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Summary 

We propose a count-data model with hierarchical random effects for the posterior 
insurance ratemaking of vehicles belonging to a fleet, by allowing random effects for 
the fleet, the vehicles, and time. We derive a simple closed-form ratemaking formula 
based on a hierarchical random-effects specification. We estimate the corresponding 
econometric model, and compute insurance premiums according to the past experience 
of both the vehicle and the fleet. Our model can be used in other count-data applications 
with random individual and common effects on events involving many agents having 
activities with a principal in a hierarchical principal-agent environment, such as in 
education, health care management, finance, and business firms. 
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1. Introduction 

Since the groundbreaking contribution of Hausman et al. (1984), count-data models have 

become popular in research areas such as labor economics (Kim and Marschke, 2005), public 

economics (Englin and Shonkwiler, 1995), health economics (Winkelmann, 2004), marketing 

(Böckenholt, 1998), and transportation safety (Dionne et al., 1997), to name only a few. These 

models began to be used for insurance pricing with Dionne and Vanasse (1989, 1992). The 

proposed Poisson regression model with gamma-distributed random effects has the advantage of 

allowing for a closed-form forecasting formula, and it has since become the basis for bonus-malus 

pricing under asymmetric information. Since then, extensions have flourished (Frangos and 

Vrontos, 2001; Purcaru and Denuit, 2003; Frees and Valdez, 2011). See Boucher and Guillen 

(2009) and Pinquet (2013) for reviews of random-effects insurance pricing models.  

Most of the count-panel-data models in the literature involve random or fixed effects that 

are indexed by the individual and are often time-invariant. In this paper we consider individual, 

common, and time effects. There are many applications where panel data are available in groups 

or clusters. This is typically the case for fleet insurance. Other examples include analyzing 

absenteeism with matched employer-employee data (see Kim and Marschke, 2005; Abodd and 

Kramarz, 1999; Dionne and Dostie, 2007), comparing the relative impact of school and family (or 

teacher) on children’s educational scores (Chamberlain, 2013; Freeman and Viarengo, 2014), 

analyzing health care failures and successes at the hospital and patient levels (Ludwig et al., 2010), 

as well as analyzing various county-level economic variables across different states (Connolly, 

2016). Our econometric model can be applied to these data modeling environments, with random 

individual and common effects on events involving many agents working for an intermediary who 

must report to a principal under asymmetric information (Holmstrom, 1982; Holmstrom and 
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Milgrom, 1987; Sung, 2015; Hubert, 2020). (See Online appendix OA1 for an informal 

presentation of such principal-agent model with an intermediary.)  

A negligent fleet manager (intermediary) may not spend enough money on truck 

maintenance and might ask employees to drive fast to achieve on-time deliveries. Conversely, the 

drivers (agents) may also exceed the speed limit without informing the manager. For the insurer 

(principal), knowing about all the accidents involving the vehicles belonging to a same fleet is 

essential in order to develop a fair and incentivized pricing scheme that accounts for the safety 

efforts made by each actor. For the regulator (another principal), this type of model makes it 

possible to compute the optimal fines for various infractions (driver, fleet owner), to improve 

social welfare as it relates to road safety.  

While most count-panel models have assumed time-invariant random or fixed effects, 

Hausman et al. (1984) argue that, just as in linear panel data models, in which the error term is 

usually individual- and time-specific, such a multiple-level of heterogeneity for the random effect 

is also desirable in a count-data context. Indeed, in a Poisson count model with time-invariant 

random effects, the marginal variance-to-mean ratio is not individual specific. Moreover, the 

random-effects term controls for both the characteristics of the marginal distribution (such as 

overdispersion) and the serial correlation between counts. Consequently, the presence or lack of 

overdispersion may lead to spurious conclusions concerning the serial correlation (Lee et al., 

2020).  

Nevertheless, including multiple-level random effects in count-data models with panel data 

is not straightforward due to the ensuing computational difficulties. Let us consider the 

contributions of Zeger and Karim (1991) and Chib and Winkelmann (2001), which propose 

Poisson models with correlated lognormal random effects. The estimation and forecasting of these 
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models typically rely on computationally intensive simulation techniques. These methods could 

be extremely costly in an application such as ours, where observations are triply indexed (common, 

individual, time). 

To our knowledge, the first contribution of a nonlinear random-effects panel-data model 

with individual (here, driver), common (here, fleet), and time effects is from Angers et al. (2018). 

They extend the Hausman et al. (1984) model to add a firm effect to the individual and time effects 

of event distributions. Unfortunately, the Angers et al. (2018) model has some weaknesses. In 

particular, the model specification is not self-consistent when the number of years increases or 

when the set of vehicles changes over time. For example, the forecast of counts of one new period 

for a new vehicle requires the introduction of two new Dirichlet distributions of different 

dimensions than those for the parameters estimation (see the end of Online appendix OA3). This 

makes the model difficult to interpret and raises issues about its appropriateness for forecasting 

purposes. Moreover, the model does not allow for a closed-form formula for either the likelihood 

function or the forecasting formula, which require high-dimensional Monte Carlo simulations or 

numerical approximations.  

The goal of this paper is to propose a new and tractable count model with panel data based 

on hierarchical random-effects specifications. Rather than following the aforementioned literature 

on multivariate lognormal-type random effects or extending the model of Angers et al. (2018), we 

take an entirely different approach. More precisely, our model draws inspiration from the recent 

time series Poisson-gamma conjugacy literature, to construct stationary-count or positively-valued 

processes with tractable properties (Pitt and Walker, 2015; Gouriéroux and Lu, 2019). We extend 

this technique and propose a hierarchical model for the triple-indexed random effects in which the 
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upper-level latent variables are count-valued, and show that this discreteness greatly simplifies the 

estimation and forecasting processes in the resulting count-panel data model. 

The model we propose is a parametric model, in the sense that the joint distribution of all 

the random effects belonging to the same fleet is fully specified. This is in line with the approach 

of Hausman et al. (1984) and Angers et al. (2018), as well as most of the aforementioned 

contributions on count-panel data. Alternatively, in the insurance literature, Norberg (1986), 

Desjardins et al. (2001), Pinquet (2013, 2020), and Fardilha et al. (2016) propose semiparametric 

approaches that specify the correlation structure between different counts, instead of their full joint 

distribution. Instead of getting a conditional linear expectation of the future counts, which is 

typically a highly nonlinear but positive function, these papers rely on linear regression models to 

forecast the future claims counts, i.e., the premium of each vehicle is a linear function of the 

number of past claims for that vehicle, as well as the number of past claims for the entire fleet. 

There are three major difficulties with this (second-order) moment-based approach: i) the 

discreteness of the response variables is not sufficiently taken into account; ii) the positivity of the 

regression coefficients, and hence the positivity of the insurance premium, is not guaranteed in the 

linear forecasting formulas; and iii) the linear premium does not sufficiently distinguish between 

the responsibilities of the driver and the fleet manager.1  

Our model also differs in at least two respects from a competing hierarchical model for 

fleet insurance, proposed by Antonio et al. (2010). First, their model, which is similar in spirit to 

that of Zeger and Karim (1991), is not applicable to fleets that have only one vehicle at any given 

 
1 Let us for instance consider two otherwise equal fleets that differ only in terms of the distribution of their claims. 
Claims in Fleet A are concentrated on a single vehicle, suggesting that the driver of that vehicle is to blame, whereas 
claims in Fleet B are uniformly scattered across different vehicles, suggesting a potential management failure. A linear 
premium formula would lead to the same vehicle premium for both fleets, but a fairer pricing scheme should arguably 
penalize Fleet B more than Fleet A. 
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point in time while our model is estimated for fleets of one vehicle or more.2 Second, their model 

does not allow a closed form for the likelihood function nor for the forecasting formula. Indeed, 

their posterior premium formula (see their Table 3) depends on unobservable random effects at the 

time, vehicle, and fleet levels. These formulas are not directly usable unless the posterior joint 

distribution of the random effects is recovered using the Bayes rule. This is a highly complicated 

task because the dimension of the joint distribution is the number of fleets/years.  

The rest of the paper is organized as follows. Section 2 introduces the econometric model. 

Section 3 computes the theoretical likelihood function. Section 4 derives the posterior insurance 

pricing formula. Section 5 estimates the econometric model, using vehicle fleet data, and compares 

the results to previous contributions from the literature. Section 6 applies the new pricing formula 

to the data and presents out-of-sample tests. Section 7 concludes the paper. Additional information 

is presented in the Online appendix. 

2. The theoretical model 

Consider I fleets of vehicles, where each vehicle is doubly indexed, by their fleet ID 

1i ,...,I  and by their individual or vehicle ID 1 i j ,...,s  within the fleet. Here is  can be 

interpreted as the number of vehicles in fleet i, if this number remains constant within fleet i across 

different periods. In practice, however, this number can change; hence is  is the total number of 

vehicles that have belonged to the fleet during any of the T years. In other words, for each given 

date t, the number of observed vehicles of fleet i is smaller than or equal to is . This number may 

be large, say several dozens or even hundreds. Finally, each vehicle can be observed during up to 

T periods. Thus, the claim counts are triply indexed, 1 1 1i , j ,t iX , i ,...,I , j ,...,s , t ,...,T   , and we 

 
2 Indeed, as Antonio et al. (2010) mention, “with only one vehicle per fleet, the vehicle and fleet level coincide.”  
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denote by i , j ,t  the associated a priori score, that is, the marginal expectation of i , j ,tX  given all 

observable covariates.  

Let us remember that a count variable X follows the negative binomial (NB) distribution 

 , p   with parameters 0   and  0 1p ,  if its probability mass function (pmf) is equal to

   
   1 .

!
xx

p x  p p
x




 
 


 We denote by  ,c   the gamma distribution with the shape 

parameter   and scale parameter c;     is the Poisson distribution with parameter  .  

We assume that the joint distribution of the observable claim counts  , ,i j kX  is as follows: 

● At the highest hierarchical level, the  i i
N  are independent and identically distributed (iid) 

random effects following the  , c    distribution, where 1c  . 

● At the second level, the  ,i jZ  are also random effects that are conditionally iid with the 

 ,i j   distribution, where the  , ji j  are themselves conditionally iid, given iN  with 

 ,i N c    distribution. In other words, the conditional distribution of ,i jZ , given iN  is 

.,
1




 
 
 

i

c
NB N

c




 Their marginal distributions are  ,NB c  . 

● At the third level, the random effects are  , ,i j t t
  conditionally iid, given ,i jZ , with gamma 

distribution * * *
, ,( ) i jZ c   .  

● Finally, given  , ,i j t , the claim counts , ,i j tX  are independent and Poisson  , , , ,i j t i j t    

distributed. 

To summarize, Figure 1 presents the model’s chain rule. We now describe the state space 

of these random variables’ levels. At the third level, we use , ,i j t , which is continuously valued, 
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so that , ,i j tX  has the standard Poisson random-effects specification (Dionne and Vanasse, 1989, 

1992). The two upper-level random effects iN  and ,i jZ  are both count valued, and it will be 

shown in Sections 3 and 4 that the discreteness of iN  and ,i jZ  is essential for the tractability of 

both the likelihood function and the posterior ratemaking function. Between the two upper levels 

of count-random variables iN  and ,i jZ , we have introduced a hidden level, ,i j , that is 

continuously valued. The latter merely serves as an auxiliary mixing variable that allows us to 

define the conditional distribution of ,i jZ , given iN  as a Poisson-gamma mixture. Finally, 

between different levels, we alternate between continuous and count variables by using conditional 

Poisson and gamma distributions. This technique is well known in the time series literature (Pitt 

and Walker, 2005; Gouriéroux and Lu, 2019) and has the advantage of leading to relatively 

tractable marginal and conditional distributions, which are summarized in Proposition 1. 

Figure 1 here 

Proposition 1 – Properties of the hierarchical model 

1. The marginal distribution of ,i j  is ,
1

c

c
 


 
 
 

, whereas the marginal distribution of ,i jZ  is 

 , c   , and the correlation coefficient between ,i jZ  and , 1i jZ   is , , 1,i j i jCorr Z Z c    . 

2. The marginal distribution of , ,i j k  is generically not gamma, except if     and * 1 . In 

this case , ,i j k  has the 
*

,
1





 
 

c

c
 


 distribution. 

3. The correlation coefficient at the lowest level is 
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 𝐶𝑜𝑟𝑟ൣ𝜃௜,௝,௧ିଵ,𝜃௜,௝,௧൧ ൌ
ሺఉ∗ሻమ ഃഁ೎

ሺభషഁ೎ሻమ
  

ఉ∗ ഃഁ೎
ሺభషഁ೎ሻమ

  ାఋ∗ାሺఉ∗ሻమ ഃഁ೎
భషഁ೎

  
. (1) 

Proof. Properties 1 and 2 are direct consequences of the Poisson-gamma conjugacy, which is 

reviewed in Online appendix OA2. As for Property 3, we have the following, from the (co)variance 

decomposition formula: 

, , , , , , , ,

2 2 2

2 2
, , , , 1

1 1

, .

(

1

| |

) ( ) ( )

( ) ( )

    

 


                 
 

  



  



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i j t i j t i j i j t i j

i j t i j t

V  V Z V E Z

c c
c   c  

c c

c
  Cov c   

c

   

    
 

  


 

□ 

As expected, the correlation coefficient in (1) does not depend on the scale parameter c  

and, in practice, the scale parameter c  at the lowest level can be chosen such that , , 1i j tE     , 

that is: 

 ቂ𝛿∗ ൅ 𝛿𝛽∗ ఉ௖

ଵିఉ௖
 ቃ 𝑐∗ ൌ 1. (2) 

We can distinguish between different values of   and   . Three special cases are worth 

mentioning: 

● When     and 1  , we recover the value c  for the correlation coefficient in (1). In this 

special case, this implies that the correlation at the lowest level, , , 1 , ,,i j t i j tCorr     , and at the 

intermediate level, 𝐶𝑜𝑟𝑟ൣ𝜂௜,௝ , 𝜂௜,௝ିଵ൧, are both equal to c . This case might be too restrictive to 

be applied, however. 

● When   goes to infinity and   remains fixed, the correlation attains its maximum at 1. 
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● When   goes to infinity and   remains fixed, or when   goes to zero and   remains 

fixed, the correlation goes to zero, which is its minimum value. 

