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Conditions Ensuring the Decomposition of Asset Demand 
for All Risk-Averse Investors 

 
 

Abstract 

We explore how the demand for a risky asset can be decomposed into an investment effect and 

a hedging effect by all risk-averse investors. This question has been shown to be complex 

when considered outside of the mean-variance framework. We restrict dependence among 

returns on the risky assets to quadrant dependence and find that the demand for one risky asset 

can be decomposed into an investment component based on the risk premium offered by the 

asset and a hedging component used against the fluctuations in the return on the other risky 

asset. We also discuss how the class of quadrant dependent distributions is related to that of 

two-fund separating distributions. This contribution opens up the search for broader 

distributional hypotheses suitable to asset demand models. Examples are discussed. 

 

Keywords: Portfolio choice, investment effect, hedging effect, quadrant dependence, two-fund 
separation, asset demand model. 

 

JEL classification: D80, G10, G11, G12. 

 

 

1. Introduction 

 

The mean-variance model of portfolio choice has been used extensively to answer the 

following question: Under what conditions can the demand for one risky asset be decomposed 

into an investment part and a hedging part? (Mossin, 1973; Huang and Litzenberger, 1988). 

Though commonly used, the mean-variance model imposes strong conditions either on 
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preferences or on return distributions (i.e. quadratic utility function or elliptical distributions). 

The class of elliptical distributions contains the multivariate normal distribution as well the 

multivariate t-distribution as special cases (Owen and Robinovitch, 1983). The normal 

distribution has been challenged by many empirical studies (Zhou, 1993) and the quadratic 

utility function displays increasing absolute risk aversion. More recently, Beaulieu, Dufour 

and Khalaf (2005) have shown that the mean-variance framework (or models limited to two-

parameter distributions) is still rejected (though less frequently) when non-normal 

distributions such as the t-distribution are considered. They concluded that more research is 

needed to better identify the distribution hypotheses applicable to asset demand models.  

 

The main objective of this article is to provide conditions ensuring the decomposition of asset 

demand for all risk-averse investors. It also proposes a class of distribution functions which 

differs from the two-fund separation distributions. We use a different form of risk dependence, 

namely quadrant dependence. This concept has been defined by Lehmann (1966). This form 

of non-linear dependence describes how two random variables behave together when they are 

simultaneously small (or large). One important property of quadrant dependence is that if 

 is positive (negative) quadrant dependent, then the covariance between  and 

is positive (negative). However, the converse is not true (Tong, 1980). 

1 2(R ,R ) 1R 2R  

 

Quadrant dependence has its interest in modeling dependent risks since it can take into 

account the simultaneous downside (upside) evolution of asset prices by introducing a natural 

hedging property. Quadrant dependence is of particular interest in risk management since it 

looks at the joint occurrence of large losses. In this article we shall show how quadrant 
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dependence permits the decomposition of asset demand in a very natural manner. Our results 

open up the search for more general asset demand models that can free the use of stochastic 

dependence from its connection with linear correlation. 

 

The two-fund separation theorem of Ross (1978) is associated to elliptical distributions (Owen 

and Rabinovitch, 1983; Chamberlain, 1983; Elton and Gruber, 2000) for all concave and 

increasing utility functions while that of Cass and Stiglitz (1970) is associated to utility 

functions satisfying marginal utility conditions (HARA) for all distribution functions. In this 

article, we are limited to conditions on distribution functions. Though elliptical distributions 

imply separation, the converse may not be true. We shall discuss how the Ross mutual fund 

separation theorem is related to the family of quadrant dependent distributions. We shall also 

provide an example of a joint distribution in the quadrant dependent family that is not a two-

fund separating distribution. These results indicate that the class of quadrant dependent 

distributions differs from that of two-fund separating distributions. However, we do not 

examine conditions on distributions to obtain separation according to Ross (1978). 

 

Section 2 presents our model of portfolio choice and introduces the concept of quadrant 

dependence (Lehmann, 1966). In this section, we also derive our main results related to the 

decomposition of portfolio demand into an investment part and a hedging part. In Section 3, 

we establish formal links between quadrant dependence and mutual fund separation. We also 

provide examples of quadrant dependent distributions for applications in finance. Section 4 

concludes the article. All proofs are available in the Appendix at: 

http://neumann.hec.ca/gestiondesrisques/04-01.pdf. 
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2. Characterizing optimal portfolios 

2.1 Basic Model 

 

We consider a risk-averse agent who allocates his wealth (normalized to one) between one 

risk-free asset (with return ) and two risky assets with returns , for i = 1,2. We denote the 

joint distribution function as . We also note 

0r iR

1 2F(r , r ) 1 1r , r⎡ ⎤⎣ ⎦  and 2 2r , r⎡ ⎤⎣ ⎦  as the supports for 

 and , respectively, and , as the demand for asset i chosen so as to maximize 

expected utility in a world with unlimited short-selling and under the constraint that 

. The agent's random end-of-period wealth  is then equal to 

1R 2R i , i 0,1, 2α =

0 1 2 1α +α +α = W

 ( ) ( ) ( )1 2 0 1 1 0 2 2 0W , 1 r R r R rα α = + +α − +α − . (1) 

 

We define E as the expectation operator and  as the risk premium associated with asset i, 

that is , for i = 1,2. As usual, the individual has a von-Neumann-Morgenstern 

utility function, u( , which we assume to be increasing, concave in final wealth, and 

continuously differentiable to the second order. This last assumption is for convenience and is 

not necessary to derive our results. So the optimal portfolio is obtained by maximizing 

im

( )i im E R r= 0−

.)

