

(
v∗;mP

v , σd
√
T , σu

√
T
)

= Cv
√

2πσd
√
TΦ

(
v∗ −mP

v

σd
√
T

)
I[v∗≤mP

v ]

+

[
1− Cv

√
2πσu

√
T

(
1− Φ

(
v∗ −mP

v

σu
√
T

))]
I[v∗>mP

v ],

where Cv =
√

2/π
[
(σd + σu)

√
T
]−1

and Φ (•) is the cumulative standard normal.

Equivalently, the cumulative density function under the Q-measure is

SNQ

(
v∗;mQ

v , σd
√
T , σu

√
T
)

= Cv
√

2πσd
√
TΦ

(
v∗ −mQ

v

σd
√
T

)
I
[v∗≤mQ

v ]

+

[
1− Cv

√
2πσu

√
T

(
1− Φ

(
v∗ −mQ

v

σu
√
T

))]
I
[v∗>mQ

v ]
.

There is default at time T if the firm has a negative terminal value for its cash flow to boundary

log-ratio process v (T ) < 0.

Thus, the probability of default under the physical measure is

DP P = SNP

(
v∗ = 0;mP

v , σd
√
T , σu

√
T
)

= Cv
√

2πσd
√
TΦ

(
−mP

v

σd
√
T

)
I[0≤mP

v ]

+

[
1− Cv

√
2πσu

√
T

(
1− Φ

(
−mP

v

σu
√
T

))]
I[0>mP

v ]. (12)

Similarly, the probability of default under the risk-neutral measure is

DPQ = SNQ

(
v∗ = 0;mQ

v , σd
√
T , σu

√
T
)

= Cv
√

2πσd
√
TΦ

(
−mQ

v

σd
√
T

)
I
[0≤mQ

v ]

+

[
1− Cv

√
2πσu

√
T

(
1− Φ

(
−mQ

v

σu
√
T

))]
I
[0>mQ

v ]

= Cv
√

2πσd
√
TΦ

(
−mP

v

σd
√
T

+ θd
√
T

)
I
[0≤mQ

v ]

+

[
1− Cv

√
2πσu

√
T

(
1− Φ

(
−mP

v

σu
√
T

+ θu
√
T

))]
I
[0>mQ

v ]

= Cv
√

2πσd
√
TΦ

(
SN−1

0

(
DP P)

σd
√
T

+ θd
√
T

)
I
[0≤mQ

v ]
(13)

+

[
1− Cv

√
2πσu

√
T

(
1− Φ

(
SN−1

0

(
DP P)

σu
√
T

+ θu
√
T

))]
I
[0>mQ

v ]

15



where SN−1
0

(
DP P) = SN−1

m=0,σd
√
T ,σu

√
T

(
DP P) = −mP

v is defined as the DP P-quantile of a zero-

mode split normal with downside and upside standard deviations σd
√
T and σu

√
T . Accordingly,

we define the downside volatility weighted Sharpe ratio as θd = (µ− rf ) /σd = (σ/σd)× θ and the

upside volatility weighted Sharpe ratio as θu = (µ− rf ) /σu = (σ/σu)× θ.

When downside and upside standard deviations are equal, that is σd
√
T = σu

√
T = σ

√
T , the

quantile function of the corresponding zero-mode split normal distribution implies

SN−1
0

(
DP P

)
= σ
√
TΦ−1

(
DP P

)
. (14)

By combining Equations (13) and (14), we find for the symmetric case that

DPQ = Φ
(

Φ−1
(
DP P

)
+ θ
√
T
)
. (15)

Thus, the risk-neutral default probability formula in Equation (13) nests Merton’s (1974) specifi-

cation which assumes a standard Gaussian distribution.

Recall that the price of a zero-coupon risky bond which pays off in T periods is computed as

BT
0 = e−rfTEQ

0

(
1− I[v(T )<0]L

)
,

= e−rfT
(

1− L×DPQ
)
, (16)

where L is the constant loss given default.

By defining the yield to maturity of a zero-coupon j-rated risky bond as

yj = − 1

T
log
(
BT
j,0

)
,

one can express the credit spread as

yj − rf = − 1

T
log
(

1− L×DPQ
j

)
, (17)

where the formula of DPQ
j is given by Equation (13). Similarly, we can define the BBB-AAA

default spread as

SP defaultBBB−AAA = − 1

T
log

(
1− L×DPQ

BBB

1− L×DPQ
AAA

)
. (18)

4 Empirical analysis of the asymmetric model

We now assess the empirical ability of the asymmetric default model to match the historical spreads.

16



4.1 Data and empirics: sample from 1974 to 1998

We benchmark our study to the work of Chen et al. (2009). We first reproduce their Merton (1974)

implied default spreads. We then illustrate the role of asymmetry in the pricing of risky bonds by

assuming split normal innovations for the cash flow to boundary log-ratio dynamics. Asymmetry

appears to be a key feature in the analysis of higher-order risk behaviors, such as downside risk, for

US equity markets (Ang and Chen, 2002), international equity markets (Ang and Bekaert, 2002),

government bond markets (Fujiwara et al., 2013), asset allocation (Jondeau and Rockinger, 2006)

and consumption-based pricing relationships (Dionne et al., 2013).

To reproduce Chen et al.’s (2009) results, we collect (1974-1998) monthly stock data from CRSP

and aggregate them by rating categories. To compute the Sharpe ratio for a typical firm, Chen et

al. (2009) use equity returns arguing that, for their sample period, equity data are more reliable and

liquid than bond data. We also collect data on 1- and 4-year cumulative default probabilities from

Moodys over the same period. According to Moody’s 2005 annual report, the 4-year cumulative

default rates over 1970-2001 period for BBB and AAA firms are 1.55% and 0.04%, respectively.

Similarly, the estimated 10-year BBB and AAA cumulative default rates are 4.89% and 0.63%,

respectively. Consistent with its historical level during the period of analysis, we use a loss given

default rate of 55.1%. Finally, to reproduce an equivalent measure of the historical Moody’s BBB-

AAA total bond spreads publicly provided by the Federal Reserve, we use bonds with similar

maturity range from the Warga (1998) fixed income database, as in Dionne et al. (2011). The

reason for choosing Warga data source instead of Federal Reserve index is that it allows to specify

the sector, the rating category, and the maturity. Our average BBB-AAA spread is 140 bp and is

comparable to the avarage Moody’s BBB-AAA index spread of 109 bp.

We calibrate Merton’s model-implied spreads based on the average Sharpe ratio for a typical

BBB-rated firm. The Sharpe ratio is defined as the ratio of the firm stock excess return to the stock

return volatility. The average excess return over the 1974-1998 sample period is equal to 6.71%.

Under the symmetric (gaussian) Merton setting, the volatility estimate is σd = σu = σ = 32.08%.

The resulting Sharpe ratio of θ = 6.71%/32.08% = 0.21 is consistent with the value used by Chen et

al. (2009). By contrast, under the asymmetric Merton setting, the split normal distribution implies

a downside volatility σd = 23.04% that is 1.3 times larger than its upside counterpart σu = 18.02%.

The corresponding equity return sample distribution is left-skewed with a Pearson mode skewness

s of −0.19. Moreover, the left-side volatility weighted Sharpe ratio θd = 6.71%/23.04% = 0.29 is
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smaller than the right-side volatility weighted Sharpe ratio θu = 6.71%/18.02% = 0.37 because

there is more variability in the lower part than in the upper part of the return distribution. This

empirical result provides more evidence for the downside risk of loss than the upside potential of

gain in equity markets from 1974 to 1998.

Table 1 reports the model implied spreads for various Sharpe ratio values. Panel A gives the

results for the Merton asymmetric model and Panel B presents results for the Merton symmetric

case. Note that the left-side and right-side Sharpe ratios are both higher in the asymmetric case

(θd = 0.29, θu = 0.37) relative to the symmetric case (θu = θd = θ = 0.21). Intuitively, the fact that

both σd and σu are smaller than σ reflects a tighter dispersion in each half-support distribution as

compared to the observed variability over the entire support of the empirical distribution.