Thus, by allowing for arbitrary positive values for   and  , the correlation coefficient 

𝐶𝑜𝑟𝑟ൣ𝜃௜,௝,௧ିଵ,𝜃௜,௝,௧൧ can attain any value in [0,1]. In the limiting case where the correlation attains 

1, we get a model with time-invariant random effects , ,i j t ; in the other limiting case, where the 

correlation attains 0, we get a model with independent random effects, that is, with neither a fleet 

effect nor an individual effect. 

3. Likelihood function 

In this section we compute the likelihood function of the model. We can write 

        , , , , , , , , ,, ,
1 1 1

[ | ], , , , ,
isI T

i j t i j t i j t i j t i j ii j t
i j t

X E  P X x i j t Z N
  

 
   

 
   (3) 

               
   

, ,, , , ,

, , , ,

,
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,
!

   
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


  
  
  

  
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i j ti j t i j t
i

x
sI T

i j t i j t

i j i
i j t i j t

e
E E Z N

x
 (4) 

      
   

 
 

 

, , ,

* *
,

,

, ,

* * *
,, ,

* *
*1 1 1 1 1, , ,

,

,

,

,

! 1
 
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                       
  

i ti j t
i

i

j
i

i j j t

x

i j t

x
s sI T T

i ji j t

iZ
i j t j ti j t i j

i j t

x

Z c
E E

Z

x
N

x c
 







 




 (5) 

where, in equation (3), the conditional probability is a Poisson distribution of , ,i j tX , given , ,i j t , 

and, in equation (4), the inner conditional expectation is with respect to the conditional distribution 

of , ,i j t , given ,i jZ . In both equations the outer expectation is with respect to the distribution of all 

the latent random variables, such as , ,i j t , ,i jZ , and iN . 

Then we can compute the expectation 
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   
   
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, , ,

, , ,

1 1 ,
, ,

)
: |

1

(
 

  
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             


i j ti

i j i j t

xs T
i j i j t

i iZ x
j t i j

i j t

Z x c
M X E E N     

Z c
 

  

   
 

where the subscript i indicates that this quantity is fleet dependent, and the notation X indicates the 

fact that  iM X  depends on all the observable counts  , ,, j ti j tX , for all vehicles j and periods t. 

In this expression, the outer expectation is with respect to the law of iN , whereas the inner 

conditional expectation is with respect to the conditional joint distribution of all the ,i jZ , j varying, 

given iN . Because these  ,i j j
Z  are conditionally independent, given iN , we can interchange 

the product operator and the inner conditional expectation, and compute 

    
   

, ,

, , ,

, , ,

1 1 ,
, ,

(

1

)
| 

  
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             
 

i j ti

i j i j t

xs T
i j i j t

i iZ x
j t i j

i j t

Z x c
M X  E E N

Z c
 

  

   
. (6) 

Then for each 1,..., ij s , the inner expectation in (6) can be expressed as 

   
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z xT
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N z z x
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M X N E N

Z c
  

z xN z c c

N z zc c
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where the summation is with respect to z, that is, all the possible values of ,i jZ , and the term 

 
 

 
 ! 1 i

z

i
N z

i

N z c

N z c


  
    

 
 

 is the conditional pmf of ,i jZ , given iN , which is 

,
1i

c
N

c

 


 
 
  

 . Then we can truncate this infinite summation at a sufficiently high order 

(say, K) and get the approximation 
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

  
 

i j t

i i j t

z xTK
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Finally, equation (6) becomes 
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 (8) 

Using approximation (7) for  ,
1

,
is

i j i
j

M X N

  and (8), we get an approximation for 

 iM X , which in turn leads to an approximation of the likelihood function in (5). Thus, the 

model’s set of parameters is obtained by maximizing the log-likelihood function. These parameters 

include , , , ,  c     as well as the regression coefficients that enter into the a priori score 

functions,  , ,i j t . Parameter c  is fixed by the normalization constraint (2), whereas the likelihood 

function depends on   and c only through their product. Hence only c  is identifiable. 

The choice of order K in the infinite summations (7) and (8) is the result of a trade-off. On 

the one hand, the larger K is, the better the approximation accuracy is; on the other hand, the larger 

K is, the more computational effort the method requires. Fortunately, our framework should 

involve a limited computational cost, which allows us to take quite large values of K and, hence, 

attain a high approximation quality. Indeed, the approximation of  iM X  requires us to consider 

the first K +1 smallest possible values of iN . For each value n, we need to compute  , ,i jM X n  

in parallel for different j. As a result, computing the contribution of fleet i to the likelihood function 
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requires a multiple of  2
1is K  operations, even for quite large values of K and .is  Note that for 

expository purposes, the above likelihood function has been derived under the assumption that all 

the is  vehicles are observed for each of the T periods for fleet i. If in practice some vehicles are 

only observed for a subset of  1,...,T , it suffices to use the convention , , , , 0,i j t i j tx    and 00 =1 

for the triplets  , ,i j t . 

We can compare this model to the gamma-Dirichlet model of Angers et al. (2018), which 

assumes that counts , ,i j tX  for fleet 𝑖, vehicle 𝑗, at time 𝑡 are conditionally independent and Poisson 

distributed  , , , ,i j t i j t   , where the random effect , ,i j t  is further decomposed into 

, , 1, 2, , 3, , ,i j t i i j i j t    , 

with the fleet effect 1,i  following a gamma distribution of parameters (∑ 𝑇௝𝜅ିଵ, 𝜅ିଵ௦೔
௝ୀଵ ) where 

jT  is the number of periods of vehicle j, and is  is the number of vehicles in fleet i. Both the 

fleet/vehicle effect  2, ,i j j
  of dimension is  and the fleet/vehicle/time effect  3, , ,i j t t

  of 

dimension T follow Dirichlet distributions of parameters 𝜈  and 𝜌, respectively. Details of the 

model are presented in Online appendix OA3. The major restrictions of this gamma-Dirichlet 

approach are the following: i) It involves a Dirichlet distribution of dimension is , which becomes 

cumbersome when the fleet is large. ii) The resulting likelihood function does not have a closed-

form expression except when the number of vehicles is  is equal to 2. Although the authors work 

out some approximation techniques that are computationally less intensive than typical MCMC 

algorithms (Chib and Winkelman, 2001), approximation errors cannot be ignored and could be 

large, especially for large fleets. iii) The Bayesian updating formula, that is, the forecast of counts 

of one new period T +1, possibly for a new vehicle, requires the introduction of new Dirichlet 
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distributions of dimensions T +1 and is +1, and the corresponding updating formula again does not 

have a closed-form formula. iv) These new Dirichlet specifications are not compatible with the 

ones used for estimation. For example, the normalization conditions for the time effect is 

, ,1
1


T

i j tt
  for the estimation, but becomes 

1

, ,1
1




T

i j tt
  for pricing. Such incompatibility 

renders the interpretation of random effects 𝛼௜,௝,௧ rather difficult in a pricing exercise and might 

lead to arbitrage opportunities. v) The correlation between the random effects is not as flexible as 

in the new model presented in this article. 

4. Forecasting formula 

Because of the discrete latent random effects’ representation, the model we propose is also 

very convenient for posterior ratemaking, which is when counts in period T +1 need to be 

forecasted for insurance pricing. Let’s first compute the posterior joint distribution of  ,i j j
Z . 

First, the prior joint distribution of  ,i j j
Z  has the mixture pmf, mixing variable iN :  

 𝑝 ቀ൫𝑧௝൯௝ቁ ൌ ∑ ௰ሺఋା௡ሻ

௰ሺఋሻ௡!
∞
௡ୀ଴  ሺ𝛽𝑐ሻ௡ሺ1 െ 𝛽𝑐ሻఋ ∏

௰൫ఋ ା௡ା௭ೕ൯

௰ሺఋ ା௡ሻ௭ೕ!
௦೔
௝ୀଵ  

ሺఉ௖ሻ೥ೕ

ሺଵାఉ௖ሻഃశ೙శ೥ೕ
,  ∀ 𝑧௝ ∈ ℕ,   𝑗 ൌ 1, … , 𝑠௜ . (9) 

Next, the conditional joint distribution of all claim counts  , ,i j tX , given iN  and  ,i j j
Z , 

is proportional to 
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) (1

)

( )
 
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   
 
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 
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i j ti

j i j t

xs T
j i j t

z x
j t j i j t

z x c

z c  

  
   

, (10) 

which is the product of the conditional, negative binomial pmf of , ,i j tX  given , ,i j t  and ,i jZ . Thus, 

using Bayes’ formula, the posterior joint distribution of iN  and  ,i j j
Z  is proportional to the 

product of equations (9) and (10): 
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  (11) 

where, for expository purposes, we have used the simplified notation  , , ,i k t k t
x  to indicate that the 

conditioning set is all observed claim counts for all vehicles k of fleet i during the first T periods. 

The normalization constant is given by the summation of the right-hand side of (11) with respect 

to 1 2, ,...
isz z z  over all the integrals, that is,  

1 0 0

ꞏꞏꞏ RHS
si

z z
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  of equation (11) 
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where we have interchanged the infinite summations over , 1,...,j iz j s  and the product over j 

because of the separability of each term in (11) into functions of each individual jz , for a given n. 

In particular we can check that, given  , , ,
,i j t j t

X  the second-level random effects  ,i j j
Z  are still 

conditionally independent, given iN , and that both  , ,i jM X n  and the term between the square 

brackets in equation (11) can be computed in parallel for a different j. Consequently, we also 

deduce the marginal posterior distribution of each individual ,i jZ , given  , , ,i j t j t
X : 
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(13) 

Again, the computation of the above conditional distribution requires a double infinite 

summation only, that is, an infinite summation over n and, for each value of n, the computation of 

 ,jM X n  for different j, which itself requires a one-dimensional infinite summation. Let us now 

consider the posterior expected number of claims at period T +1:  
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where the conditional expectation  , , , ,
|i j i k t k t

E Z x 
 

 can be obtained from the conditional pmf of 

 , , , ,
|i j i k t k t

Z x  given by equation (13) through  

     , , , , , ,, ,
0





     
j

i j i k t i j j i k tk t k t
z

E Z x z p z x , (15) 

which again involves double infinite summations only. 

We end this section with two final remarks. First, the above formulas hold true both for a 

vehicle j that has already been observed between t = 1 and t = T, and for a new vehicle that enters 

into the fleet at date T +1. Indeed, in the latter case, it suffices to apply the convention that 

, , , , 0i j t i j tx    for all 1,...,t T  and 00 =1, while, as previously stated, the gamma-Dirichlet 

model requires the introduction of new Dirichlet distributions of dimensions T +1, and is +1. 
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Second, as in the estimation section, all the infinite summations involved will in practice be 

approximated by finite ones by truncating them at a sufficiently high order K. 

5. Model estimation with accident data 

We have access to the files of the Quebec motor vehicle department (Société de l’assurance 

automobile du Québec, henceforth referred to as the SAAQ) to create a database for the 1991–

1998 period. The SAAQ is in charge of road safety regulations in the province and is the public 

insurer for personal injuries from traffic accidents. It also has information on all truck accidents 

involving a police report. Our starting point is the whole population of fleets registered in Quebec 

during the 1991–1997 period. To be registered, fleets must own at least one truck that is not used 

for emergencies. In this study, we have fleets of any size. The data on fleets contains information 

on violations (with convictions) committed by fleet owners between 1989 and 1998, and 

information identifying the fleet. 

We can link vehicles to fleets. From the authorization status, we obtain information 

describing the vehicle. For each plate number, we have data covering the 1990–1998 period, drawn 

from the vehicles’ mechanical inspection records and from the record of violations with 

convictions and demerit points (for speeding, etc.), as well as data on all accidents involving a 

police report. These include all traffic accidents causing bodily injury and all accidents causing 

material damage, reported by the police in Quebec. A description of the control variables can be 

found in Online appendix OA4. 

5.1 Descriptive statistics 

The data contains 62,171 fleets with a follow-up over at least two periods. As noted in 

Table OA5.1 of the Online appendix OA5, approximately 1% of the 62,171 fleets have more than 

20 trucks.  
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On average, a truck has 4.13 follow-up periods, ranging from 3.88 to 4.30, while the 

average for a fleet is 4.95, ranging from 4.06 to 7.20 years. In Table OA5.2 of Online appendix 

OA5, we observe that about a quarter of fleets and 11% of trucks have eight years of follow-up, 

which confirms the panel aspect of the data. We also note that there are 13,059 fleets (45,308 

trucks) for which we have only two consecutive years of follow-up. 

Table OA5.3 of Online appendix OA5 shows the distribution of fleet sizes by year. In 1991, 

there are 31,793 fleets. This number increases over time, for a total of 307,792 fleet-years over the 

observation period. Among the 307,792 fleet-years, 70.91% have only one vehicle. In Table OA5.4 

of Online appendix OA5, the average number of truck accidents per fleet is lowest during the year 

1997. We also observe that the year 1995 has the highest recorded average rate of truck accidents 

per fleet. 

In Table OA5.4, we see there are 66,193 trucks in 1991, for a total of 678,331 truck-years, 

with a mean annual truck accident rate of 13.72%. We observe that the annual truck accident rate 

is also lower in 1997.3 We verified and found that a historical mistake was made when the data 

were transmitted by the insurer in 1999. It would have been too costly to make the corrections for 

all trucks and fleets, so we decided to keep the data as documented in 1999. As we will see, this 

will affect the out-of-sample analysis for the year 1997 but should not impact the model estimation. 

Traffic violations committed by drivers and fleet owners are usually powerful forecasters 

of truck accidents in the following year. Indeed, we observe in Table OA5.6 of Online appendix 

OA5 that the year t accident rate is an increasing function of the previous year’s violations 

committed by the drivers and fleet owners. 

 
3 See Table OA5.5 for per fleet size. 
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5.2 Estimation results 

We estimate the models with all observations. For all models, we use the exponential linear 

specification for the marginal expectation 

𝜆௜,௝,௧ ൌ 𝐸ൣ𝑋௜,௝,௧ห𝑌௜,௝,௧൧ ൌ exp൫𝜗ᇱ𝑌௜,௝,௧൯, 

where vector 𝜗  contains the regression parameters, and 𝑌௜,௝,௧  denotes the vector of observable 

covariates.  

The estimation results of the hierarchical random-effects model are presented in Table 1. 

