
Production Flexibility and Hedging

Georges Dionne∗ Marc Santugini†

April 24, 2014

∗Finance Department, CIRPÉE and CIRRELT, HEC Montréal, Canada. Email:
georges.dionne@hec.ca.

†Institute of Applied Economics and CIRPÉE, HEC Montréal, Canada. Email:
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Abstract

A risk-averse firm faces uncertainty about the spot price of the

output, but has access to a futures market. The technology requires

both capital and labor to produce the output. Due to the presence of

flexibility in production, the level of capital and the volume of futures

contracts are chosen under uncertainty (i.e., prior to observing the

realized spot price) whereas the level of labor is set under certainty

(i.e., after observing the realized spot price). When there is flexibility

in production, the optimal production decisions are different between

a risk-neutral firm and a risk-averse firm, i.e., the separation result

does not hold. Moreover, flexibility in production implies only partial

hedging with an actuarially fair futures price, i.e., the full-hedging

result does not hold.

Keywords: Hedging, Flexibility, Full-Hedging, Production, Separa-

tion.

JEL Classifications: G1, L2.
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1 Introduction

There are two central results for the optimal behavior of a risk-averse firm

facing a random price and having access to a futures market (Ethier, 1973;

Danthine, 1973; Holthausen, 1979; Feder et al., 1980). The first result states

that production decisions are unrelated to both the distribution of the ran-

dom price and risk-aversion. This statement is known as the separation

result. The second result is called the full-hedging result, which states that,

under an actuarial fair futures price, the firm hedges by selling the entire

production in a futures market regardless of risk aversion. These results

do not hold in the presence of multiple sources of uncertainty such as basis

risk (Paroush and Wolf, 1992) or production risk (Anderson and Danthine,

1983).1

These issues are generally studied in the literature when all production-

related decisions of the firm are made under uncertainty, i.e., prior to observ-

ing the realization of the random price. In other words, there is no flexibility

in production. However, in many industries, the firms are able to adjust pro-

duction upon acquiring new information about the spot price. While capital

inputs require long-term planning, labor inputs can be adjusted more rapidly

so as to modify the final level of production. Yet, little is known in the liter-

ature regarding optimal behavior when the firms have access to the futures

market, but do not have to commit entirely to a certain level of production

prior to the realization of the random price. One exception is Moschini and

Harvey (1992). They study the effect of flexibility in production on optimal

production by comparing the benchmark case of certainty in which the spot

price is equal to the futures price with the case of uncertainty in which the

spot price is random. They show that in general optimal behavior differ

between these two cases.

The purpose of this paper is to study how the presence of flexibility in

production affects the separation and full-hedging results. To that end, we

consider a technology that requires both capital and labor to produce the

1Recently, Dionne and Santugini (2013) showed that, under non-actuarially fair pricing
for the futures input market, the separation result does not hold when entry is considered
in an imperfectly competitive output market (without production flexibility).
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output. The risk-averse firm faces uncertainty about the spot price of the

output, but has access to a futures market. Due to the presence of flexibility

in production, the level of capital and the volume of futures contracts are

chosen under uncertainty (i.e., prior to observing the realized spot price)

whereas the level of labor is set under certainty (i.e., after observing the

realized spot price).

We present three results. First, we show that in the presence of flexibility

in production, the optimal production decisions are different between a risk-

neutral firm and a risk-averse firm.2 Second, we show that the presence

of flexibility does not lead to full-hedging under an actuarial fair futures

price. In other words, the firm does not hedge expected production because

flexibility in production adds a degree of freedom. Third, we consider a

specific parametric model with a Cobb-Douglas production function and a

symmetric binary distribution. In this parametric case, we show that as long

as there is some flexibility in production, the firm hedges partially under

an actuarial fair futures price. Hence, hedging and flexibility in production

are substitutes. This can explain the behavior of the gold mining industry

(Tufano, 1996). In this industry, the firms hedge their selling price for the

next three years by using different contracts including forwards and futures.

It is well documented they hedge only a fraction of their production (the mean

of the industry is 25%) even when their payoff is concave. This means that

they keep the flexibility to adjust their production in function of future price

fluctuations. In other words, we observe in this industry a trade-off between

price protection and production flexibility which rejects full separation. Such

trade-off is also observed in the oil and gas industry.