In this setup, the Sharpe ratio is clearly a key driver of the credit spread variability, since

this ratio quantifies the level of risk-return trade-off. As shown in Panel A of Table 1, the bond

spread values generated by the symmetric distribution are nearly identical to the empirical findings

of Chen et al. (2009) for the Merton (1974) model. Moreover, we find that the asymmetric

specification (Panel B) delivers higher BBB-AAA default spreads than the symmetric benchmark

model (Panel A). When the parameter values are calibrated to their historical levels, 4-year BBB-

AAA spreads are about 54.9 bp for the symmetric benchmark model and 78.8 bp for the asymmetric

split normal model. Thus, by specifying a flexible asymmetric return distribution, the 4-year model-

implied spread increases by 43.53%=(78.8 bp/54.9 bp-1). For a maturity of 10 years, we observe an

increase of 47.98%=(109.2 bp/73.8 bp-1) in the calibrated spread when moving from the symmetric

to the asymmetric specification. In addition, the asymmetric split normal model yields a BBB-

AAA spread that is much closer to the historical level. Specifically, the asymmetric split normal

model explains 78.00%=(109.2 bp/140 bp) of the 10-year historical BBB-AAA spread relative to

52.71%=(73.8 bp/140 bp) for the symmetric Gaussian model.
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Table 1: Model-implied BBB-AAA spreads for different Sharpe ratios (Jan. 1974 to Dec. 1998)

4-year maturity 10-year maturity

Sharpe ratio BBB AAA BBB-AAA BBB AAA BBB-AAA

Panel A: Symmetric model σd = σu = σ; s = 0

θd = θu = θ Spreads in basis points

0.15 44.0 1.6 42.5 67.7 12.1 55.7

0.20 55.0 2.2 52.8 88.2 17.4 70.8

0.21 = θ∗ 57.2 2.4 54.9 92.4 18.6 73.8

0.25 68.1 3.0 65.1 112.8 24.7 88.2

0.30 83.7 4.1 79.6 141.8 34.3 107.6

0.35 102.0 5.6 96.5 175.2 46.6 128.6

0.40 123.4 7.4 116.0 212.9 62.2 150.8

Panel B: Asymmetric model σd = 1.3σu; s = −0.19

θd θu = 1.3θd

0.15 0.195 44.6 1.6 43.0 69.3 12.3 57.1

0.20 0.260 55.9 2.2 53.7 90.9 17.8 73.1

0.25 0.325 69.5 3.1 66.5 117.2 25.4 91.8

0.29 = θ∗d 0.372 = θ∗u 82.7 4.0 78.8 142.6 33.5 109.2

0.30 0.390 85.8 4.2 81.6 148.5 35.5 113.0

0.35 0.455 105.0 5.7 99.4 184.9 48.5 136.4

0.40 0.520 127.5 7.6 119.9 226.6 65.2 161.5

The four-year BBB (AAA) default rate is 1.55% (0.04%). The 10-year BBB (AAA) default rate is 4.89% (0.63%).

The expected loss rate is 55.1%. For the symmetric cash flow distribution with σd = σu = σ, the downside and

upside Sharpe ratios are equal θd = θu = θ and the Pearson mode skewness is s = 0. For the asymmetric cash

flow distribution with σd = 1.3σu, the upside Sharpe ratio is 1.3 times the downside Sharpe ratio and the Pearson

mode skewness is s = −0.19. The empirical Sharpe ratio estimates for the symmetric and asymmetric (downside and

upside) models are θ∗ = 0.21, θ∗d = 0.29 and θ∗u = 0.372, respectively.
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These empirical results underscore the importance of higher-order risks and higher-order risk

behaviors in the determination of credit spreads and the pricing of corporate bonds.

4.2 Data and empirics: sample from 2008 to 2014

To contrast our empirical findings with most recent events, we extend our analysis to the period

from 2008 to 2014 where bond transaction data are fully disseminated.3 Specifically, we collect

firm level data connecting equity and fundamental variables to bond transaction data. Equity and

fundamental data are collected from the Bloomberg terminal. Transaction data are collected from

TRACE. For a given firm i, we compute the leverage ratio as the total debt to total assets. Total

debt equals the short term debt plus half the long term debt. The firm’s asset level and volatility

are backed out from calibrating Merton model to match the firm’s market capitalization and the

observed outstanding debt. Firm level distance to default is given by

DDi =
ln(

Vi,0
Di

) + (µi,A −
σ2
i,A

2 )T

σi,A
√
T

(19)

where Vi,0 is the total assets of the firm at time 0, σi,A is the volatility of assets, µi,A is the asset

return proxied by the firm’s average weighted cost of capital (i.e. the cost of debt plus the cost of

equity), Di is the total debt as defined earlier. The time to maturity is denoted by T , and DDi is

the distance to default. Summary statistics for fundamental variables are presented below. Firms

are grouped by rating categories according to Bloomberg assigned default probability and Moody’s

rating scheme. We use firm-specific fundamentals to compute a firm level sharpe ratio as:

θi =
µi,A − rf
σi,A

(20)

where µi,A and σi,A are obtained from the Merton model. The risk free rate rf is proxied by the on-

the-run treasury yield with corresponding maturity obtained from Bloomberg. Credit spreads are

calculated as the difference between the bond yield and the risk free rate proxied by the treasury

yield with the same maturity.4 We opt for Bloomberg default probability data as their system

covers about the full universe of public companies in North America whereas Moody’s notation

system rates less than 20% of the companies. We then map the Bloomberg default probabilities to

Moody’s rating letters using the appropriate default probability bucket for each rating category.

3Bond data are available in TRACE since 2004, yet about 99% of the bonds records in the system are fully

disseminated starting from 2008.
4Daily data on the on-the-run Treasury rates for all available maturities (1 month to 30 years) allow us to construct

a daily risk-free curve for any specific maturity.
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Tables 2 and 3 present the descriptive statistics on fundamental variables for AAA-rated and

BBB-rated firms, respectively. Among the variables, the leverage is computed as total debt to total

asset ratio. One, four, and ten years cumulative default probabilities are extracted from the Merton

model. The distance to default (DD), inverse distance to default (IDD), and asset volatility are

also backed out from the Merton model. We include the inverse distance to default among our

variables for comparison with previous studies. Expected asset returns are total equity returns and

bond returns. Returns on Assets correspond to trailing 12 months net income divided by average

total assets. The credit spread is an average of each rating spreads to the risk-free rate (treasury

yield) with equivalent maturity. Finally, the Sharpe ratio is calculated using the difference between

the asset returns and risk-free rate divided by the asset volatility.
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Table 2: Descriptive statistics for AAA–rated US firms (Jan. 2008 to Feb. 2014)

Min Max Mean STD

DP cum 1-year (%) 0.0000 0.0002 0.0001 0.00004

DP cum 4-year (%) 0.0009 0.0124 0.0051 0.0022

DP cum 10-year (%) 0.0031 0.0627 0.0239 0.0124

Leverage 0.2376 0.5960 0.5235 0.0946

Expected Asset Return 0.0249 0.1547 0.0681 0.0156

Expected Asset Return Volatility 0.0190 0.3580 0.1301 0.0436

Return on Asset -0.0264 0.0843 0.0063 0.0079

Credit Spread (bp) 58.3000 213.6000 113.0738 31.5876

Sharpe ratio 0.0013 1.2201 0.4120 0.1402

Distance to Default 4.8042 30.0000 14.9598 4.4108

Inverse Distance to Default 0.0333 0.2082 0.0757 0.0331

Number of Monthly Observations 21836

Number of US Firms 261

Number of US Bonds 1228

The table reports summary statistics on fundamentals for AAA–rated US firms. DP cum 1-year (resp. DP cum

4-year) refers to the Bloomberg one (resp. four) year issuer’s cumulative default probability. The ten year issuer’s

cumulative default probability (DP cum 10-year) is extrapolated. Leverage is the ratio of total debt to total assets.