To decrease the convergence time, we computed the first and second derivatives of the likelihood 

function of the hierarchical model to obtain the gradient and the hessian. We truncated the infinite 

summation at two values, K =18 and K =19.4 We observe that the log likelihood values are very 

similar, so we decided to not proceed with a higher value of K. In the next section, we show there 

is no statistical difference between the two models. Additionally, Table 1 shows that both the 

estimated standard errors and parameters are very stable between the two estimations. Other 

estimations with different values of K (8, 10, 13, 15) are presented in Table OA5.9 and Table 

OA5.10 of Online appendix OA5. When K increases, we observe that the standard error estimates 

of the explanatory variables remain fairly stable. This is not always the case for all coefficient 

estimates, particularly those of the random effects. 

Several control variables presented in Online appendix OA4 measure observable 

heterogeneity. Some of these variables (type of fuel, number of cylinders, etc.) are characteristics 

of the vehicles, whereas others (sector, fleet size, etc.) relate to the fleet. We also include the 

number of violations of the trucking road-safety code by the fleet owner in the year before the 

accidents and the number of road-safety code violations leading to demerit points for the driver in 

 
4 Houston and Rossi (2017) used K=8, which is the largest truncation order we are aware of. 
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the year before the accidents. All coefficients of these variables, with three exceptions in Table 1, 

are significant at 1%. In fact, all coefficients that are significant at 1% in the K=18 model are also 

significant at 1% in the K=19 model. Finally, we observe that the coefficient of the 1997-year 

variable is much lower in both estimations than those of the other years. 

The random-effects parameters are all significant in both estimations. In the hierarchical 

model, we assume that i) the fleet effect  iN  follows a negative binomial distribution with 

parameters  , c  ; ii) the truck effect  i jZ , given iN , is a negative binomial with parameters 

,
1

 
  

i

c
N

c




; and iii) the time effect (𝜃௜௝௧), given i jZ , follows a gamma distribution with 

parameters (𝛿∗ ൅ 𝛽∗𝑍௜௝ , 𝑐∗). Because all these parameters are significant, the pricing formula of 

the hierarchical model will have to account for this additional information. 

The estimation results of the Hausman model are presented in Table OA5.7 of Online 

appendix OA5. The Hausman model is suitable for estimating parameters with individual effects, 

but it cannot take into account common or fleet effects when individual observations belong to 

different firms with common characteristics that can affect accident distributions. Almost all 

coefficients of the Hausman model are also significant at 1%, including the two parameters, a and 

b, for the individual effects. We can use the BIC, the AIC, and the likelihood ratio test for 

comparison. We observe, in Table 2, that the hierarchical model, with K=19, performs better than 

the Hausman model for the different criteria presented in the table.5  

We can compare the results of these two models with the gamma-Dirichlet model. The 

estimation results of the gamma-Dirichlet model are also presented in Table OA5.7, where we 

observe that the three random-effects parameters are significant. The significance of these 

 
5 This is also the case for K=18. 
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parameters means that the random effects associated with the fleets’ unobservable risk (gamma 

with parameter ), as well the random effects of trucks, including the drivers (Dirichlet with 

parameter  ), and the random time effects (Dirichlet with parameter  ) significantly affect the 

distribution of truck accidents, even when we control for many observable characteristics. 

We observe in Table 2 that the Hausman model performs better than the gamma-Dirichlet 

model, contrary to the results in Angers et al. (2018), where fleets with only one truck were not 

considered (see tables OA5.11 and OA5.12 for results with fleets of two trucks or more). The 

gamma-Dirichlet model seems to be penalized by the data containing many fleets that have only 

one truck, as in the current application (71% of fleet-years observations). We also obtain better 

estimation results with the hierarchical model than with the gamma-Dirichlet model for the 

different criteria presented in Table 2. 

Table 1: Parameter estimation for the distribution of the number of annual truck accidents for the 
1991–1998 period, for fleets with one truck or more, and trucks with two periods or more: 
hierarchical random-effects models with K=18 and K=19 

Explanatory variable 

Hierarchical (K=19) Hierarchical (K=18) 

Coefficient Standard error Coefficient Standard error 

Constant -3.1787* 0.0401 -3.1796* 0.0401 

Number of years as a fleet  -0.0504* 0.0028 -0.0501* 0.0027 

Sector of activity in 1998     

 Other sectors -0.1969 0.0967 -0.2004 0.0966 

 General public trucking 0.1022* 0.0273 0.0966* 0.0268 

 Bulk public trucking Reference group 

 Private trucking 0.0484 0.0203 0.0482 0.0204 

 Short-term rental firm 0.4795* 0.0497 0.4637* 0.0477 

Size of fleet     

1 -0.0528* 0.0146 -0.0526* 0.0146 

2 Reference group 

3 0.1205* 0.0156 0.1203* 0.0186 

4 to 5 0.1766* 0.0185 0.1761* 0.0185 

6 to 9 0.2381* 0.0195 0.2371* 0.0194 

10 to 20 0.2824* 0.0204 0.2805* 0.0203 

21 to 50 0.2447* 0.0243 0.2424* 0.0238 
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Explanatory variable 

Hierarchical (K=19) Hierarchical (K=18) 

Coefficient Standard error Coefficient Standard error 

More than 50 0.2687* 0.0306 0.2735* 0.0249 

Days in previous year  1.6494* 0.0245 1.6489* 0.0245 

Violations      

 Overload 0.0987* 0.0103 0.0990* 0.0103 

 Excess size 0.1588 0.0762 0.1587 0.0763 

 Poorly secured cargo 0.2435* 0.0331 0.2442* 0.0332 

 Not respecting service hours 0.1989* 0.0652 0.1999* 0.0653 

 No mechanical inspection 0.2171* 0.0259 0.2174* 0.0259 

 Other reasons 0.2175* 0.0695 0.2177* 0.0696 

Type of vehicle use     

 Commercial use  -0.1911* 0.0190 -0.1915* 0.0190 

 Other than bulk goods -0.0807* 0.0230 -0.0799* 0.0229 

 Bulk goods Reference group 

Type of fuel     

 Diesel Reference group 

 Gas -0.4317* 0.0120 -0.4325* 0.0120 

 Other -0.3282* 0.0739 -0.3283* 0.0739 

Number of cylinders     

 1 to 5  0.2234* 0.0346 0.2268* 0.0346 

 6 to 7  0.3298* 0.0116 0.3299* 0.0116 

 8 or more than 10 Reference group 

Number of axles     

2 axles (3,000 to 4,000 kg) -0.3451* 0.0184 -0.3447* 0.0184 

2 axles (4,000 kg or more) -0.3823* 0.0145 -0.3823* 0.0145 

3 axles -0.2995* 0.0142 -0.3014* 0.0141 

4 axles -0.2068* 0.0187 -0.2084* 0.0186 

5 axles -0.2518* 0.0163 -0.2524* 0.0162 

6 axles or more Reference group 

Number of violations      

Speeding 0.2198* 0.0092 0.2203* 0.0092 

 Suspended license 0.3958* 0.0331 0.3956* 0.0331 

 Running a red light 0.3828* 0.0207 0.3835* 0.0207 

 Ignoring a stop sign 0.4177* 0.0219 0.4178* 0.0219 

 Not wearing a seat belt 0.2139* 0.0247 0.2140* 0.0247 

Observation period     

1991 -0.0015 0.0218 0.0003 0.0215 

1992 -0.0318 0.0195 -0.0302 0.0193 

1993 -0.0925* 0.0180 -0.0913* 0.0178 

1994 -0.0230 0.0164 -0.0220 0.0163 
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Explanatory variable 

Hierarchical (K=19) Hierarchical (K=18) 

Coefficient Standard error Coefficient Standard error 

1995 -0.0005 0.0151 0.0002 0.0150 

1996 -0.0487* 0.0142 -0.0483* 0.0142 

1997 -0.1568* 0.0140 -0.1566* 0.0140 

1998 Reference group 

̂  0.7036* 0.0344 0.6725* 0.0314 

𝛽𝑐෢଴ 2.2025* 0.0616 2.1295* 0.0589 

𝛿መ∗ 2.6232* 0.2687 2.7240* 0.2728 

𝛽መ∗ 2.4959* 0.2687 2.6551* 0.2833 

Number of observations  678,331 678,331 

Number of trucks 164,513 164,513 

Number of fleets 62,171 62,171 

Log likelihood -265,353 -265,377 

𝛽𝑐෢ ൌ
𝛽𝑐෢଴

1 ൅  𝛽𝑐෢଴
 0.6877 0.6805 

* Significant at 1%. 
 

 

Table 2: Fit statistics of the three models for fleets of one truck or more, and trucks with two 
periods or more 

Statistics Hausman model 
Gamma-Dirichlet 

model 
Hierarchical 
model K=19 

Log likelihood  -269,077 -270,956 -265,353 
BIC  538,758 542,530 531,337 
AIC 538,244 542,004 530,800 
Number of trucks 164,513 164,513 164,513 
Number of observations 678,331 678,331 678,331 
Number of firms 62,171 62,171 62,171 
Number of parameters 45 46 47 

The likelihood ratio test value of 7,448 is largely superior to the critical value of 9.21 at 1% when comparing 
the Hausman model to the hierarchical model with K=19. The likelihood ratio test value of 11,206 is largely 
superior to the critical value of 6.64 at 1% when comparing the gamma-Dirichlet  model to the hierarchical 
model with K=19. The likelihood ratio test value of 3,758 is largely superior to the critical value of 6.64 at 
1% when comparing the gamma-Dirichlet  model to the Hausman model. 

6. Empirical pricing model 

6.1 Empirical pricing formula 
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We can use the estimated parametric models to rate the insurance for vehicles belonging 

to a fleet. According to the results in Table 1, a premium must be a function of the observable 

characteristics of a vehicle and fleet, as well as a function of violations of the Highway Safety 

Code committed by drivers and fleet owners. These violations partially approximate the 

asymmetric information between the insurer and both the fleet owners and the drivers. As 

previously stated, this will not be enough, however, to obtain accurate pricing, because many 

unobservable actions of drivers and fleets owners may also affect the trucks’ accident distribution. 

The premiums will have to be adjusted using the parameters of the random effects, to account for 

the impact of the unobservable characteristics of fleets and trucks as well as the unobservable 

behaviors of owners and drivers, and even for time not captured by the year variables. This form 

of rating makes it possible to visualize the impact (observable and unobservable) of the owners’ 

and drivers’ behaviors on the predicted accident rate, and consequently, on premiums for the next 

year. We now present the model’s empirical pricing formula.  

Our goal is to build a bonus-malus system based on the number of past accidents and 

control variables in the regression model. We use the expected value principle for the premium of 

a truck in a given fleet. With the hierarchical model, to construct an optimal bonus-malus scheme 

based on the number of past accidents recorded for a truck in a given fleet, as well as those 

observed for all trucks of that fleet during the same period, we calculate the posterior expected 

number of accidents at period T+1 for a truck j of a given fleet i:  

Εൣ𝑋௜,௝,்ାଵ|𝑥௜,௞,௧൧ ൌ 𝜆௜,௝,்ାଵΕൣ𝜃௜,௝,்ାଵ|𝑥௜,௞,௧൧ 

                                       ൌ  𝜆௜,௝,்ାଵ𝑐∗𝛿∗ ൅ 𝜆௜,௝,்ାଵ𝛽∗𝑐∗Εൣ𝑍௜,௝|𝑥௜,௞,௧൧  (16) 

where 𝜆௜,௝,்ାଵ  is the marginal expectation of 𝑋௜,௝,்ାଵ , given all observable covariates. The 

conditional expectation Εൣ𝑍௜,௝|𝑥௜,௞,௧൧ ൌ ∑ 𝑧௝ஶ
௭ೕୀ଴ 𝑝൫𝑧௝|𝑥௜,௞,௧൯ and 𝑝൫𝑧௝|𝑥௜,௞,௧൯ is given by equation 
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(13). In order to evaluate how the estimated parameter differences of the random effects may 

influence the value of the posterior expected number of accidents at period T+1, we calculate its 

value with two sets of parameters. The first set contains the parameters estimated with hierarchical 

model (K = 19) for the 1991–1998 period, and the second set uses the parameters of hierarchical 

model (K = 18) estimated for the same period. 

Figure 2 here 

We can see from Figure 2 that the two distributions of the posterior expected number of 

accidents at period T+1 are very similar. The corresponding means and standard deviations (in 

parentheses) are, respectively, equal to 0.1368 (0.1048) for K = 18 and 0.1368 (0.1047) for K = 

19. Both distributions differ significantly from the normal distribution. 

To compare the two values of the posterior expected number of accidents at time T+1, we 

perform a paired t-test of the difference of the posterior expected number of accidents at period 

T+1. Figure OA5.1 of Online appendix OA5 presents the distribution of the difference used for 

the paired t-test. The mean of the difference is not statistically different from zero at 1%. The t-

test value is -0.66 and the p-value is equal to 0.51. From these results, we decided to proceed with 

K=19 for the out-of sample analysis. We should mention that the same analysis generated 

differences between means when comparing the results of the t-test with K=8 and K=10 and with 

K=13 and K=15. Results are presented in Online appendix OA5. See Table OA5.9 and Table 

OA5.10 and the corresponding figures. 

6.2 Out-of-sample validation 

To test the models’ forecasting performance, our main estimation data are from the 1991–

1996 observation period. The model is tested on the data from the validation year 1998. We also 
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consider the 1991–1995 and 1991–1997 periods for estimation. The 1991–1995 period should be 

considered a robustness test period, and the results of the 1991–1997 period are presented in tables 

OA5.13 and OA5.14 for additional information, knowing that there is a mistake in the 1997 data. 

The database for the reoptimization of the hierarchical model in Table OA5.8 contains 491,792 

observations for the 1991–1996 period, and 397,098 for the 1991–1995 period. The estimation 

results presented in Table OA5.8 are very stable between the two periods, so we should expect 

similar backtest results.  

To compare the mean of the posterior expected number of accidents from estimations and 

the mean of the number of accidents in 1998, we run a t-test. The results are presented in Table 3 

and Table 4. The mean of the posterior expected number of accidents is not statistically different 

from the mean of observed accidents in 1998, at a 1% level of significance, in Table 3 and Table 

4, for all fleet sizes. Results in Table OA5.13 of the Online appendix OA5 perform less well for 

the estimation 1991–1997 period.  