The paper is organized as follows. Section 2 presents the setup. Optimal

behavior without and with flexibility in production is provided in Section 3.

Finally, Section 4 studies the effect of flexibility in production.

2Our result is different from that of Moschini and Harvey (1992). They show that
optimal behavior under uncertainty depends on the distribution of the spot price and is
different from optimal behavior under certainty when the spot price is equal to the futures
price. We consider another aspect of the separation result since we study the effect of
risk-aversion on optimal behavior under uncertainty.
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2 Preliminaries

Consider a perfectly competitive firm producing a final good using two kinds

of input. Specifically, l ≥ 0 units of labor and k ≥ 0 units of capital are

acquired to produce q ≥ 0 units of output. The technology to transform the

inputs into the output is defined by q = ϕ(k, l) such that ϕ1, ϕ2, ϕ12 > 0 and

ϕ11, ϕ22 < 0. Total cost functions for labor and capital are cl(l) ≥ 0 and

ck(k) ≥ 0, respectively, such that c′l, c
′
k, c

′′
l , c

′′
k > 0.3

The firm sells h units of output on the futures market at price F , and

sells the remaining ϕ(k, l) − h units on the spot market at price S. Given

the firm’s decisions {k, l, h} and the prices {S, F}, the profit function is

π(k, l, h;S, F ) = Sϕ(k, l)− cl(l)− ck(k) + (F − S)h. (1)

The firm is run by a manager who makes decisions so as to maximize

the (expected) utility of profit. Specifically, the manager’s utility function

of profits is u(π(k, l, h;S, F )) such that u′ > 0, u′′ ≤ 0.4 The manager

faces uncertainty about the spot price. Let S̃ be the random spot price

and E[S̃] be the expected spot price where E[·] is the expectation operator.5

Assumption 2.1 holds for the remainder of the paper.

Assumption 2.1. The futures price is actuarially fair, i.e., F = ES̃.

3 Optimal Behavior

Having described the set up, we now study the effect of flexibility in produc-

tion on the separation result and the full-hedging result. We begin with the

definition of flexibility in production. We then recall the optimal behavior

for production and hedging when there is no flexibility. We finally derive the

optimal behavior of the firm when there is flexibility. In the next section, we

3The same analysis can be undertaken with constant unit cost of labor.
4Note that risk aversion is not necessary in our analysis, but the payoff function must

be concave. Such concavity can be explained by market imperfection such as convex tax
functions or asymmetric information in the credit market (Tufano, 1996).

5A tilde distinguishes a random variable from a realization.
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study the effect of flexibility in production on the separation and full-hedging

results.

Definition. Flexibility in production means that the firm is able to

alter production once the spot price is observed. Although the degree of

flexibility varies across industries, capital-intensive industries (compared to

labor-intensive industries) are in general less able to adjust production. For

instance, the gold-mining industry require long-term planning in production,

which significantly reduces flexibility.

In our model, we assume that capital is chosen prior to observing the

spot price whereas labor is chosen after the spot price is known. To fix ideas,

consider the Cobb-Douglas production function, i.e., ϕ(k, l) = k1−αlα, α ∈
[0, 1]. If α = 0, then production exhibits no flexibility since only capital

matters. If α = 1, then there is full-flexibility in production so that output

is essentially set under certainty, i.e., once the spot price is realized.6 When

α ∈ (0, 1), production exhibits a certain level of flexibility, which increases

along with an increase in α.

Benchmark Model of No Flexibility in Production. In order to

study the effect of flexibility in production, we consider the benchmark case

of no flexibility, as usually studied in the literature. To that end, consider

the case in which l = l > 0 is fixed. There is no flexibility in production

because output is essentially chosen prior to observing the spot price. In other

words, the firm commits to production (via the choice of capital) at the time

it chooses the volume of futures contracts. Hence, the firm’s maximization

problem is

max
k,h

E[u(S̃ϕ(k, l)− cl(l)− ck(k) + (F − S̃)h)]. (2)

It follows that the optimal level of capital k∗ satisfies

Fϕ1(k
∗, l) = c′k(k

∗) (3)

for both a risk-averse firm (i.e., u′′ < 0) and a risk-neutral firm (i.e., u′′ = 0).