Expected Asset Return is the Bloomberg estimate of the expected return on debt and equity. Expected Asset Return

Volatility is the standard deviation of Expected Asset Returns. Return on Assets is the trailing 12 months net

income divided by average total assets. Credit Spread is the spread between the bond yield and the interpolated

on-the-run Treasury yield with the same maturity. The Sharpe ratio if the ratio of excess asset returns and asset

return volatility. The distance to default (DD) is the Merton-implied ratio of firm value to debt value and the inverse

distance to default (IDD) is its inverse.
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Table 3: Descriptive statistics for BBB–rated US firms (Jan. 2008 to Feb. 2014)

Min Max Mean STD

DP cum 1-year (%) 0.0010 0.0052 0.0022 0.0011

DP cum 4-year (%) 0.1637 0.9806 0.3190 0.1232

DP cum 10-year (%) 0.0274 2.5795 0.7960 0.4221

Leverage 0.4131 0.9413 0.7830 0.1100

Expected Asset Return 0.0256 0.1761 0.0628 0.0178

Expected Asset Return Volatility 0.0249 0.9294 0.2417 0.1244

Return on Asset -0.0689 0.0498 0.0020 0.0056

Credit Spread (bp) 187.9000 467.2000 270.2893 53.533

Sharpe ratio 0.00009 1.9572 0.1858 0.1016

Distance to Default 1.4032 8.9475 4.9522 1.5976

Inverse Distance to Default 0.1118 0.7127 0.2338 0.1092

Number of Monthly Observations 20025

Number of US Firms 324

Number of US Bonds 1399

The table reports summary statistics on fundamentals for BBB–rated US firms. DP cum 1-year (resp. DP cum

4-year) refers to the Bloomberg one (resp. four) year issuer’s cumulative default probability. The ten year issuer’s

cumulative default probability (DP cum 10-year) is extrapolated. Leverage is the ratio of total debt to total assets.

Expected Asset Return is the Bloomberg estimate of the expected return on debt and equity. Expected Asset Return

Volatility is the standard deviation of Expected Asset Returns. Return on Assets is the trailing 12 months net

income divided by average total assets. Credit Spread is the spread between the bond yield and the interpolated

on-the-run Treasury yield with the same maturity. The Sharpe ratio if the ratio of excess asset returns and asset

return volatility. The distance to default (DD) is the Merton-implied ratio of firm value to debt value and the inverse

distance to default (IDD) is its inverse.

23



We now present the model-implied spreads as per Equations (13) and (17) using the new sample

period (Jan. 2008 to Dec. 2014) and compare them with their historical levels. From 2008 to 2014,

the 4-year BBB and AAA cumulative default rates estimated for the period are 0.319% and 0.01%,

respectively. The 10-year BBB and AAA cumulative default rates estimated for the period are

0.796% and 0.02%, respectively.

In our new sample, the average Sharpe ratio of a typical firm is approximately θ = 0.186. The

downside (resp. upside) volatility weighted average Sharpe ratio is θd = 0.590 (resp. θu = 0.220). It

is important to recall that Sharpe ratios for the new sample period (2008-2014) are computed from

expected asset (but not equity) returns. The sample distribution of these asset returns is positively-

skewed with a Pearson mode skewness s of 0.90 and departs from normality according standard

tests (Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling). Details are available from

the authors. Thus, our new data set differs from that used in Chen et al. (2009) in many ways.

Our underlying distribution is based on asset return dynamics, whereas Chen et al. (2009) use

equity returns. Moreover, Their average BBB-AAA spread is equal to 109 bp (1974-1998) while we

have 157 bp (2008-2014). The major difference between Chen et al.’s (2009) empirical investigation

and ours is however about default probabilities. Our period of analysis is characterized by lower

probabilities of default. For instance, the 4-year cumulative default probability for BBB-rated

bonds during the period 1970-2001 is 1.55%, that is five times higher than the default rate in 2008-

2014 (0.32%). According to Standard and Poors, the annual average default probability during

our period of analysis is 0.16% for all maturities and sectors. Firms in the financial sector are

not included in our study. This obviously implies lower average default model-based BBB-AAA

spreads for the new sample.

Table 4 shows the model-implied spreads for a grid of (downside/upside volatility weighted)

Sharpe ratios including historical average values. Interestingly, the increase in the model implied

BBB-AAA spread delivered by the asymmetric specification with respect to the symmetric bench-

mark model is quite impressive both at 4-year (57.8 bps versus 11.4 bps) and 10-year (92.8 bps

versus 17 bps) maturities.
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Table 4: Model-implied BBB-AAA spreads for different Sharpe ratios (Jan. 2008 to Dec. 2014)

4-year maturity 10-year maturity

Sharpe ratio BBB AAA BBB-AAA BBB AAA BBB-AAA

Panel A: Symmetric model σd = σu = σ; s = 0

θd = θu = θ Spreads in basis points

0.15 9.8 0.5 9.4 13.7 0.6 13.2

0.186 = θ∗ 12.0 0.6 11.4 17.8 0.9 17.0

0.20 12.9 0.6 12.3 19.6 1.0 18.7

0.25 16.8 0.9 15.9 27.5 1.6 25.9

0.30 21.6 1.2 20.4 37.7 2.5 35.2

0.40 34.9 2.3 32.7 67.0 6.0 61.0

Panel B: Asymmetric model σd = 0.4σu; s = 0.90

θd θu = 0.4θd

0.15 0.060 9.3 0.4 8.9 12.4 0.6 11.9

0.20 0.080 12.0 0.6 11.4 17.2 0.9 16.4

0.25 0.100 15.2 0.8 14.5 23.3 1.4 22.0

0.30 0.120 19.3 1.1 18.2 31.0 2.2 28.9

0.40 0.160 30.1 2.1 28.1 51.7 4.9 46.8

0.59 = θ∗d 0.220 = θ∗u 63.8 6.1 57.8 111.3 18.5 92.8

The 4-year BBB (AAA) default rate is 0.319% (0.01%). The 10-year BBB (AAA) default rate is 0.796% (0.02%).

The expected loss rate is 51.4%. For the symmetric cash flow distribution with σd = σu = σ, the downside and

upside Sharpe ratios are equal θd = θu = θ and the Pearson mode skewness is s = 0. For the asymmetric cash flow

distribution with σd = 0.4σu, the upside Sharpe ratio is nearly 0.4 times the downside Sharpe ratio and the Pearson

mode skewness is s = 0.90. The empirical Sharpe ratio estimates for the symmetric and asymmetric (downside and

upside) models are θ∗ = 0.186, θ∗d = 0.590 and θ∗u = 0.220, respectively.
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Figure 2: Credit Spread Dynamics (Jan. 2008 to Dec. 2014)
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We plot monthly time series of BBB-AAA (top panel), BBB (bottom-left panel), and AAA (bottom-right panel) credit spreads

in basis points from Jan. 2008 to Dec. 2014. Each panel shows historical series (solid line) along with asymmetric (dash-dotted

line) and asymmetric (dotted line) model-implied credit spreads dynamics. Model-implied spreads are based on 4-year default

rates. The shaded area represents NBER recession.
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We now turn our focus to the dynamics of the spreads implied by each specification. To this

end, we compute monthly model-implied credit spreads based on monthly time-varying Sharpe

ratios. Figure 2 provides a stark demonstration of the dynamic performance of the asymmetric

model, especially during the 2008 financial meltdown. Indeed from January 2008 to December

2009, the asymmetric model gives an average BBB-AAA spread of 62 bp (versus 32 bp for the

benchmark symmetric model), or nearly 37% (versus 19% for the benchmark symmetric model)

of the average historical spread level (166 bp). Over the entire (2008-2014) observation window,

the historical average BBB-AAA spread is about 157 bp. Clearly, the asymmetric model explains

a larger fraction of the historical spread as it delivers an average spread of 58 bp, whereas the

average symmetric model-implied spread is 39 bp. Note that in figure 2, model-impled spread are

computed with 4-year default rates while historical spreads are constructed from traded corporate

bonds with an average maturity of 7 years. We now investigate to what extent the unexplained

historical spread levels can be related to illiquidity risk factors affecting corporate bonds.