Table 3: t-test of the posterior expected number of accidents from the estimation of hierarchical 
model 91–96 and the observed numbers of accidents in 1998 for all fleets 

 Hierarchical model 91–96 Data 1998 t-test 
 N trucks Mean Std N trucks Mean Std t-value p-value 
All fleets 132,868 0.1426 0.1129 77,651 0.1418 0.4109 0.58 0.5641 
Size 1 33,965 0.1051 0.0796 25,230 0.1085 0.3581 -1.49 0.1375 
Size 2 18,822 0.1164 0.3492 9,726 0.1092 0.3492 2.01 0.0448 
Size 3 10,491 0.1273 0.0997 5,922 0.1348 0.3981 -1.42 0.1546 
Sizes 4 to 5 12,669 0.1413 0.1089 7,321 0.1488 0.4521 -1.48 0.1399 
Sizes 6 to 9 12,319 0.1605 0.1226 6,819 0.1684 0.4401 -1.45 0.1485 
Sizes 10 to 20 13,785 0.1828 0.1384 7,754 0.1893 0.4751 -1.18 0.2375 
Sizes 21 to 50 11,624 0.1828 0.1238 6,371 0.1874 0.4742 -0.76 0.4448 
Sizes > 50 19,193 0.1794 0.1261 8,508 0.1776 0.4652 0.35 0.7249 

Mean 91–96: Posterior expected number of accidents in year 1998 from estimations in Table OA5.8 
(hierarchical model 91–96) 
Data 1998: Observed mean of accidents by fleet size in 1998 
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Table 4: t-test of the posterior expected number of accidents from the estimation of hierarchical 
model 91–95 and the observed numbers of accidents in 1998 for all fleets  

 Hierarchical model 91–95 Data 1998 t-test 
 N trucks Mean Std N trucks Mean Std t-value p-value 
All fleets 115,280 0.1420 0.1072 77,651 0.1418 0.4109 0.19 0.8524 
Size 1 31,821 0.1043 0.0740 25,230 0.1085 0.3581 -1.83 0.0678 
Size 2 16,086 0.1161 0.0821 9,726 0.1092 0.3492 1.92 0.0551 
Size 3 9,105 0.1288 0.0956 5,922 0.1348 0.3981 -1.13 0.2566 
Sizes 4 to 5 10,871 0.1422 0.0988 7,321 0.1488 0.4521 -1.30 0.1942 
Sizes 6 to 9 10,278 0.1613 0.1176 6,819 0.1684 0.4401 -1.29 0.1983 
Sizes 10 to 20 12,157 0.1841 0.1309 7,754 0.1893 0.4751 -1.95 0.3401 
Sizes 21 to 50 9,605 0.1854 0.1163 6,371 0.1874 0.4742 -0.33 0.7412 
Sizes > 50 15,357 0.1818 0.1270 8,508 0.1776 0.4652 0.82 0.4108 

Mean 91–95: Posterior expected number of accidents in year 1998 from estimations in Table OA5.8 
(hierarchical model 91–95) 
Data 1998: Observed mean of accidents by fleet size in 1998 
 

In the next section, we present premiums tables derived from the posterior expected 

number of accidents. To compute the premiums, we use the parameters of the two hierarchical 

models estimated with K= 19, as presented in Table OA5.8.  

6.3 Application of the bonus-malus system 

In this section, we propose premiums tables. Given that we did not have data to compute 

the conditional average cost of claims, we use $10,000 as a reasonable value for property damage 

claims involving trucks in North America during that period (Dionne et al., 1999). 

A premium for a truck at period T+1 can be affected by three possibilities, according to the 

theoretical model: 1) It has past experience and belongs to a fleet of trucks that has past experience; 

2) It is a new truck, in a new fleet, meaning that there is no past experience for the truck or the 

fleet; 3) It is a new truck belonging to an existing fleet that has past experience. We now consider 

these three possibilities.  
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Premiums for a truck with past experience and belonging to a fleet with past experience 

Table 8 presents premiums for a truck, using all the information from the optimal 

estimations of the hierarchical model in Table OA5.8. From the hierarchical model and equation 

(16), the average estimated number of accidents is 0.1420 for the 91–95 estimation period and 

0.1426 for the 91–96 estimation period. Both values are very close to the empirical mean of 0.1418, 

presented in Table OA5.4 for the year 1998. It decreases to less than 0.10 if the truck did not 

accumulate accidents in the past, but increases to more than 0.53 if it accumulated more than three 

accidents. The variations are similar for the two estimation periods.  

Table 5: Premiums for a truck in 1998, as a function of the accumulated number of past accidents 

Accumulated 
number of 
accidents over 
the period 

Data Hierarchical model 91–95 Data Hierarchical model 91–96 

1998 N trucks 𝐸ሾ𝑋௜௝்ାଵ|𝑋௜௞௧ሿ Premium 1998 N trucks 𝐸ሾ𝑋௜௝்ାଵ|𝑋௜௞௧ሿ Premium 

0 0.0889 78,205 0.0993 $993 0.0918 88,828 0.0986   $986 

1 0.1578 24,640 0.1791 $1,791 0.1584 28,602 0.1769 $1,769 

2 0.2089 8,007 0.2769 $2,769 0.2100 9,657 0.2715 $2,715 

3 0.2831 2,751 0.3828 $3,828 0.2633 3,471 0.3708 $3,708 

More than 3 0.4665 1,677 0.5518 $5,518 0.4597 2,310 0.5397 $5,397 

Total 0.1237 115,280 0.1420 $1,420 0.1300 132,868 0.1426 $1,426 

Premium for the posterior expected number of accidents in 1998, from estimations in Table OA5.8, 
equation (16), and the conditional average cost of claims of $10,000. Of the 115,280 trucks in the 91–95 
period, 39,289 are still present in 1998. The 1998 data are their average number of accidents in 1998, given 
their past experience in 91–95. The respective numbers for the 91–96 period are 50,002 trucks in 1998, 
from the 132,868 trucks in 91–96.  

Premiums for a new truck belonging to a new fleet 

If the fleet does not exist in periods 1 to T, then there are no past accidents recorded for the 

new truck. In this case Εൣ𝜃௜,௝,்ାଵ|𝑥௜,௞,௧൧ ൌ Εൣ𝜃௜,௝,௧൧ ൌ 1.  

The posterior expected number of accidents for a new truck in a new fleet will be 

 Εൣ𝑋௜,௝,்ାଵ|𝑥௜,௞,௧൧ ൌ 𝜆 (17) 
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where 𝜆 is the mean over i of the optimal estimated 𝜆௜ , 𝜆௜  is the mean over j of the optimal 

estimated 𝜆௜௝ , and 𝜆௜௝  is the mean over t of the optimal estimated 𝜆௜௝௧ . Since we have no 

information concerning the past of the new truck and the past of the new fleet, we represent the 

truck with a vehicle that is representative of the population, i.e., 𝜆. However, even if this is a new 

truck, we know its observable characteristics, such as the type of gasoline it uses, etc. We can thus 

obtain various scenarios for 𝜆, according to the characteristics of the truck and the fleet. Table 6 

presents the premiums for a new truck from a new fleet. The average estimated numbers of 

accidents are slighly different from the values  obtained in Table OA5.4. Data by fleet size are also 

documented. The premiums fall if the truck belongs to a fleet of a lower size, as observed with the 

estimated parameters in Table OA5.8. 

Table 6: Premiums for a new truck in a new fleet in 1998 

 
Data 1998 Hierarchical model 91–95 Hierarchical model 91–96 

Mean N trucks 𝜆 Premium N trucks 𝜆 Premium 

Size of fleet        
1 0.1085 31,821 0.1041 $1,041 33,965 0.1067 $1,067 
2 0.1092 16,086 0.1146 $1,146 18,822 0.1174 $1,174 
3 0.1348 9,105 0.1263 $1,263 10,491 0.1276 $1,276 
4 to 5 0.1488 10,871 0.1422 $1,422 12,669 0.1430 $1,430 
6 to 9 0.1684 10,278 0.1599 $1,599 12,319 0.1630 $1,630 
10 to 20 0.1893 12,157 0.1793 $1,793 13,785 0.1833 $1,833 
21 to 50 0.1874 9,605 0.1789 $1,789 11,624 0.1849 $1,849 
More than 50 0.1776 15,357 0.1714 $1,714 19,193 0.1775 $1,775 
Total 0.1418 115,280 0.1390 $1,390 132,868 0.1436 $1,436 

Premium for the posterior expected number of accidents, from estimations in Table OA5.8, equation (17), 
and the conditional average cost of claims of $10,000. 

Premiums for a new truck belonging to a fleet with past experience 

If the fleet existed previously, there may not be any past accidents recorded for the new 

truck, but there are past accidents for the other trucks of its new fleet. The posterior expected 

number of accidents at period T+1 for a new truck of a given fleet with past experience becomes 
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 Εൣ𝑋௜,௝,்ାଵ|𝑥௜,௞,௧൧ ൌ 𝜆௜𝑐∗𝛿∗ ൅ 𝜆௜,𝛽∗𝑐∗Εൣ𝑍௜,௝|𝑥௜,௞,௧൧ (18) 

where 𝜆௜ is the mean over j of the optimal estimated 𝜆௜,௝, and Εൣ𝑍௜,௝|𝑥௜,௞,௧൧ is the average over j of 

the conditional expectation Εൣ𝑍௜,௝|𝑥௜,௞,௧൧. Table 7 presents the premiums for a new truck in an 

existing fleet. The average estimated numbers of accidents are very similar to those obtained in 

Table 5.  

Table 7: Premiums for a new truck in 1998 in an existing fleet 

 
Data 1998 Hierarchical model 91–95 Hierarchical model 91–96 

Mean N trucks 𝐸ሾ𝑋௜௝்ାଵ|𝑋௜௞௧ሿ Premium N trucks 𝐸ሾ𝑋௜௝்ାଵ|𝑋௜௞௧ሿ Premium 

Size of fleet        

1 0.1085 31,821 0.1043 $1,043 33,965 0.1051 $1,051 

2 0.1092 16,086 0.1161 $1,161 18,822 0.1164 $1,164 

3 0.1348 9,105 0.1288 $1,288 10,491 0.1273 $1,273 

4 to 5 0.1488 10,871 0.1422 $1,422 12,669 0.1413 $1,413 

6 to 9 0.1684 10,278 0.1613 $1,613 12,319 0.1605 $1,605 

10 to 20 0.1893 12,157 0.1841 $1,841 13,785 0.1828 $1,828 

21 to 50 0.1874 9,605 0.1854 $1,854 11,624 0.1828 $1,828 

More than 50 0.1776 15,357 0.1818 $1,818 19,193 0.1794 $1,794 

Total 0.1418 115,280 0.1420 $1,420 132,868 0.1426 $1,426 

Posterior expected number of accidents from the estimations in Table OA5.8, equation (18), and the 
conditional average cost of claims of $10,000. 

Conclusion  

In this paper, we derive a new hierarchical count-data model with random effects to 

estimate and forecast truck accidents within a fleet. We develop a closed-form formula for the 

ratemaking of a bonus-malus scheme that considers past accidents, past road safety offences of 

both the drivers and the fleet owners, and the characteristics of the trucks and fleets. 
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The estimation results of the model dominate those of the previous models in the literature, 

including the Hausman model, which is restricted to individual random effects. We should keep 

in mind that, in many applications, such as insurance, banking, education, and marketing, the aim 

of the econometric model is not only to explain the data and identify the most important 

explanatory variables, but also to forecast the response variables. Our choice of random effects is 

related to the fact that most fleets in our data are of moderate size and were observed over a small 

number of years. In this case, a fixed (fleet) effect model could be generally inconsistent, due to 

the incidental parameter problem. On the other hand, a potential downside of the random-effects 

model is that it might also suffer from endogeneity bias, if the independence between the random 

effects 𝜃௜,௝,௧  and the covariate vector 𝑌௜,௝,௧  is not satisfied. In our nonlinear panel-data model, 

however, this issue can be partially mitigated by considering more flexible, possibly 

nonparametric, models for the marginal conditional expectation 𝜆௜,௝,௧ ൌ 𝐸ൣ𝑋௜,௝,௧ห𝑌௜,௝,௧൧, beyond the 

standard exponential linear specification. 6  Consequently, we believe that the random-effects 

model is more appropriate for our application, especially given its tractable posterior predictive 

formula, which constitutes the very foundation of actuarial bonus-malus pricing. 

Moreover, in our specification, the effect of time is fleet- and truck-specific, since it only 

appears at the third level. This structure, which implicitly puts less emphasis on intertemporal 

variation than on intertruck and interfleet variation, is motivated by the principal’s (insurer, 

regulator) desire to incentivize fleet managers and truck drivers to comply with road safety in 

future years. It might also be (at least econometrically) interesting to consider other hierarchical 

structures. For instance, one can continue to have fleet effects at the first level, but fleet/time effects 

 
6 Alternatively, Hausman et al. (1984) also propose a conditional maximum likelihood estimation approach that is 
robust to the potential existence of a correlation between the random effects and the covariates. Nevertheless, this 
method does not address the endogeneity issue when it comes to forecasting. See Chamberlain (1980) on endogeneity 
in a general context, not specific to count models. 
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at the second level, and fleet/time/truck effects at the third level. This latter specification may be 

more suitable if, empirically, there is significant temporal fluctuation in the fleets’ average risk.  

The insurance policy considered in the paper is renewed annually; hence, all the data, 

including the claims counts, are only observed at a quite low (annual) frequency. Recently, 

telematic insurance has become increasingly popular for individual vehicles. The insurer can now 

collect high-frequency count data for vehicles. To our knowledge, telematic data has not yet been 

introduced for fleet insurance, but because of its tractability, the hierarchical count-data model we 

propose here would be a serious contender once such data become available. We leave these issues 

for future research. 
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  iN    (1st level, fleet effect) 

      

ꞏꞏꞏ , 1i j   ,i j  , 1i j   ꞏꞏꞏ (hidden level) 

      

ꞏꞏꞏ , 1i j   ,i j  , 1i j   ꞏꞏꞏ (2nd level, fleet/vehicle effect) 

      

ꞏꞏꞏ ꞏꞏꞏ  , , 1 , , , , 1..., , , ,...i j t i j t i j t     ꞏꞏꞏ ꞏꞏꞏ (3rd level, fleet/vehicle/time effect)

  …   …   …   …    

ꞏꞏꞏ ꞏꞏꞏ  , , 1 , , , , 1..., , , ,...i j t i j t i j t     ꞏꞏꞏ ꞏꞏꞏ (4th level, claim counts) 

Figure 1: Chain rule of the hierarchical model 

 

 
Figure 2: Posterior expected number of accidents at period T+1, obtained from the estimation of 

hierarchical model K=18 (at top) and hierarchical model K=19 (at bottom). The continuous density 
function is from the normal distribution. 
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Online appendices 

OA1  Hierarchical principal-agent model: principal-agent relationship in a 
teams model with an intermediary 

Fleet model 

Our contribution is related to the problem of moral hazard in teams (Holmstrom, 1982), 

although our environment is not exactly similar since we add an intermediary between the principal 

and the agents. Moral hazard is an information problem of inducing agents to produce optimal 

effort when their action cannot be observed and contracted directly (Laffont and Martimort, 2001). 