6When there is full-flexibility in production, the firm faces no risk. Hence, under an
actuarially fair futures price the firm has no desire to sell on the futures market.
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Moreover, the firm sells all production in the futures market, i.e., there is full

hedging,

h∗ = ϕ(k∗, l). (4)

Expressions (3) and (4) summarize the separation result and the full-hedging

result, respectively, when there is no flexibility in production. See Ap-

pendix A for a proof.

General Model with Flexibility in Production. Having recalled the

separation and full-hedging results in the absence of flexibility in production,

we now state the optimal behavior of the firm when there is flexibility. The

maximization problem can be divided into two stages.7 In the first stage,

the firm sets the volume of futures contracts h and acquires the stock of

capital k while facing uncertainty about the spot price of the output. In the

second stage, given the volume of futures contracts and the capital stock, the

firm observes the spot price of the output, and then chooses labor l so that

q = ϕ(k, l) units of output are produced. Hence, the firm does not commit

to a level of production before uncertainty is resolved, i.e., before the spot

price is realized.

We now solve the maximization problem beginning with the second stage.

In stage 2, given the firm’s decisions {k, h} and the spot price S,

l∗(k, S) = argmax
l>0

u(Sϕ(k, l)− cl(l)− ck(k) + (F − S)h) (5)

where all uncertainty has been resolved. The optimal level of labor is implic-

itly defined by the first-order condition

Sϕ2(k, l)− c′l(l) = 0 (6)

evaluated at l = l∗(k, S). In stage 1, given l∗(k, S)

{k∗, h∗} = arg max
k,h≥0

Eu(S̃ϕ(k, l∗(k, S̃))− cl(l∗(k, S̃))− ck(k)+(F − S̃)h). (7)
7See Léautier and Rochet (2012) for a two-stage game in which each firm commits to

a hedging strategy in the first stage and then chooses production or pricing strategies in
the second stage.
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Using the envelope theorem, the first-order conditions are

k : E[(S̃ϕ1(k, l
∗(k, S̃))− c′k(k)) · u′(Π∗(k, h, S̃))] = 0 (8)

h : E[(F − S̃) · u′(Π∗(k, h, S̃))] = 0, (9)

Π∗(k, h, S̃) = S̃ϕ(k, l∗(k, S̃)) − cl(l
∗(k, S̃)) − ck(k) + (F − S̃)h, evaluated at

k = k∗ and h = h∗.

4 Effect of Flexibility in Production

Using (8) and (9), we study the effect of flexibility in production on the sep-

aration and full-hedging results. Proposition 4.1 states that in the presence

of flexibility in production, the level of capital (and thus the level of output

conditional on S) is different between a risk-neutral firm and a risk-averse

firm. In general, the production decision depends on risk-aversion.

Proposition 4.1. In general, flexibility in production removes the separation

result, i.e., risk aversion has an effect on the optimal level of capital and thus

on the level of production.

Proof. Consider first a risk-neutral firm, i.e., u′′ = 0. Then, from (8), k∗ is

defined by

E[S̃ϕ1(k, l
∗(k, S̃))]− c′(k) = 0. (10)

Consider next the case of a risk-averse firm, i.e., u′′ < 0. Suppose to the

contrary that k∗ for a risk-averse firm is also defined by (10). Then, using (8),

it follows that

cov[S̃ϕ1(k, l
∗(k, S̃)), u′(Π∗(k, h, S̃))] = 0 (11)

where cov[·, ·] is the covariance operator. This cannot hold in general since

Sϕ1(k, l
∗(k, S)) is strictly increasing in S and u′(Π∗(k, h, S)) is not inde-

pendent of S. Hence, in general, a risk-averse firm does not behave like a

risk-neutral firm.
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Next, Proposition 4.2 states that an actuarially fair futures price does

not imply the full-hedging result. Recall from (4) that under no flexibility in

production, output is equal to hedging, i.e., h∗ = q∗. When there is flexibility

in production, such statement is not possible since output depends on the

observed spot price through the choice of labor. Hence, in that case, following

the literature of hedging under exogenous uncertain production (Losq, 1982),

the full-hedging result holds when the expected output is equal to the volume

of futures contracts. Let μq∗ ≡ Eϕ(k, l∗(k∗, S̃)) be the expected optimal level

of output.