5 Illiquidity component dynamics

Up to now, our analysis has been devoted to understanding the default component of the total

credit spread, in the spirit of Elton et al. (2001), Longstaff et al. (2005) and Chen et al. (2015).

In this section, we shift our attention to the residual of total credit spread that is not explained by

default risk. At this point, we consider the two (default and liquidity) risks as independent, and

therefore, we do not model any explicit default-liquidity dependence between them.

5.1 Illiquidity indexes

We construct bond level illiquidity indexes using bond characteristics and bond trading information.

When bond trading information are missing traders account for the bond age and the amount issued

(size of the trade) to identify the most liquid bonds. For instance, a bond is more liquid when it

is recently issued (young bonds with an age less than 12 months) then it tends to be less liquid

toward illiquid as it becomes older. The dollar amount issued also increases with bond liquidity.

For instance, some portfolio managers use an amount issued of US $5 millions as a cut-off between

most liquid and least liquid bonds.

Illiquidity measures based on trading prices are now widely used (see for instance Dick-Nielsen,

Feldhütter, and Lando, 2012, and references therein). Specifically, we measure the price impact of
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trades using the Amihud measure and the average holding period. The Amihud measure accounts

for the bond absolute return computed at the trade level relative to a dollar volume of trade. The

Amihud is wider for illiquid bonds. The average holding period (hereafter, holding period) is defined

as the volume traded divided by the amount outstanding. The larger the average holding period,

the lower the bond turnover and the less illiquid the bond. We measure the bond implied bid/ask

spread using the imputed roundtrip cost (IRC) and Roll measure (Roll). The IRC is measured

when a roundtrip transaction is identified between three or more market participants suggesting

that at least two dealers are involved in the same trade with a client. A roundtrip transaction

identifies the highest price charged to the client and the lowest price charged to the dealer for

the same transaction. The relative spread between the highest and lowest trading prices is likely

to capture the size of the bid/ask spread of the trade. Roll measures an implied bid/ask spread

by identifying trades with a negative covariance between successive returns. Higher IRC and Roll

measures imply lower liquidity. We measure the liquidity risk using the standard deviation of the

Amihud measure (Amihud risk) and IRC measures (IRC risk). Larger values of these two measures

indicate a higher uncertainty about the bond liquidity, thus higher illiquidity. We measure the zero

trades using the number of days within the month the firm’s single bond did not trade (zero bond)

and we measure the number of days the firm’s all bonds did not trade (zero firm).

The eight illiquidity measures which are based on trading prices are computed daily using a

rolling window of 21 business days (one month). The age and the size are standardized using the

mean and the standard deviation of these measures for the full sample of bonds. For each mea-

sure, we define the benchmark for liquid bonds with respect to one particular measure, as its 5th

percentile value. The spread between the measure and its 5th percentile reflects an illiquidity pre-

mium. Note that our bond level illiquidity variables are highly correlated. Thus, we run a principal

component analysis (PCA) to identify the loading of each original variable in our final illiquidity

index. Our first principal component, which explains more than 50% of the total variability of all

our illiquidity variables, has a nearly uniform loading system. Based on these results, we construct

an illiquidity index that is an equally weighted factor using the original bond level illiquidity mea-

sures. Thus, for each bond we obtain an illiquidity index throughout the study period. These bond

level indexes allows us to build idiosyncratic illiquidity series for each rating class (AAA and BBB).

For the systematic liquidity index, we construct a single index using bond level illiquidity indexes

for all the bonds in the sample.
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5.2 Explaining model-implied residual spreads by illiquidity indexes

We now consider the model-implied residual spread (SP residual), defined as the difference between

the observed historical credit spread (SP observed) and default model-based spread (SP default) for

each rating. To explain model-implied residual spread dynamics, we fit its values to constructed

illiquidity indexes in a contemporaneous regression.

For a given rating class j ∈ {AAA,BBB}, we consider the following specification

SP residualj = αj + βjl
S + γjl

I
j + ej . (21)

where lS is a systematic illiquidity index, lIj denotes an idiosyncratic illiquidity index, and ej is

an error term.

The resulting specification for the BBB-AAA residual spread is

SP residualBBB−AAA = α̃+ β̃lS + γ̃BBBl
I
BBB + γ̃AAAl

I
AAA + εj . (22)

Note that β̃ = βBBB−βAAA by construction, as we assume that bonds are exposed to the same

systematic illiquidity risk factor.

Table 5: Regressions of residual spreads on illiquidity indexes (Jan. 2008 to Dec. 2014)

Symmetric model Asymmetric model

BBB AAA BBB-AAA BBB AAA BBB-AAA

Parameters Est T-stat Est T-stat Est T-stat Est T-stat Est T-stat Est T-stat

Panel A: Eq. (21)

αj 157.26 12.53 81.99 6.59 134.67 5.76 80.26 5.49

βj 41.94 14.34 21.38 10.05 44.01 8.07 22.88 9.15

γj -12.74 -0.92 -3.31 -0.20 -18.39 -0.72 -14.37 -0.73

Panel B: Eq. (22)

α̃ 55.35 2.80 84.19 3.55

β̃ 17.55 5.78 21.34 5.86

γ̃BBB 35.08 2.59 38.35 2.36

γ̃AAA -27.42 -1.25 -91.70 -3.47

R2 (%) 74.29 57.86 42.98 46.86 52.12 41.24

This table shows the results for the regression of residual spread on illiquidity measures by rating class. For each

rating class j (BBB or AAA), we run the regression SP residualj = αj + βj l
S + γj l

I
j + ej . To explain the residual

BBB-AAA spread, we estimate the relation SP residualBBB−AAA = α̃ + β̃lS + γ̃BBBl
I
BBB + γ̃AAAl

I
AAA + εj . We report the

estimated parameters (Est) with their corresponding t-statistics (T-stat).

29



We obtain a set of very interesting results in Table 5. In Panel A, we estimate the residual spread

for each rating class and find that the coefficient associated with the idiosyncratic index of illiquidity

is not significant when we control for the systematic index of illiquidity. This result is important

because, to our knowledge, we are the first to include a systematic risk index in the analysis of

the residual (total minus default) spread. This evidence differs from the one documented by Dick-

Nielsen, Feldhutter and Lando (2012) who find a significant effect with a similar idiosyncratic

index for virtually all rating categories, while not controlling for the systematic index. Moreover,

we observe that the systematic illiquidity effect is positive for both rating classes and is higher for

BBB rating than for AAA rating. This finding corroborates the results of previous studies discussed

in the literature review using only the idiosyncratic illiquidity risk to explain the residual spread.

Overall, the systematic illiquidity risk effect seems more important for corporate bonds than for

Treasury bonds, while the idiosyncratic illiquidity risk component tends to have a weak impact on

the total credit spread.

The results in Panel B are also important. If we concentrate the discussion on the asymmetric

model, we first notice that the BBB-AAA residual spread is positively affected by the common

systematic index of illiquidity. This result confirms those in the previous regressions, where we

observed a larger effect for the BBB rating than for the AAA rating. In addition, the coefficients of

both (AAA and BBB) idiosyncratic indexes of illiquidity are significant meaning that the residual

BBB-AAA spread is function of the characteristics of the different rating classes. Specifically, less

liquid bonds in each rating class have different effects: the positive effect of BBB less liquid bonds

is dominated by the negative effect of AAA less liquid bonds.