Moral hazard in teams applies to several agents, and hierarchical moral hazard is when an 

intermediary between the principal and the agents is added (Sung, 2015; Hubert, 2020). 

This model is an extension of the Holmstrom and Milgrom (1987) model of interaction 

between economic agents with asymmetric information in a hierarchical framework. This 

extension of the multi-agent model was first proposed by Sung (2015) in a one-period principal-

agent framework with moral hazard. In our application, the agents are the truck drivers. The 

principal is the insurer, and the fleet owner is the intermediary who can influence the agents’ safety 

output through monitoring and own actions. The actions of both the agent and the intermediary to 

improve road safety are private information, meaning that they cannot be observed directly by the 

insurer. The intermediary also does not observe the agent’s actions. 
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Moral hazard often occurs when there is uncertainty in output realization, as in road 

accidents. The actions of agents or intermediaries who cheat by committing road safety offences 

cannot be identified when observing accidents, which is the only, imperfect, observable indicator 

of road safety output in this type of model. An accident can occur because of bad driving or bad 

luck, and observing only accidents does not allow for conclusions about the cause of the accidents, 

especially under no-fault insurance, without a full accident investigation, as in our environment. 

For simplicity, the model is limited to the relationships between the parties with respect to 

the contracting of insurance for a fleet of vehicles and its links to road safety. The other 

responsibilities of the fleet owner, such as hiring drivers, improving fleet productivity, or being 

competitive in the transportation of goods, are considered independent.  

The insurer writes an insurance contract for the trucks of the fleet and sells it to the fleet 

owner. Accident distributions can be affected independently by the agents and the intermediary. 

In our application, unobservable actions are road safety activities that can affect the mean of the 

accident distributions, in a first-order manner. It is less costly for insurers to let the fleet owners 

monitor the drivers. 

In our application, the principal is risk-neutral, the intermediary is risk-averse, and the 

agents are risk-averse. This explains insurance demand. The agents can generate accidents, which 

are the agent’s outputs that are observable by the intermediary. Accidents are costly to the 

intermediary, so they buy insurance coverage by paying premiums to the insurer. The principal 

observes only accidents. The insurer sets the aggregate premium and reimburses the aggregate 

accident costs to the fleet owner, as per the insurance contract. The intermediary observes the truck 

accidents and pays a salary to the truck drivers that is a decreasing function of accidents. The 
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intermediary reports all accident costs to the insurer and pays the premiums, which are increasing 

functions of accidents. 

In a similar framework applied to finance, Sung (2015) shows that linear contracts are 

optimal in a one-period discrete-time model where the intermediary cannot affect the volatility of 

the returns distribution. This is a kind of coinsurance contract in an insurance application.  

In the insurance literature, multiperiod contracts have been implemented to observe proxies 

over time, for past effort levels, such as past accidents and past offences, in order to improve 

resource allocation under moral hazard. We assume that the intermediary uses such information to 

compute the individual premiums of the trucks and to set the corresponding salaries of the truck 

drivers.  

We do not pretend that this form of contracting is the optimal one. More theoretical 

research would be necessary to obtain the optimal form of both the insurance and the labor 

contracts, which falls beyond the purview of this article. We add the safety efforts of both the 

intermediaries and the drivers in the regression components as control variables, but they are not 

contract decision variables in this model. Only accidents are contract decision variables for setting 

the insurance premiums. 

Other applications 

Children’s academic success: The principal is the school director, the agents are the 

students, and the intermediaries are the parents. The students’ effort, which affects their success 

rate (number of As per period) is not perfectly observed by the parents or the school director. The 

effort of the parents is not perfectly observed by the school director, and their effort can affect the 

students’ success rate. 
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Absence from work: The principal is the owner of the company, the agent is the worker, 

and the intermediary is the supervisor.  

Surgical malpractice: The principal is the insurer, the agent is the surgeon, and the 

intermediary is the owner of the clinic or hospital. 

Finance: The principal is the investor, the agent is the trader, and the intermediary is the 

broker. 

Business firm: The principal is the stock owner, the agents are the workers, and the 

intermediary is the CEO.  
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OA2  The Poisson-gamma conjugacy 

The following proposition reviews the main results of the Poisson-gamma conjugacy. 

Proposition 2: Poisson-gamma conjugacy 

Let us consider a couple (X,Y), where X is a count variable, and Y a real positive variable with 

joint density (with respect to ,   i.e., the product measure between the counting measure ν 

on N and the Lebesgue measure λ+ on R+): 

    
1

1
1

,  
!

x x

c
exp y

c c
f x y y

x c







 
 

  
 




     




  


 (A1) 

with ,c  positive, and 1c  . Then: 

• the conditional distribution of X given Y = y is Poisson:  P y ; 

• the conditional distribution of Y given    : ,X x is x c    with scale parameter c and shape 

parameter δ +x; 

• the marginal distribution of X is:  ,NB c  ; 

• the marginal distribution of Y is: ,
1

c

c
 


 
 
 

. 

□ 
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OA3  Gamma-Dirichlet model 

Most of the econometric models applied to discrete (or count) variables start from the 

Poisson distribution, where the probability of truck j of fleet i being involved in ijty  accidents in 

period t can be represented by the following expression  

    
 |

1

ijtijt
y

ijt

ijt ijt

ijt

e
P Y

y

 





 

. 

To simultaneously take into account of both the firm effect and the time effect, suppose 

that  ( ) ( )ijt ijt i i j ij t     with 
ijtX

ijt e   . The vector  1, ,ijt ijt ijtpX x x   represents the p 

characteristics of truck j of fleet i observed in period t. This vector contains specific information 

about the vehicle and other specific information about the fleet.   is a vector of p parameters to 

be estimated. Let i  be the random effects associated with fleet i (i.e. the risk or non-observable 

characteristics attributable to the fleet), whereas ( )i j  is the random effects of truck j of fleet i 

where ( )
1

1
is

i j
j




  where is  is the number of vehicles in fleet i. Finally, ( )ij t  is the random effects 

of period t of truck j of fleet i such as ( )
1

1
jT

ij t
t




  where jT  is the number of periods for truck j.  

Angers et al. (2018) make the three following hypotheses. The parameter i  follows a 

gamma distribution of parameters 1 1

1

,
is

j
j

T   



 
 
 
 . The vector  ( ) ( )1 ( )2 ( ), , ,

ii i i i s    


 follows a 

Dirichlet distribution of parameters  ( )1 ( )2 ( ), , ,
ii i i s    and the vector  ( ) ( )1 ( )2 ( ), , ,

jij ij ij ij T    


 

follows a Dirichlet distribution of parameters  ( )1 ( )2 ( ), , ,
jij ij ij T    where jT  is the number of 
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periods of vehicle j. Using these assumptions, the following expression for accident distribution is 

obtained: 
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  (A2) 

By supposing that 1, ,ijt ij jt T      where 
1

1 jT

ij ijt
jjT

 


  , the integral of equation (A2) 

can be approximated. Separating the vehicles into two groups and defining 1 11, ,G g   as the set 

of all vehicles of the first group with 

1
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g g
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
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2

1
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By integration, one obtains: 
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Thus, by replacing the integral in equation (A3) with its value given in (A4) the following 

approximation for  11 ( ), , |
i ii is Ts ijP Y Y 
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 in (A2) is equal to: 
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where 2 1F  is a hypergeometric function whose value is equal to: 
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with      1 1h h h h      , an increasing factorial function. More substitutions yield: 
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  (A6) 

where: 

is  is the number of vehicles in fleet i. 

jT  is the number of periods for truck j. 

0
1 1 1  

  
ji i

Ts s

ijt j
j t j

S y S  where 
1
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jT

j ijt
t

S y . 

Letting ( ) ,i j j    and ( ) ,ij t t   , we can use the maximum likelihood method to 

estimate the unknown parameters, , ,    and   of the log likelihood function of the model. 

Weakenesses of the gamma-Dirichlet model. The gamma-Dirichlet model has two 

weakenesses. First, the above formulas involve approximations. Second and more importantly, the 

model suffers from a self-consistency issue. More precisely, the identification condition 

( )
1

1
is

i j
j




 depends on the number of vehicles is . Thus when the size of a fleet changes, this 

condition is no longer satisfied. In other words, for forecasting purpose, the new model is not 

consistent with the initial one. Similarly, condition ( )
1

1
jT

ij t
t




  depends on the number of years jT . 

Thus, the model used in the next year is incompatible with the model currently in place.   
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OA4  Description of variables 

The unit of observation is an eligible vehicle that is authorized to drive at least one day in 

year t and that has had a follow-up for at least two years. We analyze the accident totals found in 

the SAAQ files. These totals include all the traffic accidents causing bodily injuries and all 

accidents causing material damage reported by police in Quebec. The names of the explanatory 

variables in the tables of the paper are in bold at the end of description. 

Dependent variable 

fitY  = the number of accidents in which vehicle i of fleet f has been involved during year t. fitY  can 

take the values 0, 1, 2, 3, 4 and over. 

Explanatory variables 

We have two types of explanatory variables: those concerning the fleet and those 

concerning the vehicle. 

Variables concerning the fleet 

 Size of fleet for year t: 8 dichotomous variables have been created. (Size of fleet) 

The two-vehicle size is used as the reference category. Coefficients estimated as positive and 

significant will thus indicate that vehicles are more at risk of accidents than those in the two-

vehicle category. 

 Sector of activity: 5 dichotomous variables have been created for vehicles transporting goods: 

sect_14 = 1 if the main sector of activity is transporting passengers; (Other sectors) 

sect_05 = 1 if the sector of activity is general public trucking; (General public trucking) 

sect_06 = 1 if the sector of activity is public bulk trucking; (Bulk public trucking) 

sect_07 = 1 if the sector of activity is independent trucking; (Private trucking) 

sect_08 = 1 if the sector of activity is a short-term leasing firm. (Short-term rental firm) 
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The “public bulk trucking” sector is used as the reference category. 

 Six variables have been created for vehicles engaged in the transportation of goods, so as to 

measure the number of convictions per vehicle in the year preceding year t for each fleet: 

 Number of overweight violations per vehicle committed by a fleet in the year preceding 

year t. A positive sign is predicted because more overweight violations should, on average, 

generate more accidents. (Overload) 

 Number of oversize violations per vehicle committed by a fleet in the year preceding year 

t: A positive sign is predicted because more violations for oversize should, on average, 

generate more accidents. (Excessive size) 

 Number of violations per vehicle for poorly secured loads committed by a fleet in the year 

preceding year t: A positive sign is predicted because more violations for poorly secured 

loads should, on average, generate more accidents. (Poorly secured cargo) 

 Number of violations per vehicle concerning hours-of-service regulations committed by a 

fleet in the year preceding year t: A positive sign is predicted because more violations of 

hours-of-service regulations should, on average, generate more accidents. (Not respecting 

service hours) 

 Number of violations per vehicle of Highway Safety Code provisions regarding mechanical 

inspections committed by a fleet in the year preceding year t: A positive sign is predicted 

because more violations against regulations regarding mechanical inspection should, on 

average, generate more accidents. (No mechanical inspection) 

 Number of violations per vehicle, other than those already mentioned, committed by a fleet 

in the year preceding year t: A positive sign is predicted because more violations other 
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than those already mentioned should, on average, generate more accidents. (Other 

reasons) 

Variables concerning the vehicle 

 Vehicle’s number of cylinders: 3 dichotomous variables have been created: 

cyl1_5 = 1 if the vehicle has 1 to 5 cylinders; (1 to 5) 

cyl6_7 = 1 if the vehicle has 6 to 7 cylinders; (6 to 7) 

cyl_8p = 1 if the vehicle has 8 or more than 10 cylinders. (8 or more than 10) 

The group of vehicles with 8 or more than 10 cylinders is used as the reference category. 

 Vehicle’s type of fuel: 3 dichotomous variables have been created: 

diesel = 1 if the vehicle uses diesel as fuel; (Diesel) 

essence = 1 if the vehicle uses gas as fuel; (Gas) 

carb_aut = 1 if the vehicle uses another type of fuel. (Other) 

The group of vehicles using diesel as fuel is considered the reference category.  

 Maximum number of axles: 6 dichotomous variables have been created: 

ess_2 = 1 if the vehicle has two axles and a mass of between 3,000 and 4,000 kg; (2 axles 

(3,000 to 4,000 kg)) 

ess_2p = 1 if the vehicle has two axles and a mass higher than 4,000 kg; (2 axles (4,000 

kg and more)) 

ess_3 = 1 if the vehicle has a maximum of three axles; (3 axles) 

ess_4 = 1 if the vehicle has a maximum of four axles; (4 axles) 

ess_5 = 1 if the vehicle has a maximum of five axles; (5 axles) 

ess_6p = 1 if the vehicle has six or more axles. (6 axles or more) 

The group of vehicles with two axles and a mass of between 3,000 and 4,000 kg is used as the 

reference category.  
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 Vehicle’s type of use: 3 dichotomous variables for vehicles transporting goods have been 

created: 

compr = 1 if the vehicle is meant for commercial use, including the transportation of goods 

without a CTQ permit; (Commercial use) 

tbrgn = 1 if the vehicle is meant for the transportation of non-bulk goods that require a CTQ 

permit; (Other than bulk goods) 

tbrvr = 1 if the vehicle is meant for the transportation of bulk goods. (Bulk goods) 

The group of vehicles transporting bulk goods is used as the reference category.  