Proposition 4.2. Suppose that the firm is risk-averse, i.e., u′′(π) < 0. Then,

flexibility in production removes the full-hedging result, i.e., h∗ �= μq∗.

Proof. Suppose to the contrary that h∗ = μq∗. Using Assumption 2.1, (9)

implies that

cov[S̃, u′(Π∗(k∗, μq∗, S̃))] = 0. (12)

This cannot hold in general since u′(Π∗(k∗, μq∗), S̃)), S) is not independent

of S.

In order to understand further the effect of flexibility on the full-hedging

result, we consider the parametric model with a Cobb-Douglas production

function, quadratic cost functions, and a symmetric binary distribution for

the spot price. Proposition 4.3 compares the optimal level of futures con-

tracts h∗ with the expected optimal level of output μq∗ ≡ Eϕ(k, l∗(k∗, S̃)).

The presence of flexibility (i.e., α ∈ (0, 1)) implies partial hedging when the

futures price is actuarially fair. In addition, no flexibility yields the standard

full-hedging result whereas full flexibility (i.e., α = 1) implies that the firm

faces no risk and does not use the futures market.8

Proposition 4.3. Suppose that ϕ(k, l) = k1−αlα, α ∈ [0, 1], cl(l) = wl2/2,

ck(k) = rl2/2, and for ε ∈ (0, F ), S̃ ∼ (1/2 ◦ (F − ε), 1/2 ◦ (F + ε)). Then,

for a risk-averse firm (i.e., i.e., u′′(π) < 0)

8In the case of full-flexibility, output is nonrandom and the distribution of output is
degenerate at µq∗ .
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1. For α = 0, h∗ = μq∗.

2. For α ∈ (0, 1), 0 < h∗ < μq∗.

3. For α = 1, 0 = h∗ < μq∗.

Proof. See Appendix B.
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A No Flexibility in Production

Since ϕ1(k, l) > 0 for all l > 0, let the inverse function of q = ϕ(k, l) be k =

ψ(q, l) so that (2) is rewritten as maxq,h E[u(S̃q−cl(l)−ck(ψ(q, l))+(F−S̃)h)].
The first-order conditions are

q : E
[
(S̃ − c′k(ψ(q, l))ψ1(q, l)) · u′(Γ(q, h, l, S̃))

]
= 0, (13)

h : E
[
(F − S̃) · u′(Γ(q, h, l, S̃))

]
= 0. (14)

where Γ(q, h, l, S̃) = S̃q−cl(l)−ck(ψ(q, l))+(F−S̃)h. Summing (13) and (14)

yields (F − c′k(ψ(q, l))ψ1(q, l))E[u
′(Γ(q, h, l, S̃))] = 0. Since u′ > 0, it follows

that, whether the firm is risk-neutral or risk-averse, the optimal level of

output satisfies F−c′(ψ(q, l))ψ1(q, l) = 0, which is equivalent to (3). Next, let

cov[·, ·] be the covariance operator. Given Assumption 2.1, (14) is equivalent

to cov[S̃, u′(Γ(q, h, l, S̃))] = 0, which is true when h∗ = q∗ = ϕ(k∗, l), as

stated in (4).

B Cobb-Douglas Production

In stage 2, given {k, h, S}, the firm’s maximization problem is

max
l>0

u(Sk1−αlα − wl2/2− rk2/2 + (F − S)h). (15)

Using (6), the optimal level of labor is

l∗(k, S) = α
1

2−αw− 1
2−αS

1
2−αk

1−α
2−α . (16)