Next, we use the model-implied residual spread explained by illiquidity indexes to obtain a time

series of the estimated liquidity component for AAA and BBB rating classes. Figure 3 shows a

sharp increase in the explained residual spread in the middle of the crisis period for BBB-AAA,

BBB-Treasury, and AAA-Treasury spreads. The apparent spikes occur during during the 2008-2009

financial turmoil characterized by a sector wide shortage of liquidity.
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Figure 3: Explained Residual Spread (Jan. 2008 to Dec. 2014)
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We present the time series of BBB-AAA (top panel), BBB (bottom-left panel), and AAA (bottom-right panel) explained

residual spreads based on systematic and idiosyncratic illiquidity indexes for the asymmetric (dash-dotted line) and symmetric

(dotted line) specifications from Jan. 2008 to Dec. 2014. Model-implied residual spreads are extracted based on 4-year default

rates. The shaded area represents NBER recession.
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5.3 Recovering the total spread

By summing default model-based spreads and residual spreads explained by illiquidity index we

obtain a proxy for the total spread that is much closer to observed historical credit spread levels.

Figure 4 plots model-implied total spread dynamics along with the corresponding historical time

series. We observe two distinct spikes inside the shaded NBER recession period. The first spike is

likely related to a surge in liquidity disruption risk while the second is driven by corporate default

risk. We find that our two-step approach, which extracts the default component of the observed

spread based on an asymmetric Merton-type specification, and then explains the residual spread

with illiquidity indexes using a regression, matches nearly 70% (resp. 72.25%, and 77.89%) of the

BBB-AAA (resp. BBB, and AAA) average historical spread from 2008 to 2014.
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Figure 4: Explained Total Spread (Jan. 2008 to Dec. 2014)
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We present the time series of BBB-AAA (top panel), BBB (bottom-left panel), and AAA (bottom-right panel) explained total

spreads based on systematic and idiosyncratic illiquidity indexes for the asymmetric (dash-dotted line) and symmetric (dotted

line) specifications from Jan. 2008 to Dec. 2014. Historical credit spread levels (solid line) are also shown for comparison.

Model-implied residual spreads are extracted based on 4-year default rates. The shaded area represents NBER recession.
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6 Conclusion and discussion

In this paper, we propose a new approach to study the credit risk puzzle with new data obtained

from Bloomberg and covering the post-financial crisis period characterized by low default rates and

high illiquidity in credit markets. Our model can be viewed as an extension of the Longstaff et

al. (2005) and Chen et al. (2008) models. We characterize the importance of higher-order risks in

explaining the observed credit spreads by introducing a split normal asset return distribution in the

Chen at al. (2008) default model, and analyze whether this assumption can deliver realistic credit

spreads. We show that the split normal distribution is more appropriate to explain the default

component of the BBB-AAA spread than the usual gaussian distribution.

We first consider the same study period (1974-1998) as Chen et al (2008), where the average

default rate for BBB bonds is 1.55%. By specifying a flexible asymmetric cash flow return distribu-

tion, we increase the 4-year model-implied spread obtained by Chen et al (2008) by 43.53%=(78.8

bp/54.9 bp-1). For a maturity of 10 years, we observe an increase of 47.98%=(109.2 bp/73.8 bp-1)

in the calibrated spread when moving from the symmetric to the asymmetric modelization. In

fact, the asymmetric split normal model yields a BBB-AAA spread that is much closer to the his-

torical level. Specifically, the asymmetric split normal model explains 78.00%=(109.2 bp/140 bp)

of the 10-year historical BBB-AAA spread whereas the symmetric gaussian model matches only

52.71%=(73.8 bp/140 bp) of the 10-year observed spread.

During our second period of analysis (2008-2014), the average BBB 4-year default probability

collapses to 0.32%, which is very low. Over the entire observation window, the historical average

BBB-AAA spread retrieved from TRACE database is about 157 basis points, much higher than

in the previous period for the same maturity (109 bp). Again, the asymmetric model explains a

larger fraction of the historical spread as it delivers an average default spread of 58 basis point,

whereas the average default spread for symmetric model-implied spread is 39 basis points. The

results suggest, however, that the historical spread between the two ratings must contain at least

another component than default risk.

To refine our study, we then link the residual (non-default-model-implied) spread to two liquidity

risk factors. The first one is extracted from several measures of idiosyncratic illiquidity variables

available in the literature (Longstaff, Mithal, and Neis, 2005; Dick-Nielsen, Feldhütter, and Lando,

2012; Friewald, Jankowitsch, and Subrahmanyam, 2012; and Bao, Pan, and Wang, 2011). We add

to this first factor a systematic risk factor defined as weighted sum of ten illiquidity premiums.
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Continuing the analysis with our asymmetric model to explain the default component, we first

show that the BBB-AAA residual spread is positively affected by the common systematic index

of illiquidity. Moreover, the coefficients of the two idiosyncratic index of illiquidity are significant

meaning that the BBB-AAA residual spread is function of the illiquidity characteristics of the two

different ratings and, surprisingly, the positive effect of BBB bonds is dominated by the negative

effect of AAA bonds.

Our two-step approach, which extracts the default component of the observed spread based on

an asymmetric Chen et al (2008) type specification, and then explains the residual spread with

two illiquidity indexes using a regression, matches nearly 70% (resp. 72.25%, and 77.89%) of the

BBB-AAA (resp. BBB, and AAA) average historical spread from the beginning of January 2008

to the end of December 2014.

It may be worth noting that a fatter-tailed distribution like a split Student-t distribution lies

among the flexible distributions to consider in order to capture asymmetries. See for instance

Fernandez and Steel (1998), and Rubio and Steel (2014), among others.5 We should also emphasize

that although bonds are now much more actively traded, bond markets remain relatively illiquid

as compared to stock markets. For instance in the U.S., only about 1,000 companies out of a

total of 40,000 public companies (according to Bloomberg) have corporate bonds that are traded

in TRACE (about 50,000 total bonds) across different sectors. The sample is even smaller for

straight bullet bonds (around 10,000 bonds). These statistics suggest that one may still need to

bucket the bonds, say by rating category to increase the sample size of the bucket. This common

practice implicitly assumes that bonds in a given rating bucket are homogeneous, although they

are issued by different firms, have different ages and durations. To which extent this conventional

practice affects the empirical results in the literature is still an open question. Ultimately, a possible

refinement of this study would be to consider firms with sufficient bonds and data and implement

our methodology using bond level or firm level credit spreads as opposed to rating bucket level

credit spreads. We expect that within this context, the asymmetric model will perform even

better as it will capture more asymmetric patterns in risks and risk attitudes. Another standard

assumption that we adopt is a fixed loss given default rate given the limited number of defaults.

Yet, some studies provide evidence suggesting that the loss given default rate varies with firms in

the same rating bucket (Altman et al. 2005) and with the business cycle (Dionne et al. 2010).

Thus, considering time varying loss given default rates along with our time varying default rates

5Though richer distributions are desirable, deriving closed-form credit spread expressions might be challenging.
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could increase the default premium relative to total credit spreads. Finally, as we show that the

systematic illiquidity component of credit spreads explains a sizeable fraction of the total premium,

it would be interesting to further analyze the dynamics between default and illiquidity regimes in

the spirits of (Maalaoui et al. 2014), and then model their dependence using a framework similar

to that of Chen et al (2009).
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Appendix

A Higher-order risks in a standard consumption-based equilibrium credit model

To further support our argument that asymmetry matters, we derive a general equilibrium credit

model that is flexible enough to accommodate higher-order risks and rationalize higher-order risk

attitudes – such as downside risk that pertains to a prudent behavior – in the pricing of risky

bonds. We highlight the importance of properly measuring the asymmetric dependence between

the payoff of a risky and our state variable, which is consumption. To this end, we employ the

concept of expectation dependence to extend the pricing assumption of risk aversion (second-order

risk) to prudence (third-order risk).6 Eeckhoudt and Schlesinger (2006) provide an intuitive review

of higher-order risks using lottery pairs. We now introduce the concept of expectation dependence.