 Five variables have been created to measure the number of convictions per vehicle cumulated 

in the year preceding year t by one or more drivers: 

 Number of violations for speeding per vehicle committed the year preceding year t. A 

positive sign is predicted because more speeding violations should, on average, generate 

more accidents. (Speeding) 

 Number of violations for driving with a suspended license per vehicle committed the year 

preceding year t. A positive sign is predicted because more driving with a suspended 

license should, on average, generate more accidents. (Suspended license) 

 Number of violations for running a red light per vehicle committed the year preceding 

year t. A positive sign is predicted because more incidences of running a red light should, 

on average, generate more accidents. (Running a red light) 

 Number of violations for failure to respect a stop sign or a signal from a traffic officer per 

vehicle committed the year preceding year t. A positive sign is predicted because more 

incidents of failure to respect a stop sign or a signal from a traffic officer should, on 

average, generate more accidents. (Ignoring a stop sign) 
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 Number of violations for failure to wear a seat belt per vehicle committed the year 

preceding year t. A positive sign is predicted because more incidents of failing to wear a 

seat belt should, on average, generate more accidents. (Not wearing a seat belt) 
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OA5  Other statistics and results 

Other statistics 

Table OA5.1: Fleet size, number of years of follow-up by fleet size, 
and number of years of follow-up by truck in a given fleet size 

 
Number of years of follow-up by 

fleet size 
Number of years of follow-up 
by truck in a given fleet size 

Fleet size 
Number of 

fleets Mean Median 
Number of 

trucks Mean Median 

1 38,272 4.06 3 38,272 4.06 3 
2 11,628 5.96 6 23,256 3.88 3 
3 4,396 6.47 7 13,188 4.04 3 
4 to 5 3,620 6.80 8 15,810 4.20 4 
6 to 9 2,256 7.00 8 15,948 4.28 4 
10 to 20 1,302 7.06 8 17,574 4.30 4 
21 to 50 496 7.20 8 15,049 4.25 4 
More than 50 201 7.04 8 25,416 3.92 3 
Total 62,171 4.95 5 164,513 4.13 4 

 

Table OA5.2: Number of years of follow-up of the fleet and of the truck 

Number of years 
of follow-up  

Fleet Truck 

N % N % 

2 13,059 21.00 45,308 27.54 

3 9,349 15.04 34,495 20.97 

4 7,533 12.12 26,112 15.87 

5 6,041 9.72 17,740 10.78 

6 5,340 8.59 13,356 8.12 

7 5,542 8.91 9,070 5.51 

8 15,307 24.62 18,432 11.20 

Total 62,171 100.00 164,513 100.00 
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Table OA5.3: Size of fleet distribution (in %) by year 

Size of fleet 

% by year % total of 
fleet-years 1991 1992 1993 1994 1995 1996 1997 1998 

1 72.76 71.38 70.90 70.53 70.37 70.25 70.56 70.95 70.91 

2 13.05 13.53 13.86 14.10 13.95 13.99 13.79 13.67 13.76 

3 5.35 5.59 5.70 5.75 5.69 5.70 5.64 5.55 5.63 

4 to 5 4.15 4.47 4.50 4.47 4.71 4.66 4.72 4.72 4.56 

6 to 9 2.49 2.64 2.62 2.72 2.78 2.87 2.76 2.69 2.70 

10 to 20 1.48 1.60 1.64 1.65 1.66 1.65 1.71 1.64 1.63 

21 to 50 0.53 0.58 0.57 0.54 0.59 0.62 0.60 0.58 0.58 

More than 50 0.18 0.21 0.22 0.24 0.25 0.26 0.24 0.20 0.23 

Number of fleets 31,793 38,236 39,128 39,882 40,688 41,214 41,289 35,562 307,792 

 

Table OA5.4: Truck accident distribution by year of observation 

Annual truck 
accidents 

Year of observation Total 

1991 1992 1993 1994 1995 1996 1997 1998  

0 87.23 87.61 88.50 88.03 87.82 88.40 89.60 87.81 88.17 
1 10.95 10.67 10.02 10.34 10.47 10.06 9.18 10.53 10.24 
2 1.53 1.45 1.26 1.38 1.42 1.28 1.05 1.38 1.34 
3 0.23 0.22 0.19 0.20 0.24 0.21 0.15 0.23 0.21 

4 and more 0.05 0.05 0.04 0.05 0.05 0.05 0.03 0.05 0.05 

Number of trucks 66,193 83,230 86,090 88,152 91,260 93,357 92,398 77,651 678,331 

Mean accident rate 0.1495 0.1443 0.1325 0.1390 0.1423 0.1345 0.1185 0.1418 0.1372 
 

Table OA5.5: Average truck accidents per fleet size by year 

Size of fleet 

% by year 

Total 1991 1992 1993 1994 1995 1996 1997 1998 

1 0.1115 0.1065 0.0991 0.1046 0.1055 0.0976 0.0884 0.1085 0.1024 

2 0.2628 0.2453 0.2204 0.2207 0.2224 0.2156 0.1805 0.2184 0.2216 

3 0.4365 0.4186 0.3807 0.4002 0.4135 0.3722 0.3149 0.4043 0.3905 

4 to 5 0.6689 0.6865 0.6016 0.6272 0.6477 0.5856 0.5506 0.6490 0.6242 

6 to 9 1.3914 1.2232 1.0898 1.1335 1.1830 1.0990 1.0026 1.1996 1.1551 

10 to 20 2.6730 2.6144 2.3744 2.5099 2.4541 2.4824 2.0767 2.5223 2.4501 

21 to 50 5.9176 5.3818 5.0448 5.3565 5.8875 5.2461 4.8618 5.7681 5.4094 
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Size of fleet 

% by year 

Total 1991 1992 1993 1994 1995 1996 1997 1998 

More than 50 21.1034 21.3293 20.8023 21.2021 20.9700 20.3962 17.5859 21.2817 20.4971 

Average truck 
accidents per fleet 

0.3109 0.3141 0.2915 0.3071 0.3192 0.3048 0.2652 0.3095 0.3023 

 

Table OA5.6: Average truck accidents rates according to the driver’s and fleet owners’ violations 
committed the previous year 

Violations committed 
by the driver the 

previous year 

Year 

Total 1991 1992 1993 1994 1995 1996 1997 1998 

Speeding          

0 0.1438 0.1399 0.1268 0.1325 0.1348 0.1266 0.1104 0.1335 0.1305 

1 0.2850 0.2402 0.2480 0.2524 0.2438 0.2406 0.2010 0.2504 0.2405 

2 0.2512 0.3067 0.3344 0.3691 0.3752 0.3041 0.2950 0.3095 0.3200 

3 and more 0.4750 0.5000 0.2653 0.4154 0.4766 0.4452 0.3707 0.4650 0.4269 

Suspended license          

0 0.1493 0.1441 0.1320 0.1381 0.1411 0.1337 0.1179 0.1412 0.1366 

1 and more 0.6667 0.3750 0.3672 0.3680 0.3234 0.3056 0.2622 0.3106 0.3207 

Running a red light          

0 0.1473 0.1426 0.1310 0.1369 0.1398 0.1322 0.1167 0.1391 0.1351 

1 0.2737 0.2771 0.2536 0.2985 0.3244 0.2993 0.2771 0.3555 0.2954 

2 and more 0.4828 0.5417 0.5385 0.4762 0.6429 0.5625 0.2778 0.5625 0.5206 

Ignoring a stop sign 
or police signal 

    
 

    

0 0.1472 0.1426 0.1310 0.1373 0.1399 0.1326 0.1172 0.1401 0.1354 

1 0.3063 0.2966 0.2553 0.2782 0.3342 0.2792 0.2299 0.2748 0.2815 

2 and more 0.4074 0.5000 0.2609 0.5625 0.4167 0.6286 0.2083 0.7200 0.4694 

Not wearing a seat 
belt 

 
   

 
    

0 0.1487 0.1438 0.1317 0.1385 0.1415 0.1337 0.1174 0.1415 0.1365 

1 0.1991 0.1933 0.2095 0.1758 0.2037 0.1941 0.1888 0.1855 0.1943 

2 and more 0.3061 0.3404 0.2459 0.3553 0.2188 0.2632 0.2889 0.2000 0.2762 

Year Total 
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Violations committed 
by the fleet owner the 

previous year 
1991  1992 1993 1994 1995 1996 1997 1998 

Overload           

0 0.1443 0.1395 0.1282 0.1352 0.1373 0.1288 0.1147 0.1381 0.1327 

1 0.2413 0.2698 0.2329 0.2365 0.2365 0.2353 0.1876 0.2584 0.2339 

2 and more 0.3333 0.3067 0.3498 0.2838 0.3172 0.3051 0.2121 0.3878 0.3008 

Excessive size           

0 0.1492 0.1443 0.1324 0.1389 0.1423 0.1344 0.1184 0.1417 0.1371 

1 and more 0.2921 0.1346 0.2368 0.2174 0.1677 0.1962 0.1902 0.2308 0.2044 

Poorly secured cargo           

0 0.1485 0.1436 0.1436 0.1319 0.1383 0.1340 0.1180 0.1412 0.1365 

1 and more 0.3167 0.3156 0.3156 0.2529 0.2651 0.2599 0.2564 0.3667 0.2777 

Not respecting 
service hours 

 
        

0 0.1492 0.1443 0.1323 0.1389 0.1420 0.1344 0.1183 0.1414 0.1370 

1 and more 0.6000 0.2727 0.5854 0.1837 0.3680 0.2623 0.3506 0.3761 0.3502 

No mechanical 
inspection 

 
        

0 0.1488 0.1435 0.1309 0.1379 0.1407 0.1340 0.1178 0.1412 0.1363 

1 and more 0.2660 0.3280 0.2050 0.2233 0.2779 0.2059 0.2098 0.2588 0.2344 
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Difference 

Figure OA5.1: Distribution of the difference between K=18 and K=19 of the posterior expected 
number of accidents at period T+1 obtained from the estimation of the hierarchical model. 
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Other estimation results 

Estimation of Hausman and gamma Dirichlet models with fleets of one truck or more 

Table OA5.7: Parameter estimation for the distribution of the number of annual truck accidents 
for the 1991–1998 period, for fleets with one truck or more, and trucks with two periods or more: 
Gamma-Dirichlet model and Hausman model 

Explanatory variable 

Gamma-Dirichlet Hausman model 

Coefficient 
Standard 

error 
Coefficient 

Standard 
error 

Constant -3.7159* 0.0410 -0.8149* 0.0517 

Number of years as a fleet  -0.0470* 0.0028 -0.0456* 0.0029 

Sector of activity in 1998     

 Other sectors -0.1593 0.0868 -0.2068 0.0857 

 General public trucking 0.1479* 0.0244 0.0334 0.0233 

 Bulk public trucking Reference group 

 Private trucking 0.0950* 0.0198 0.0858* 0.0184 

 Short-term rental firm 0.4589* 0.0392 0.3944* 0.0326 

Size of fleet     

1 -0.0398* 0.0154 -0.0580* 0.0149 

2 Reference group 

3 0.1190* 0.0187 0.1253* 0.0185 

4 to 5 0.1933* 0.0183 0.1919* 0.0175 

6 to 9 0.2836* 0.0185 0.2750* 0.0175 

10 to 20 0.3786* 0.0181 0.3517* 0.0168 

21 to 50 0.3790* 0.0193 0.3527* 0.0181 

More than 50 0.3048* 0.0186 0.3563* 0.0169 

Days in previous year  1.8841* 0.0251 1.6236* 0.0248 

Violations      

 For overload 0.0966* 0.0096 0.1181* 0.0104 

 For excess size 0.1799 0.0763 0.1519 0.0851 

 For poorly secured cargo 0.1710* 0.0271 0.2866* 0.0335 

 Not respect service hours 0.1787* 0.0620 0.2492* 0.0658 

 No mechanical inspection 0.2191* 0.0262 0.2519* 0.0268 

 For other reasons 0.1558* 0.0667 0.2467* 0.0737 

Type of vehicle use     

 Commercial use  -0.2858* 0.0182 -0.1801* 0.0183 

 Other than bulk goods -0.1528* 0.0212 -0.0712* 0.0223 

 Bulk goods Reference group 

Type of fuel     

 Diesel Reference group 

 Gas -0.3980* 0.0117 -0.4601* 0.0122 
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Explanatory variable 

Gamma-Dirichlet Hausman model 

Coefficient 
Standard 

error 
Coefficient 

Standard 
error 

 Other -0.2689* 0.0687 -0.3402* 0.0724 

Number of cylinders     

 1 to 5  0.2762* 0.0339 0.2995* 0.0355 

 6 to 7  0.3388* 0.0112 0.3612* 0.0121 

 8 or more than 10 Reference group 

Number of axles     

2 axles (3,000 to 4,000 kg) -0.0493* 0.0168 -0.2127* 0.0177 

2 axles (4,000 kg or more) -0.0503* 0.0124 -0.2313* 0.0137 

3 axles 0.0414* 0.0124 -0.2189* 0.0135 

4 axles -0.0331 0.0163 -0.1841* 0.0181 

5 axles -0.0231 0.0149 -0.2255* 0.0156 

6 axles or more Reference group 

Number of violations      

For speeding 0.1786* 0.0077 0.2561* 0.0092 

 Suspended license 0.3717* 0.0327 0.4327* 0.0335 

 For running a red light 0.2679* 0.0198 0.4343* 0.0213 

 For ignoring a stop sign 0.4220* 0.0219 0.4788* 0.0222 

 Not wearing a seat belt 0.1991* 0.0249 0.2391* 0.0256 

Observation period     

1991 -0.0252 0.0223 0.0267 0.0560 

1992 -0.0282 0.0201 -0.0090 0.0242 

1993 0.0183 0.0185 -0.0720* 0.0221 

1994 0.1258* 0.0169 -0.0063 0.0200 

1995 0.1683* 0.0156 0.0099 0.0175 

1996 0.0903* 0.0147 -0.0435 0.0171 

1997 -0.0885* 0.0145 -0.1530* 0.0153 

1998 Reference group 

𝜈̂଴ 2.0162* 0.0163   

𝜅̂଴ 1.4725* 0.0560   

𝜌ො଴ 0.6907* 0.0203   

â     21.0734* 0.3700 

b̂     1.6563* 0.0272 

Number of observations  678,331 678,331 

Number of trucks 164,513 164,513 

Number of fleets 62,171 62,171 

Log likelihood -270,956 -269,077 

𝜈̂ ൌ exp ሺ𝜈̂଴ሻ  7.5097*  

𝜅̂ ൌ  exp ሺ𝜅̂଴ሻ  4.3601*  
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Explanatory variable 

Gamma-Dirichlet Hausman model 

Coefficient 
Standard 

error 
Coefficient 

Standard 
error 

𝜌 ෝ ൌ exp ሺ𝜌ො଴ሻ 1.9951*  

* Significant at 1%. 