Plugging (16) into ϕ(k, l∗(k, S)) = k1−α(l∗(k, S))α yields the stage-2 optimal

level of output as a function of the spot price,

ϕ(k, l∗(k, S)) = α
α

2−αw− α
2−αk

2(1−α)
2−α S

α
2−α . (17)
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Plugging (17) into the profit function yields stage-2 profits as a function of

the spot price, i.e.,

Π∗(k, h, S) = S ·
(
α

1
2−αw− 1

2−αk
1−α
2−αS

1
2−α

)α
k1−α − wα

2
2−αw− 2

2−αk
2(1−α)
2−α S

2
2−α

− rk2/2 + (F − S)h, (18)

= (1− α)α
α

2−αw
−α
2−αS

2
2−αk

2(1−α)
2−α − rk2/2 + (F − S)h. (19)

At stage 1, the firm’s maximization problem is

max
k,h

Eu(Π∗(k, h, S)) (20)

where Π∗(k, h, S) is defined by (19). Using the binary distribution for S̃, k∗

and h∗ are uniquely defined by the first-order conditions

k :

(
2(1− α)2α

α
2−αw

−α
2−α (F − ε)

2
2−α

2− α
k

−α
2−α − rk

)
u′(Π∗(k, h, F − ε))

=

(
2(1− α)2α

α
2−αw

−α
2−α (F + ε)

2
2−α

2− α
k

−α
2−α − rk

)
u′(Π∗(k, h, F + ε), (21)

and

h : u′(Π∗(k, h, F − ε)) = u′(Π∗(k, h, F + ε)). (22)

Since u′′ < 0, using (19) we solve (22) for h∗, i.e.,

h∗ =
(1− α)α

α
2−αw

−α
2−α

(
(F + ε)

2
2−α − (F − ε)

2
2−α

)
2ε

(k∗)
2(1−α)
2−α , (23)

where k∗ > 0 is defined by the first-order conditions.

Next, let μq∗ ≡ Eϕ(k, l∗(k∗, S̃)) be the expected optimal level of output.

Using (17),

μq∗ =
α

α
2−αw− α

2−α

2

(
(F + ε)

α
2−α + (F − ε)

α
2−α

)
(k∗)

2(1−α)
2−α . (24)
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Hence, using (23) and (24),

μq∗ − h∗ =

⎛
⎝(F + ε)

α
2−α + (F − ε)

α
2−α −

(1− α)
(
(F + ε)

2
2−α − (F − ε)

2
2−α

)
ε

⎞
⎠

· α
α

2−αw− α
2−α

2
(k∗)

2(1−α)
2−α . (25)

Finally, it remains to sign expression (25). To that end, let y = F/ε such

that y ∈ (0, 1). From (25), it follows that μq∗ −h∗ > 0 if and only if g(y) > 0

where, for y ∈ (0, 1),

g(y) = (1 + y)
α

2−α + (1− y)
α

2−α − (1− α)
(1 + y)

2
2−α − (1− y)

2
2−α

y
. (26)

To show that g(y) > 0, let

f(y) = (1 + y)
2

2−α − (1− y)
2

2−α (27)

so that

f ′(y) =
2

2− α

(
(1 + y)

α
2−α + (1− y)

α
2−α

)
> 0 (28)

and

f ′′(y) =
2

2− α

α

2− α

(
(1 + y)−

2(1−α)
2−α + (1− y)−

2(1−α)
2−α

)
> 0. (29)

Using the mean-value theorem, and the fact that f ′(y), f ′′(y) > 0,

f(y)− f(0)

y
< f ′(y) (30)

or
(1 + y)

2
2−α − (1− y)

2
2−α

y
<

2

2− α
((1 + y)

α
2−α + (1− y)

α
2−α ). (31)

Rearranging (31) yields

(1 + y)
α

2−α + (1− y)
α

2−α − (1− α/2)
(1 + y)

2
2−α − (1− y)

2
2−α

y
> 0. (32)
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Since α ∈ (0, 1), combining (26) and (32) implies that, for y ∈ (0, 1),

g(y) > (1+y)
α

2−α +(1−y) α
2−α − (1−α/2)(1 + y)

2
2−α − (1− y)

2
2−α

y
> 0. (33)

Hence, μq∗ − h∗ > 0 when α ∈ (0, 1). Using (25), μq∗ − h∗ = 0 when α = 0.

Using (23) and (24), 0 = h∗ < μq∗ when α = 1.
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