A1 Overview of the concept of expectation dependence

The concept of correlation is a commonly-used measure of dependence since the early work of

Galton (1886). However, in some economic and financial analysis with non-normal distributions,

stronger measures of dependence are required to obtain robust stylized facts. A survey of the

literature on assessing statistical dependence is provided by Embrechts (2009).

Let’s consider the concept of quadrant dependence proposed by Lehmann (1966).

Assume x̃ × ỹ ∈ R × R are two continuous random variables. Let Fx(x) and Fy(y) denote the

marginal distributions of x̃ and ỹ. The joint distribution of these two covariates is denoted by

F (x, y).

Definition A.1 (Lehmann, 1966) The random pair (x̃, ỹ) is positive quadrant dependent, denoted

PQD(x̃, ỹ), if

F (x, y) ≥ Fx(x)Fy(y) for all (x, y) ∈ R×R. (23)

One can rewrite this inequality as

Fx(x|ỹ ≤ y) ≥ Fx(x). (24)

To help better understand the concept of positive quadrant dependence, Lehmann (1966, p. 1143)

provides the following intuition of Definition A.1: “Knowledge of ỹ being small increases the prob-

ability of x̃ being small.” Positive quadrant dependence (PQD) is useful to model dependent risks

6In this framework, the assumption of prudent behavior can be extended to the fourth-order risk apportionment

also known as temperance, and so on.
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because contemporaneous innovations in the marginal and conditional cumulative distributions or

changes in downside and upside risks can readily be accounted for. Beyond the family of elliptical

distributions, several other classes of bivariate random variables are PQD. For examples of such

distributions, see Balakrishnan and Lai (2009) and Dionne et al. (2013).

Wright (1987) introduced the concept of expectation dependence which is a weaker definition

of dependence than PQD.

Definition A.2 If

FED(x̃|y) = [Ex̃− E(x̃|ỹ ≤ y)] ≥ 0 for all y ∈ R, (25)

then x̃ is positive first− degree expectation dependent on ỹ.

The collection of all distributions F satisfying Equation 25 is denoted F1. Similarly, x̃ is negative

first-degree expectation dependent on ỹ if Equation 25 holds with the inequality sign reversed. The

set of negative first-degree expectation dependent distributions is denoted G1.

As discussed in Wright (1987, p. 113), a straightforward interpretation of negative FED is

as follows: “When we discover ỹ is small, in the precise sense that we are given the truncation

ỹ ≤ y, our expectation of x̃ is revised upward.” Note that FED is a weaker definition of dependence

than quadrant dependence, but a stronger definition than correlation. This property entails that

bivariate random variables that are positive (negative) quadrant dependent are also first-degree

expectation dependent. However, positively (negatively) correlated random variables are not nec-

essarily positive (negative) first-degree expectation dependent.

Building on a general concept of Nth-degree expectation dependence, Li (2011) suggests the

following weaker definition of dependence.

Definition A.3 If

SED(x̃|y) =

∫ y

−∞
[Ex̃− E(x̃|ỹ ≤ t)]Fy(t)dt (26)

=

∫ y

−∞
FED(x̃|t)Fy(t)dt ≥ 0 for all y,

then x̃ is positive second-degree expectation dependent on ỹ.

The collection of all distributions F satisfying Equation 26 is denoted F2. Similarly, x̃ is negative

second-degree expectation dependent on ỹ if Equation 26 holds with the inequality sign reversed.

The set of negative second-degree expectation dependent distributions is denoted G2.
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Obviously, F1 ⊆ F2 and G1 ⊆ G2 but the converse is not true. Since x̃ and ỹ are positively

correlated when (Lehmann 1966, lemma 2)

cov(x̃, ỹ) =

∫ +∞

−∞

∫ +∞

−∞
[F (x, y)− Fx(x)Fy(y)]dxdy, (27)

=

∫ +∞

−∞
FED(x̃|t)Fy(t)dt ≥ 0,

it follows that cov(x̃, ỹ) ≥ 0 is a necessary condition for (x̃, ỹ) ∈ F2 but the converse is not true.

Thus, there are several bivariate random variables outside the elliptical or Gaussian families that

are FED or SED, because all the positive quadrant dependent distributions are also FED and SED.

The formulas in Equations (26) and (27) show that cov(x̃, ỹ) is the second central cross-moment of

x̃ and ỹ, whereas SED(x̃|y) is related to the second central lower partial cross-moment of x̃ and

ỹ. The latter measure of dependence can be interpreted as a metric of downside risk, computed as

the average of squared deviations below a threshold.

A2 Bond pricing with expectation dependence

The valuation rule of an asset should solve the allocation problem of a typical investor. Let’s

consider a representative investor who can freely trade a risky bond with random payoff x̃t+T at a

price BT
t . This investor is endowed with a preference represented by a utility function u(•) defined

over a state variable, namely, his level of consumption c.7 Thus, the investor must decide how

much of his wealth to allocate between the defaultable bond and consumption through time. The

resulting pricing equation of a defaultable corporate bond with maturity T, in its conditional form,

writes

BT
t = Et

[
M̃t+T x̃t+T

]
, (28)

where BT
t is the corporate bond price at time t, M̃t+T is the pricing kernel, x̃t+T is the payoff of

the corporate bond at time t+ T .

The pricing kernel M̃t+T = M(c̃t+T ) = β
u′(c̃t+T )
u′(ct)

, which depends on a random consumption at

maturity, is the product of the subjective discount factor (β) and the intertemporal marginal rate

of substitution (
u′(c̃t+T )
u′(ct)

).

7The historical variation of consumption through the business cycle is weak, possibly because of the availability of

insurance programs including unemployment protection. Alternative state variables such as labor market indicators

may be used for asset pricing, as they induce higher variability than consumption. For further discussions, see Lettau

and Ludvigson (2001) and Santos and Veronesi (2006), among others.
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The risky bond payoff x̃t+T = 1−I[τ≤T ]Lτ,t+T depends on the default time (τ), and the product

L̃τ,t+T = I[τ≤T ]Lt+T (τ) between the indicator function of default and the loss given default. The

indicator function of default is a discrete variable which takes a value of 1 if (τ ≤ T ) and 0 otherwise.

The loss given default Lτ,t+T is a continuous random proportion falling within the (0,1) interval,

and can be characterized by the Beta distribution. For simplicity, the loss given default is often

assumed constant with a value set to its historical average level in common pricing formulas such

as Equation 16. However, more realistic pricing rules should account for the randomness in L̃τ,t+T

which can be modelled as a mixed continuous-discrete distribution on (0,1) with a probability

mass at 0 for non-default occurrences. The zero-inflated Beta distribution is an example of such

a distribution. The properties of the zero-inflated Beta distribution are discussed in Ospina and

Ferrari (2010), among others.

Equation 28 can be rewritten in terms of covariance as

BT
t =

Et (x̃t+T )

1 +Rf
+ β

covt (u′(c̃t+T ), x̃t+T )

u′(ct)

=
1− Et(L̃τ,t+T )

1 +Rf
− β

covt(u
′(c̃t+T ), L̃τ,t+T )

u′(ct)
, (29)

where Rf = Et (Mt+T )−1 − 1 is the net risk-free rate.

Equivalently, Equation 28 can be stated in terms of the bond return 1 + R̃t+T =
x̃t+T
BTt

as

EtR̃t+T −Rf = −β(1 +Rf )
covt[u

′(c̃t+T ), R̃t+T ]

u′(ct)

= −covt[u
′(c̃t+T ), R̃t+T ]

Etu′(c̃t+T )
. (30)

Huang and Huang (2012) calibrate the expected future cash flow Et (x̃t+T ) with historical levels

and find that the covariance term is not large enough to match the (totality of) observed spreads

based on various structural models of default.