Table OA5.8: Estimation of the parameters of the distribution of the number of annual truck 
accidents for the 1991–1996 and 1991–1995 periods, for fleets with one truck or more, and trucks 
with two periods or more: hierarchical random-effects model with K = 19 

Explanatory variable 

Hierarchical model 91–96 Hierarchical model 91–95 

Coefficient 
Standard 

error Coefficient 
Standard 

error 
Constant -3.2661* 0.0471 -3.1613* 0.0530 
Number of years as a fleet  -0.0566* 0.0040 -0.0599* 0.0052 
Sector of activity in 1998     
 Other sectors -0.1040 0.1092 -0.1146 0.1179 
 General public trucking 0.1542* 0.0315 0.1553* 0.0337 

Bulk public trucking Reference group 
 Private trucking 0.0745* 0.0236 0.0737* 0.0254 
 Short-term rental firm 0.4614* 0.0574 0.4335* 0.0564 
Size of fleet     

1 -0.0619* 0.0167 -0.0718* 0.0183 
2 Reference group 
3 0.1199* 0.0213 0.0985* 0.0235 
4 to 5 0.1600* 0.0213 0.1543* 0.0235 
6 to 9 0.2187* 0.0224 0.2029* 0.0245 
10 to 20 0.2898* 0.0232 0.2690* 0.0253 
21 to 50 0.2245* 0.0275 0.1971* 0.0304 
More than 50 0.2459* 0.0277 0.2276* 0.0328 

Days in previous year  1.7001* 0.0290 1.6800* 0.0327 
Violations      
 Overload 0.1117* 0.0118 0.1068* 0.0133 
 Excess size 0.1339 0.0884 0.1190 0.1019 
 Poorly secured cargo 0.2212* 0.0374 0.2424* 0.0408 
 Not respecting service hours 0.1738 0.0844 0.2130 0.0960 
 No mechanical inspection 0.2120* 0.0286 0.2469* 0.0309 
 Other reasons 0.1463 0.0846 0.1229 0.0950 
Type of vehicle use     
 Commercial use  -0.1948* 0.0219 -0.1800* 0.0239 
 Other than bulk goods -0.0668 0.0264 -0.0419 0.0286 

Bulk goods Reference group 
Type of fuel     

Diesel Reference group 
 Gas -0.4275* 0.0131 -0.4236* 0.0140 
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Explanatory variable 

Hierarchical model 91–96 Hierarchical model 91–95 

Coefficient 
Standard 

error Coefficient 
Standard 

error 
 Other -0.3533* 0.0840 -0.3055* 0.0900 
Number of cylinders     
 1 to 5  0.2457* 0.0397 0.2285* 0.0440 
 6 to 7  0.3261* 0.0129 0.3170* 0.0139 

8 or more than 10  Reference group 
Number of axles     

2 axles (3,000 to 4,000 kg) -0.3231* 0.0210 -0.3168* 0.0139 
2 axles (more than 4,000 kg) -0.3538* 0.0166 -0.3520* 0.0182 
3 axles -0.2885* 0.0163 -0.2928* 0.0178 
4 axles -0.1903* 0.0211 -0.2058* 0.0231 
5 axles -0.2348* 0.0189 -0.2352* 0.0208 
6 axles or more Reference group 

Number of violations      
For speeding 0.2324* 0.0115 0.2324* 0.0133 

 Suspended license 0.4121* 0.0388 0.4313* 0.0464 
 For running a red light 0.3644* 0.0239 0.3570* 0.0267 
 For ignoring a stop sign 0.4284* 0.0251 0.4329* 0.0281 
 Not wearing a seat belt 0.2130* 0.0287 0.2160* 0.0323 
Observation period     
1991 0.0284 0.0223 -0.0399 0.0230 
1992 0.0038 0.0193 -0.0619* 0.0192 
1993 -0.0520* 0.0171 -0.1154* 0.0164 
1994 0.0236 0.0151 -0.0363 0.0142 
1995 0.0526* 0.0137 Reference group 
1996 Reference group  

̂  0.6998* 0.0383 0.6870* 0.0445 

𝛽𝑐෢଴ 2.1509* 0.0691 2.1242* 0.0764 

𝛿መ∗ 2.8228* 0.3493 3.1708* 0.4844 

𝛽መ∗ 2.7770* 0.3676 3.1436* 0.5152 
Number of observations  491,792 397,098 
Number of trucks 132,868 115,280 
Number of fleets 53,088 48,194 
Log likelihood -196,608 -160,646 

𝛽𝑐෢ ൌ
𝛽𝑐෢଴

1 ൅  𝛽𝑐෢଴
 0.6826 0.6799 

* Significant at 1%. 
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Different values of K 

Table OA5.8 presents the results of the hierarchical random model with K=8 and with 

K=10. Table OA5.9 gives the results for K=13 and K=15. The log likelihood is -266,017 at K=8 

and increases to -265,790 at K=10, a value very close to the log likelihood values at K=13 (-

265,574) and at K=15 (-265,478). We do not see important differences at K=8 when compared to 

K values equal to or greater than 10. The coefficient estimates do not vary very much with the 

exception of the random effects parameters. However, the posterior expected number of accidents 

at T+1 differs between different K values, contrarily to the comparison presented between K=18 

and K=19 in Section 6, where it is stable. 

Table OA5.9: Parameters estimation of the distribution of the number of annual truck accidents for the 
1991-1998 period, for fleets with one truck or more, and trucks with two periods or more: hierarchical 
random effects models with K=8 and K=10. 

Explanatory variables 
K=8 K=10 

Coefficient Standard 
error Coefficient Standard 

error 
Constant -3.1897* 0.0386 -3.1845* 0.0389 
Number of years as a fleet on December 31st  -0.0493* 0.0025 -0.0494 0.0026 
Sector of activity in 1998     
 Other sectors -0.2241 0.0963 -0.2249 0.0939 
 General public trucking 0.0890* 0.0250 0.0899* 0.0253 

Bulk public trucking Reference group 
 Private trucking 0.0491 0.0195 0.0465 0.0197 
 Short-term rental firm 0.3743* 0.0433 0.3727* 0.0430 
Size of fleet     

1 -0.0503* 0.0144 -0.0505* 0.0145 
2 Reference group 
3 0.1165* 0.0183 0.1174* 0.0184 
4 to 5 0.1664* 0.0179 0.1687* 0.0181 
6 to 9 0.2182* 0.0185 0.2227* 0.0188 
10 to 20 0.2415* 0.0187 0.2516* 0.0192 
21 to 50 0.1735* 0.0215 0.1908* 0.0220 
More than 50 0.1486* 0.0198 0.1998* 0.0202 

Days in previous year  1.6432* 0.0245 1.6453* 0.0244 
Violations     
 Overload 0.1050* 0.0103 0.1029* 0.0103 
 Excessive size 0.1568 0.0768 0.1576 0.0766 
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Explanatory variables 
K=8 K=10 

Coefficient Standard 
error Coefficient Standard 

error 
 Poorly secured cargo 0.2627* 0.0337 0.2569* 0.0335 
 Not respecting service hours 0.2145* 0.0662 0.2100* 0.0660 
 No mechanical inspection 0.2289* 0.0261 0.2247* 0.0261 
 Other reasons 0.2230* 0.0702 0.2216* 0.0700 
Type of vehicle use     
 Commercial use  -0.1957* 0.0188 -0.1949* 0.0189 
 Other than bulk goods -0.0729* 0.0226 -0.0760* 0.0227 

Bulk goods Reference group 
Type of fuel     

Diesel Reference group 
 Gas -0.4460* 0.0121 -0.4420* 0.0121 
 Other -0.3208* 0.0729 -0.3217* 0.0729 
Number of cylinders     
 1 to 5  0.2442* 0.0351 0.2407* 0.0351 
 6 to 7  0.3381* 0.0118 0.3353* 0.0118 

8 or more than 10  Reference group 
Number of axles     

2 axles (3,000 to 4,000 kg) -0.3243* 0.0184 -0.3324* 0.0185 
2 axles (4,000 kg and more) -0.3569* 0.0144 -0.3649* 0.0144 
3 axles -0.3084* 0.0139 -0.3081* 0.0139 
4 axles -0.2185* 0.0185 -0.2177* 0.0185 
5 axles -0.2590* 0.0159 -0.2576* 0.0159 
6 axles or more Reference group 

Number of violations      
Speeding 0.2341* 0.0093 0.2293* 0.0093 

 Suspended license 0.4018* 0.0332 0.3982* 0.0332 
 Running a red light 0.4003* 0.0209 0.3940* 0.0209 
 Ignoring a stop sign 0.4313* 0.0221 0.4259* 0.0220 
 Not wearing a seat belt 0.2216* 0.0249 0.2182* 0.0249 
Observation period     
1991 0.0021 0.0205 0.0028 0.0206 
1992 -0.0273 0.0185 -0.0274 0.0186 
1993 -0.0902* 0.0177 -0.0900* 0.0173 
1994 -0.0216 0.0159 -0.0213 0.0159 
1995 0.0007 0.0148 0.0008 0.0148 
1996 -0.0467* 0.0141 -0.0471* 0.0141 
1997 -0.1549* 0.0140 -0.1554* 0.0140 
1998 Reference group 

̂  0.4131* 0.0180  0.4593* 0.0204 

𝛽𝑐෢଴ 1.1288* 0.0302 1.3828* 0.0371 

𝛿መ∗ 3.6213* 0.3504 3.5225* 0.3542 

𝛽መ∗ 5.4061* 0.5508 4.6294* 0.4914 
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Explanatory variables 
K=8 K=10 

Coefficient Standard 
error Coefficient Standard 

error 
Number of observations 678,331 678,331 
Number of trucks 164,513 164,513 
Number of fleets 62,171 62,171 
Log likelihood -266,017 -265,790 

𝛽𝑐෢ ൌ
𝛽𝑐෢଴

1 ൅  𝛽𝑐෢଴
 0.5303 0.5803 

* Significant at 1%. 

 

 

   
Figure OA5.2: Posterior expected number of accidents at period T+1 obtained from 

the estimation of hierarchical model at K=8 (at top) and at K=10 (at bottom) 

We can see from Figure OA5.2 that the distribution of the posterior expected number of 

accidents at period T+1 with K=10 (at bottom) and with K=8 (at top). The mean of the difference 

is statistically different from zero at 1%, as shown in Figure OA5.3: the t-test value is equal 7.93 

and the p-value is less than 0.0001. 



27 

   
Figure OA5.3: Distribution of the difference between K=8 and K=10 of the posterior expected 

number of accidents at period T+1 obtained from the estimation of the hierarchical model. 
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Table OA5.10: Parameters estimation of the distribution of the number of annual truck accidents for the 
1991-1998 period, for fleets with one truck or more, and trucks with two periods or more: hierarchical 
random effects models with K = 13 and K = 15. 

Explanatory variables 
K=13 K=15 

Coefficient Standard 
error Coefficient Standard 

error 
Constant -3.1730* 0.0394 -3.1775* 0.0398 
Number of years as a fleet on December 31st  -0.0500* 0.0026 -0.0501* 0.0027 
Sector of activity in 1998     
 Other sectors -0.2122 0.0939 -0.2043 0.0956 
 General public trucking 0.1032* 0.0262 0.0957* 0.0267 

Bulk public trucking Reference group 
 Private trucking 0.0448 0.0200 0.0473 0.0202 
 Short-term rental firm 0.4175* 0.0428 0.4530* 0.0453 
Size of fleet     

1 -0.0512* 0.0146 -0.0519* 0.0146 
2 Reference group 
3 0.1182* 0.0185 0.1191* 0.0185 
4 to 5 0.1709* 0.0183 0.1732* 0.0183 
6 to 9 0.2271* 0.0191 0.2313* 0.0192 
10 to 20 0.2610* 0.0197 0.2695* 0.0199 
21 to 50 0.2071* 0.0227 0.2200* 0.0232 
More than 50 0.2171* 0.0219 0.2224* 0.0238 

Days in previous year  1.6456* 0.0244 1.6474* 0.0245 
Violations      
 Overload 0.1004* 0.0103 0.1000* 0.0103 
 Excessive size 0.1578 0.0764 0.1583 0.0764 
 Poorly secured cargo 0.2499* 0.0333 0.2473* 0.0332 
 Not respecting service  
 hours 

0.2037* 0.0657 0.2023* 0.0655 

 No mechanical inspection 0.2213* 0.0260 0.2197* 0.0259 
 Other reasons 0.2196* 0.0698 0.2189* 0.0697 
Type of vehicle use     
 Commercial use  -0.1928* 0.0190 -0.1920* 0.0190 
 Other than bulk goods -0.0742* 0.0228 -0.0769* 0.0229 

Bulk goods Reference group 
Type of fuel     

Diesel Reference group 
 Gas -0.4384* 0.0121 -0.4358* 0.0120 
 Other -0.3278* 0.0731 -0.3256* 0.0737 
Number of cylinders     
 1 to 5  0.2337* 0.0349 0.2275* 0.0347 
 6 to 7  0.3323* 0.0117 0.3314* 0.0117 

8 or more than 10  Reference group 
Number of axles     

2 axles (3,000 to 4,000 kg) -0.3423* 0.0185 -0.3426* 0.0184 
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Explanatory variables 
K=13 K=15 

Coefficient Standard 
error Coefficient Standard 

error 
2 axles (4,000 kg and more) -0.3794* 0.0145 -0.3802* 0.0145 
3 axles -0.3092* 0.0140 -0.3042* 0.0141 
4 axles -0.2173* 0.0186 -0.2125* 0.0187 
5 axles -0.2603* 0.0161 -0.2552* 0.0162 
6 axles or more Reference group 

Number of violations      
Speeding 0.2246* 0.0093 0.2227* 0.0093 

 Suspended license 0.3965* 0.0331 0.3967* 0.0331 
 Running a red light 0.3893* 0.0208 0.3867* 0.0207 
 Ignoring a stop sign 0.4224* 0.0220 0.4203* 0.0219 
 Not wearing a seat belt 0.2169* 0.0248 0.2158* 0.0248 
Observation period     
1991 -0.0018 0.0209 -0.0012 0.0211 
1992 -0.0312 0.0188 -0.0308 0.0190 
1993 -0.0927* 0.0175 -0.0918* 0.0176 
1994 -0.0229 0.0160 0.0221 0.0161 
1995 -0.0001 0.0149 -0.0001 0.0149 
1996 -0.0478* 0.0141 -0.0480* 0.0142 
1997 -0.1558* 0.0140 -0.1559* 0.0140 
1998 Reference group 

̂  0.5498* 0.0245 0.6154* 0.0281 

𝛽𝑐෢଴ 1.6839* 0.0453 1.8587* 0.0504 

𝛿መ∗ 3.2283* 0.3283 2.9859* 0.3053 

𝛽መ∗ 3.6640* 0.3970 3.1536* 0.3426 
Number of observations  678,331 678,331 
Number of trucks 164,513 164,513 
Number of fleets 62,171 62,171 
Log likelihood 

𝛽𝑐෢ ൌ
𝛽𝑐෢଴

1 ൅  𝛽𝑐෢଴
 

-265,574 

0.6274 

-265,478 

0.6502 

* Significant at 1%. 
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Figure OA5.4: Posterior expected number of accidents at period T+1 obtained from 
the estimation of hierarchical model at K=13 (at top) and at K=15 (at bottom) 

We can see from Figure OA5.4 the distribution of the posterior expected number of 

accidents at period T+1 with K=13 (at bottom) and with K=15 (at top). Figure OA5.5 presents the 

distribution of the difference used for the paired t-test. The mean of the difference is statistically 

different from zero at 1%: the t-test value is equal 6.64 and the p-value is less than 0.0001. 
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Figure OA5.5: Distribution of the difference between K=13 and K=15 of the posterior expected 
number of accidents at period T+1 obtained from the estimation of  hierarchical model. 
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Table OA5.11: Estimation of the parameters of the distribution of the number of annual truck accidents 
for the 1991–1998 period, for fleets with two trucks or more and trucks with two periods or more: Hausman, 
gamma-Dirichlet and hierarchical model (K=13). 

Explanatory variables 
Hausman model Gamma-Dirichlet model Hierarchical 

Coefficient 
Standard 

error 
Coefficient 

Standard 
error 

Coefficient 
Standard 

error 
Constant -0.1254 0.0819 -3.9070* 0.0573 -3.6435* 0.0548 
Number of years as a fleet  -0.0436* 0.0031 -0.0464* 0.0044 -0.0260* 0.0040 
Sector of activity in 1998       
 Other sectors -0.2484* 0.0929 -0.1426 0.1163 -0.2681** 0.1118 
 General public trucking 0.1003* 0.0252 0.1685* 0.0304 0.0727** 0.0324 

Bulk public trucking Reference group Reference group Reference group 
 Private trucking 0.1574* 0.0213 0.2290* 0.0256 0.2007* 0.0267 
 Short-term rental firm 0.4480* 0.0336 0.5633* 0.0483 0.1391* 0.0450 
Size of fleet      

2 Reference group Reference group Reference group 
3 0.1260* 0.0180 0.0801* 0.0205 0.1287* 0.0194 
4 to 5 0.1941* 0.0172 0.1385* 0.0205 0.2104* 0.0196 
6 to 9 0.2798* 0.0171 0.2137* 0.0210 0.3114* 0.0209 
10 to 20 0.3617* 0.0166 0.2937* 0.0209 0.4510* 0.0221 
21 to 50 0.3574* 0.0177 0.3010* 0.0223 0.6678* 0.0258 
More than 50 0.3591* 0.0167 0.3077* 0.0217 1.5852* 0.0261 

Days in previous year  1.6878* 0.0300 2.0537* 0.0300 1.7784* 0.0298 
Violations        
 Overload 0.1216* 0.0117 0.0966* 0.0115 0.0809* 0.0119 
 Excessive size 0.1456*** 0.0883 0.1480*** 0.0860 0.1448 0.0884 
 Poorly secured cargo 0.2522* 0.0363 0.2054* 0.0354 0.1826* 0.0365 
 Not respecting service hours 0.2585* 0.0663 0.1984* 0.0664 0.1984* 0.0678 
 No mechanical inspection 0.2383* 0.0308 0.1778* 0.0298 0.1575* 0.0307 
 Other reasons 0.2678* 0.0779 0.1754** 0.0743 0.2113* 0.0771 
Type of vehicle use       
 Commercial use  -0.1407*  0.0213 -0.1938* 0.0212 -0.1443* 0.0231 
 Other than bulk goods -0.0513**  0.0244 -0.1148* 0.0243 -0.1159* 0.0268 

Bulk goods Reference group Reference group Reference group 
Type of fuel      

Diesel Reference group Reference group Reference group 
 Gas -0.4089* 0.0145 -0.3973* 0.0136 -0.3441* 0.0153 
 Other -0.3109* 0.0775 -0.3079* 0.0736 -0.4090* 0.0824 
Number of cylinders      
 1 to 5  0.3591* 0.0440 0.2167* 0.0403 0.3656* 0.0462 
 6 to 7  0.3778* 0.0136 0.3780* 0.0126 0.3541* 0.0143 

8 or more than 10  Reference group Reference group Reference group 
Number of axles      

2 axles (3,000 to 4,000 kg) -0.1620* 0.0210 -0.2916* 0.0208 -0.2898* 0.0233 
2 axles (4,000 kg and more) -0.1715* 0.0150 -0.2850* 0.0150 -0.2856* 0.0173 
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Explanatory variables 
Hausman model Gamma-Dirichlet model Hierarchical 

Coefficient 
Standard 

error 
Coefficient 

Standard 
error 

Coefficient 
Standard 

error 
3 axles -0.1559* 0.0151 -0.1278* 0.0149 -0.1641* 0.0170 
4 axles -0.1896* 0.0199 -0.1321* 0.0190 -0.1590* 0.0222 
5 axles -0.2182* 0.0173 -0.1973* 0.0174 -0.1914* 0.0194 
6 axles or more Reference group Reference group Reference group 

Number of violations      
Speeding 0.2585* 0.0105 0.1946* 0.0103 0.1849* 0.0107 

 Suspended license 0.4494* 0.0426 0.3830* 0.0422 0.3740* 0.0430 
 Running a red light 0.3838* 0.0247 0.3094* 0.0239 0.2815* 0.0246 
 Ignoring a stop sign 0.4264* 0.0267 0.3597* 0.0258 0.3150* 0.0266 
 Not wearing a seat belt 0.2044* 0.0304 0.1568* 0.0294 0.1362* 0.0303 
Observation period       

1991 0.0187 0.0251 0.0760** 0.0332 0.1990* 0.0308 
1992 -0.0183 0.0226 0.0548*** 0.0293 0.1085* 0.0272 
1993 -0.0837* 0.0208 0.0806* 0.0259 0.0233 0.0244 
1994 -0.0201 0.0190 0.1845* 0.0226 0.0569* 0.0215 
1995 0.0014 0.0175 0.2073* 0.0197 0.0581* 0.0190 
1996 -0.0426* 0.0165 0.1198* 0.0175 -0.0201 0.0171 
1997 -0.1583* 0.0163 -0.0791* 0.0163 -0.1613* 0.0163 
1998 Reference group Reference group Reference group 

â 56.9383* 3.4587    

b̂ 1.8274* 0.0384    

̂       0.8168* 0.0250 

𝛽𝑐෢଴      3.0504* 0.0912 

𝛿መ∗      4.7817* 1.4580 

𝛽መ∗      10.1139* 3.1455 
ˆ    2.0086* 0.0422  

̂    12.6597* 0.2508  
̂    4.6690* 0.3102  

Number of observations 456,177 456,177 456, 177 
Number of trucks 111,106 111,106 111,106 
Log likelihood 

𝛽𝑐෢ ൌ
𝛽𝑐෢଴

1 ൅  𝛽𝑐෢଴
 

-197,165 -197,116 -193,036 

0.7531 

* Significant at 1%;   ** Significant at 5%;   *** Significant at 10%  
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Table OA5.12 Fit statistics of the three models in Table OA5.8 for fleets of two trucks or more 

Statistics 
Hausman 

model 
Gamma-

Dirichlet model 
Hierarchical 
model K=13 

Log likelihood  -197,165 -197,116 -193,036 

BIC  394,904 394,819 386,651 

AIC 394,418 394,322 386,144 

Number of trucks 111,106 111,106 111,106 

Number of 
observations 

456,177 456,177 456,177 

Number of parameters 44 45 46 

Note: The likelihood ratio test value of 8,160 is largely superior to the critical value of 6.63 at 1% 
when comparing the gamma-Dirichlet model to the hierarchical model. The likelihood ratio test 
value of 98 is superior to the same critical value when comparing the Hausman model to the 
gamma-Dirichlet model. The likelihood ratio test value of 8,254 is superior to the critical value of 
9.21 at 1% when comparing the Hausman model to the hierarchical model with K=13. 
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Table OA5.13: Parameters estimation of the distribution of the number of annual truck accidents 
for the 1991-1997 and 1991-1996 periods, for fleets with one truck or more and trucks with two 
periods or more: hierarchical random effects models with K = 19.  

Explanatory variable 

Hierarchical model 91-97 Hierarchical model 91-96 

Coefficient 
Standard 

error Coefficient 
Standard 

error 

Constant -3.3133* 0.0433 -3.2661* 0.0471 

Number of years as a fleet  -0.0553* 0.0033 -0.0566* 0.0040 

Sector of activity in 1998     

 Other sectors -0.1783 0.1031 -0.1040 0.1092 

 General public trucking 0.1326* 0.0287 0.1542* 0.0315 

Bulk public trucking Reference group 

 Private trucking 0.0665* 0.0218 0.0745* 0.0236 

 Short-term rental firm 0.4926* 0.0517 0.4614* 0.0574 

Size of fleet     

1 -0.0633* 0.0156 -0.0619* 0.0167 

2 Reference group 

3 0.1161* 0.0199 0.1199* 0.0213 

Sizes 4 to 5 0.1767* 0.0198 0.1600* 0.0213 

Size 6 to 9 0.2240* 0.0208 0.2187* 0.0224 

Sizes 10 to 20 0.2742* 0.0217 0.2898* 0.0232 

Sizes 21 to 50 0.2300* 0.0257 0.2245* 0.0275 

Sizes > 50 0.2470* 0.0258 0.2459* 0.0277 

Days in previous year  1.6535* 0.0262 1.7001* 0.0290 

Violations      
 Overload 0.1005* 0.0107 0.1117* 0.0118 
 Excessive size 0.1534 0.0790 0.1339 0.0884 
 Poorly secured cargo 0.2282* 0.0349 0.2212* 0.0374 
 Not respecting service hours 0.2002* 0.0751 0.1738 0.0844 
 No mechanical inspection 0.2096* 0.0271 0.2120* 0.0286 
 Other reasons 0.2167 0.0752 0.1463 0.0846 

Type of vehicle use     

 Commercial use  -0.1955* 0.0203 -0.1948* 0.0219 

 Other than bulk goods -0.0767* 0.0244 -0.0668 0.0264 

Bulk goods Reference group 

Type of fuel     

Diesel Reference group 

 Gas -0.4223* 0.0125 -0.4275* 0.0131 

 Other -0.3852* 0.0800 -0.3533* 0.0840 
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Explanatory variable 

Hierarchical model 91-97 Hierarchical model 91-96 

Coefficient 
Standard 

error Coefficient 
Standard 

error 
Number of cylinders     

 1 to 5  0.2327* 0.0369 0.2457* 0.0397 

 6 to 7  0.3291* 0.0122 0.3261* 0.0129 

8 or more than 10  Reference group 

Number of axles     

2 axles (3,000 to 4,000 kg) -0.3300* 0.0195 -0.3231* 0.0210 
2 axles (4,000 kg and more) -0.3693* 0.0154 -0.3538* 0.0166 

3 axles -0.2944* 0.0151 -0.2885* 0.0163 

4 axles -0.2034* 0.0198 -0.1903* 0.0212 

5 axles -0.2454* 0.0174 -0.2348* 0.0189 

6 axles or more Reference group 

Number of violations      
Speeding 0.2245* 0.0101 0.2324* 0.0115 

 Suspended license 0.3863* 0.0349 0.4121* 0.0388 
 Running a red light 0.3636* 0.0223 0.3644* 0.0239 
 Ignoring a stop sign 0.4155* 0.0235 0.4284* 0.0251 
 Not wearing a seat belt 0.2262* 0.0257 0.2130* 0.0287 

Observation period     

1991 0.1292* 0.0223 0.0284 0.0223 

1992 0.1035* 0.0198 0.0038 0.0193 

1993 0.0469* 0.0180 -0.0520* 0.0171 

1994 0.1213* 0.0162 0.0236 0.0151 

1995 0.1481* 0.0149 0.0526* 0.0137 

1996 0.1038* 0.0141 Reference group 

1997 Reference group  

̂  0.7139* 0.0359 0.6998* 0.0383 

𝛽𝑐෢଴ 2.1638* 0.0643 2.1509* 0.0691 

𝛿መ∗ 2.6544* 0.2909 2.8228* 0.3493 

𝛽መ∗ 2.5672* 0.3002 2.7770* 0.3676 

Number of observations  585,398 491,792 

Number of trucks 149,231 132,868 

Number of fleets 57,741 53,088 

Log likelihood -230,373 -196,608 

𝛽𝑐෢ ൌ
𝛽𝑐෢଴

1 ൅  𝛽𝑐෢଴
 0.6839 0.6826 

* Significant at 1%. 
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Table OA5.14: t-test of the posterior expected number of accidents at period T+1 from estimation 
of hierarchical model 91-97 and the observed numbers of accidents in 1998 for all fleets. 

 Hierarchical model 91-97 Data 1998 t-test 
 N trucks Mean Std N trucks Mean Std t-value p-value 
All fleets 149,231 0.1373 0.1045 77,651 0.1418 0.4109 -2.96 0.0031 
Size 1 36,198 0.0990 0.0689 25,230 0.1085 0.3581 -4.16 <0.0001 
Size 2 21,082 0.1107 0.0811 9,726 0.1092 0.3492 0.41 0.6795 
Size 3 11,793 0.1192 0.0878 5,922 0.1348 0.3981 -2.97 0.0030 
Sizes 4 to 5 14,287 0.1337 0.0967 7,321 0.1488 0.4521 -2.99 0.0028 
Size 6 to 9 14,273 0.1526 0.1136 6,819 0.1684 0.4401 -2.91 0.0036 
Sizes 10 to 20 15,564 0.1731 0.1256 7,754 0.1893 0.4751 -2.96 0.0030 
Sizes 21 to 50 13,490 0.1812 0.1213 6,371 0.1874 0.4742 -1.03 0.3011 
Sizes > 50 22,544 0.1749 0.1181 8,508 0.1776 0.4652 -0.52 0.6024 

Mean 91-97: Posterior expected number of accidents in year 1998 from estimations in Table OA5.10 
(hierarchical model 91-97) 
Data 1998: Observed mean of accidents in 1998 
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