We now generalize the pricing relation to higher-order risks and risk attitudes. Theorem 1 in

Cuadras (2002) allows the following decomposition of the covariance

covt[u
′(c̃t+T ), L̃τ,t+T ] (31)

=

∫ +∞

−∞

∫ +∞

−∞
[F (ct+T ,Lτ,t+T )− Fct+T (ct+T )FLτ,t+T (Lτ,t+T )]u′′(ct+T )dLτ,t+Tdct+T .

From the following equality∫ +∞

−∞
[FLτ,t+T (Lτ,t+T |c̃t+T ≤ ct+T )− FLτ,t+T (Lτ,t+T )]dLτ,t+T = EL̃τ,t+T − E(L̃τ,t+T |c̃t+T ≤ ct+T )
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(see Lemma 1 in Tesfatsion 1976), we obtain

covt[u
′(c̃t+T ), L̃τ,t+T ] (32)

=

∫ +∞

−∞
[EL̃τ,t+T − E(L̃τ,t+T |c̃t+T ≤ ct+T )]Fct+T (ct+T )u′′(ct+T )dct+T

=

∫ +∞

−∞
FED(L̃τ,t+T |ct+T )u′′(ct+T )Fct+T (ct+T )dct+T ,

as stated in Theorem 3.1 of Wright (1987). To sign the covariance between marginal utility of

consumption and the bond’s payoff, we cannot use Stein’s (1973) lemma since we do not assume

joint normality. The equivalence between the sign of cov (f (x) , y) and positive (or negative) FED

for any monotone function f (x) is given by Theorem 3.1 in Wright. Thus, the monotonicity of

u′(ct+T ) allows the application of the theorem to get Equation 32.

Using Equation 32 we can split the covariance in terms of FED and the investor’s risk aversion.8

Thus, the pricing relation of Equation 29 becomes9

BT
t =

1− Et(L̃τ,t+T )

1 +Rf︸ ︷︷ ︸
risk−free present value effect

(33)

+β

∫ +∞

−∞
FED(L̃τ,t+T |ct+T )Fct+T (ct+T )[−u

′′(ct+T )

u′(ct)
]dct+T︸ ︷︷ ︸

first−degree expectation dependence effect

=
1− Et(L̃τ,t+T )

1 +Rf

+β

∫ +∞

−∞
FED(L̃τ,t+T |ct+T )Fct+T (ct+T )AR(ct+T )MRSct+T ,ctdct+T ,

where AR(ct+T ) = −u′′(ct+T )
u′(ct+T ) is the Arrow–Pratt absolute risk aversion coefficient andMRSct+T ,ct =

u′(ct+T )
u′(ct)

is the marginal rate of substitution between ct+T and ct.

Equation 30 can also be rewritten as

EtR̃t+T −Rf =

∫ +∞

−∞
FED(R̃t+T |ct+T )Fct+T (ct+T )︸ ︷︷ ︸

consumption risk effect

[− u′′(ct+T )

Etu′(c̃t+T )
]︸ ︷︷ ︸

price of risk effect

dct+T . (34)

Given that Rf = 1
β

u′(ct)
Etu′(c̃t+T ) − 1, we get

EtR̃t+T −Rf (35)

= β(1 +Rf )

∫ +∞

−∞
FED(R̃t+T |ct+T )Fct+T (ct+T )AR(ct+T )MRSct+T ,ctdct+T .

8Assuming a normal distribution for the pair (c̃t+T , L̃τ,t+T ), one can invoke Stein’s lemma to rewrite

covt[u
′(c̃t+T ), L̃τ,t+T ] as covt(c̃t+T , L̃τ,t+T )Et(u

′′(c̃t+T )).
9This representation also holds for any bounded ct and ct+T .
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Equation 33 reveals that a risky bond price is made up of at least two components. The first

term on the right-hand side of Equation 33, is the “risk-free present value effect.” This effect depends

on the expected return of the bond and the risk-free rate. The risk-free present value effect has the

same sign as the expected return. This term captures the “direct” effect of the risk-free present

expected return, which characterizes the bond price in a risk-neutral world. The second piece on

the right-hand side of Equation 33 is termed as the first-degree expectation dependence effect or

the “FED effect.” This term involves the subjective discount factor, the expectation dependence

between the random payoff and consumption, the Arrow–Pratt risk aversion coefficient, and the

intertemporal marginal rate of substitution. The sign of the first-degree expectation dependence

reflects whether the consumption and a risky bond’s payoff tend “on average” to evolve in the same

or opposite directions.

Equation 34 asserts that the credit spread can be assessed as the product of the quantity of

consumption risk and the corresponding price of risk. Here, the quantity of consumption risk is

measured by the FED of the credit spread with consumption. The price of risk is the Arrow–Pratt

risk aversion coefficient times the intertemporal marginal rate of substitution.

Next, we extend the assumption of risk aversion and consider a risk-averse and prudent investor.

Building on the pioneering work of Kimball (1990), Modica and Scarsini (2005) characterize pru-

dence as the aversion towards any increase in downside risk. Note that prudence is often driven by

motives such as precautionary saving. The key to our extension is to integrate the right-hand term

of (32) by parts. Thus, we obtain

covt[u
′(c̃t+T ), L̃τ,t+T ] (36)

= u′′(+∞)covt(L̃τ,t+T , c̃t+T )−
∫ +∞

−∞
SED(L̃τ,t+T |ct+T )u′′′(ct+T )dct+T .

From Equation 27, we know that a negative SED(L̃τ,t+T |ct+T ) implies a negative cov(L̃τ,t+T , c̃t+T )

but the converse is not true. Hence, from Equation 36 we have covt(L̃τ,t+T , c̃t+T ) ≤ 0 is a necessary

but not sufficient condition for covt[u
′(c̃t+T ), L̃τ,t+T ] ≥ 0 for all u′′ ≤ 0 and u′′′ ≥ 0. With a positive

SED function, prudence is also necessary.
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Equations 33 and 34 can be rewritten as

BT
t =

1− Et(L̃τ,t+T )

1 +Rf︸ ︷︷ ︸
risk−free present value effect

+βcovt(L̃τ,t+T , c̃t+T )[−u
′′(+∞)

u′(ct)
]︸ ︷︷ ︸

covariance effect

(37)

+β

∫ +∞

−∞
SED(L̃τ,t+T |ct+T )[

u′′′(ct+T )

u′(ct)
]dct+T︸ ︷︷ ︸

second−degree expectation dependence effect

or

BT
t =

1− Et(L̃τ,t+T )

1 +Rf
+ βcovt(L̃τ,t+T , c̃t+T )AR(+∞)MRS+∞,ct (38)

+β

∫ +∞

−∞
SED(L̃τ,t+T |ct+T )AP (ct+T )MRSct+T ,ctdct+T ,

where AP (ct+T ) =
u′′′(ct+T )
u′(ct+T ) is the index of absolute prudence10, and

EtR̃t+T −Rf (39)

= covt(R̃t+T , c̃t+T )[− u′′(+∞)

Etu′(c̃t+T )
]︸ ︷︷ ︸

consumption covariance effect

+

∫ +∞

−∞
SED(R̃t+T |ct+T )

u′′′(ct+T )

Etu′(c̃t+T )
dct+T︸ ︷︷ ︸

consumption second−degree expectation dependence effect

or

EtR̃t+T −Rf (40)

= β(1 +Rf )covt(R̃t+T , c̃t+T )AR(+∞)MRS+∞,ct

+β(1 +Rf )

∫ +∞

−∞
SED(R̃t+T |ct+T )AP (ct+T )MRSct+T ,ctdct+T .

Equation 37 states that positive correlation is only a necessary condition for all risk-averse and

prudent agents to pay a lower bond price. Using only the covariance term of L̃τ,t+T and c̃t+T

induces a distortion in the pricing formula when the third derivative of the utility function is

different from zero or when the utility function is not quadratic. The pricing condition in Equation

37 involves three terms. The first term on the right-hand side is identical to the one in Equation 33.

The second term on the right-hand side is the “covariance effect.” This term involves the subjective

discount factor, the covariance of bond return and consumption, the Arrow–Pratt risk aversion

10Modica and Scarsini (2005) propose u′′′(x)
u′(x) instead of −u

′′′(x)
u′′(x) (Kimball, 1990) as an alternative candidate to

evaluate the intensity of prudence.
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coefficient, and the marginal rate of substitution. The third term on the right-hand side is called

the second-degree expectation dependence effect or the “SED effect,” which reflects how the second-

degree expectation dependence risk affects the bond price through the intensity of downside risk

aversion. Equation 39 shows that a positive SED reinforces the positive covariance effect to obtain

a positive risk premium. Ultimately, it provides a theoretical equilibrium argument to support the

empirical findings of the asymmetric split normal credit model discussed in Section 3. Note that

the proposed expectation dependence-based credit spread framework will be fitted to actual data

in order to assess its empirical features.

The pricing Equation 40 can be easily extended to third-degree expectation dependence (quan-

tity of risk) and temperance (price of risk) by iterating the integration by parts of Equation 36.

Thus, the proposed expectation dependence pricing framework can explicitly account for higher-

order risks and risk behaviors in the valuation of risky bonds.

B Construction of bond Specific and systematic illiquidity indices

Standards on measuring bond illiquidity have shifted after corporate bond traders started reporting

their Over-the-counter trades providing more accurate bond specific intra-daily trading data. Yet,

traders still rely on common traditional rules on bond trading activities to define their first cut for

liquid bond. For instance, when a bond is first issued it tends to trade frequently for at least a

year then it starts trading less and almost disappears from the trading desk until it trades again

few months before its maturity date. We also observe heavy message traffic from traders offering

bid and ask quotes for those young bonds (Bloomberg bond trading system). Thus, we consider

bond age as one of bond specific measures of illiquidity. As a bond ages it becomes more illiquid.

A second filter used by traders and portfolio managers to identify liquid bonds on the fly is the par

amount outstanding, referred to as the size of the bond. For instance, a bond with a size of US $500

millions or more is likely to be liquid. As size increases with liquidity we consider the inverse size as

an additional bond specific variable increasing with illiquidity. We also compute four more factors

based on intra daily bond level trading activities. Specifically, we measure eight illiquidity variables

as in Dick-Nielsen et al. (2012). We compute the bond daily price impact using the average between

the standardized measures of the daily Amihud and the daily average holding period specific to

a given bond. All daily measures are computed using a 21 business day rolling window. Each

daily measure is standardized by subtracting it from its sample mean and dividing it by its sample

standard deviation. We measure the sample mean and sample standard deviation using all bonds
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in our sample. Amihud measures the absolute price return relative to a one dollar amount of

trade. It increases with illiquidity. The average holding period is the inverse of the turnover and

refers to the ratio between the daily amount outstanding and the daily volume of the trade. The

average holding period indicates how long it will take on average to trade a particular bond. The

higher the average holding period of a bond the more illiquid it is. We measure the bid ask spread

component using the average between standardized daily measures of Roll and Imputed Roundtrip

Cost (IRC). Roll measures the implied bid/ask spread of a trade using the 2 times the square root

of the negative covariance between successive price returns. In other words, when returns bounce

in different directions they are likely to capture the bid/ask spread of the trade. The IRC is a more

explicit measure of bid/ask spread where implicitly we identify the bid and ask prices in a roundtrip

trade between at least a client and two traders. We also measure the liquidity risk component by

taking the average between two measures of liquidity risk defined by taking the standard deviation

of Roll and IRC over our 21 day rolling window. The illiquidity risk variables increase with the

bond illiquidity. Finally, we measure the zero trade component using the average of standardized

measures of bond zero trade and firm zero trade. Both measures compute the number of days a

bond or its firm does not trade within a 21 business day window. Both measures increase with the

illiquidity of the bond. We use the six bond level liquidity components to construct our bond level

illiquidity index. To understand the dynamics of the six measures and how we would aggregate

them to build our index we use support from the principal component analysis. Panel A-1 and Panel

B-1 in Table B1 below report the eigenvalues of the six principal components corresponding to the

factor analysis of our six bond level liquidity factors for AAA- and BBB-rated bonds respectively.

The rst principal component explains respectively 51% and 43% of total dependence for AAA- and

BBB-rated bonds. Panel A-2 and Panel B-2 report the eigenvectors corresponding to the six bond

level liquidity components for AAA- and BBB- rated-bonds respectively. They indicate that the

rst factor is fairly represented by an equally weighted average of the six bond level liquidity factors

especially for the AAA-rated bonds. For BBB-rated bonds the age, the size and the zero trade

measures are less important in the first principal component but become significant in the second

principal component. We reconcile these results and use an equally weighted average of the six

liquidity factors to construct two indices measuring bond specific liquidity for AAA- and BBB-rated

bonds. The measure of the systematic liquidity index is straightforward. We first construct the

same illiquidity indices for all rated bonds in our sample. Specifically, we includes bonds rated from

AAA to BB, where the BB group of bonds includes all bonds rated BB or below. To obtain our
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systematic illiquidity factor we aggregate all illiquidity indices in our bond universe.

This table reports summary statistics on the principal component analysis applied to liquidity

components of straight xed-coupon corporate bonds in the industrial sector. We report principal

components and eigenvectors results in Panel A-1 and A-2 for AAA rated-bonds and Panel B-1

and B-2 for BBB rated-bonds. The covered period ranges from January 2008 to December 2014.
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Table B1: Construction of illiquidity indexes (Jan. 2008 to Dec. 2014)

Panel A-1: Principal components for AAA-rated bonds

Rank Eigenvalue Difference Proportion Cumulative

1st comp. 3.027 1.765 0.505 0.510

2nd comp. 1.261 0.470 0.210 0.715

3rd comp. 0.791 0.318 0.132 0.847

4th comp. 0.472 0.155 0.079 0.925

5th comp. 0.316 0.185 0.053 0.978

6th comp. 0.131 0.022 1.000

Panel A-2: Eigenvectors for AAA-rated bonds

Variables 1st comp. 2nd comp. 3rd comp. 4th comp. 5th comp. 6th comp.

Age -0.421 0.010 -0.481 0.766 -0.059 0.001

Inverse size -0.335 0.222 0.814 0.343 0.240 0.015

Price impact 0.450 -0.279 0.299 0.388 -0.668 -0.180

Bid/Ask 0.452 0.452 -0.113 0.199 0.354 -0.642

Liquidity 0.479 0.400 -0.046 0.235 0.071 0.740

Zero trade 0.270 -0.713 0.031 0.224 0.601 0.083

Panel B-1: Principal components for BBB-rated bonds

Rank Eigenvalue Difference Proportion Cumulative

1st comp. 2.569 1.096 0.430 0.430

2nd comp. 1.473 0.052 0.245 0.674

3rd comp. 0.957 0.306 0.159 0.833

4th comp. 0.651 0.410 0.108 0.942

5th comp. 0.241 0.133 0.040 0.982

6th comp. 0.107 0.018 1.000

Panel B-2: Eigenvectors for BBB-rated bonds

Variables 1st comp. 2nd comp. 3rd comp. 4th comp. 5th comp. 6th comp.

Age 0.140 0.397 0.823 0.298 -0.236 -0.041

Inverse size -0.083 -0.642 0.028 0.755 -0.084 0.041

Price impact 0.514 0.137 -0.040 0.113 -0.724 -0.123

Bid/Ask 0.585 -0.089 0.030 0.077 0.499 -0.627

Liquidity 0.594 -0.086 0.059 -0.024 0.240 0.759

Zero trade -0.117 0.628 -0.390 0.566 0.324 0.109

This table describes the eigenvalues and eigenvectors for the construction of illiquidity indexes based on principal

component (denoted by comp.) analysis .
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