( )( )( 1 2E u W ,α α )  with respect to 1α  and 2α . 

 

In the case of independence among the risky assets, the first derivative of the expected utility 

with respect to , , evaluated at 1α ( )( )( )( )( )1 2 1 0E u ' W , R r 0α α − = 1 0α =

)

, can be written as 

 ( )( ) (( )( )1 0 0 2 2 0E R r E u ' 1 r R r− + +α − , (2) 
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which has the sign of the risk premium associated with . It follows that  is positive, if 

and only if  is positive, that is if and only if  offers a positive risk premium. The same 

logic applies to . Allowing for dependence among returns on risky assets will make it more 

difficult to characterize the optimal portfolio. As an illustration, we consider, for a moment, 

the case of mean-variance preferences; to be precise, we suppose 

1R *
1α

1m 1R

*
2α

2bu(W) W W
2

= − , where b 

is a positive parameter that captures the agent’s risk aversion. We also assume the following 

regularity condition on the first derivative ( )u ' W 1 bW 0= − >  for all W. The explicit solution 

to the maximization problem yields : 

 * 0 1 22 2 12
1

1 b(1 r ) m m ,
b

− + σ − σ
α =

Δ
 (3a) 

 * 0 2 11 1 12
2

1 b(1 r ) m m ,
b

− + σ − σ
α =

Δ
 (3b) 

where , ( )ij i jCov R , Rσ = ( )01 b 1 r 0− + >  from the regularity condition and 

, since the covariance matrix is positive semi-

definite (see the Appendix for details). It is easily observed that 

2 2 2
2 11 1 22 1 2 12 11 22 12m m 2m mΔ = σ + σ − σ + σ σ −σ > 0

*
2α , the optimal demand of 

asset 2, is a function of  , and of 2m , 11σ 12σ  as well as a function of b and m1. For given risk 

aversion (b) and risk premium for asset 1 (m1), the demand for asset 2 can be decomposed into 

an investment part (  related to the mean-return of the asset and the hedging part )*
2mα ( )*

2hα  

related to its diversification aspect. 

 

So  can be decomposed into *
2α
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 * * 012 12 1 22 2 12
2h 1

22 22

1 b(1 r ) m m
b

− +σ σ σ
α = − α = −

σ σ
− σ
Δ

, (4a) 

the hedging part *12
1

22

⎛ ⎞σ
− α⎜ ⎟σ⎝ ⎠

, and 

 ( )2
11 22 12* 0

2m 2 2
22

1 b(1 r ) 1 m km
b

σ σ − σ− +
α = =

σ Δ
, (4b) 

the investment part ( )2km . The sign of investment part ( )2km  depends on the risk premium 

 offered by the risky asset, and the sign of the hedging part ( 2m ) *12
1

22

⎛ ⎞σ
− α⎜ σ⎝ ⎠

⎟  is a function of 

the covariance between the returns of the two assets ( )12σ . Since k is strictly positive (b, Δ 

and  are positive, , a property of the covariance matrix, and 

 by definition of marginal utility), 

22σ ( )2
11 12 12 0σ σ − σ >

( )01 b 1 r 0− + > * *
2m 2 2h

*α = α −α  is proportional to m2. 

Moreover, from the hedging part, Sign ( )* *
1 2hα α = − Sign ( )12σ  since . In the next 

section, we show how the set of return distributions proposed in this article can be used to 

obtain such decomposition for all risk-averse investors. 

22 0σ >

 

2.2 Quadrant Dependence 

 

The notion of quadrant dependence is used for the comparison of the probability of any 

quadrant ,  under a given distribution of 1 1R r≤ 2R ≤ 2r ( )1 2R ,R  with the corresponding 

probability in the case of independence. More formally, we have the next definition. 
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Definition 1 (Lehmann, 1966): Let  be a bivariate random variable. We say that 

is positively quadrant dependent (PQD, in short) if 

1 2(R ,R )

1 2(R ,R )

  (5) 1 1 2 2 1 1 2 2 1 2P(R r , R r ) P(R r )P(R r ) for all r ,  r≤ ≤ ≥ ≤ ≤ .

 

The dependence is strict if inequality holds for at least some pair  Similarly, is 

negatively quadrant dependent if (5) holds with the inequality sign reversed. Intuitively, 

and  are PQD if the probability that they are simultaneously small (or simultaneously 

large) is at least as great as it would be were they independent. PQD is invariant under strictly 

increasing transformations of the random variables. 

1 2(r , r ). 1 2(R ,R )

1R  

2R

 

Equation (5) can be equivalently written as 

 1 1 2 2 1 1 1 2P(R r R r ) P(R r ) for all r ,  r .≤ ≤ ≥ ≤  (6) 

 

Under this form, PQD expresses the fact that knowledge of  being small increases the 

probability of  being small. PQD is satisfied when random variables are associated that is 

when  holds for all non-decreasing real-valued functions  and  

and where  means covariance of 

2R

1R

( ) ( )( 1 1 2 2Cov g R ,g R 0≥) 1g 2g ,

Cov ( )1 1g R  and ( )2 2g R  (see Milgrom and Weber, 1982, for 

application to auction theory). PQD is also fulfilled if  shows positive likelihood ratio 

dependence (PLRD, in short. See Lehmann, 1966). PLRD is obtained by requiring that the 

conditional density of , given , is monotonic. In other words, the random variable 

 or its distribution is PLRD if 

1 2(R ,R )

1R 2R

( 1 2R ,R )
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( ) ( ) ( ) ( )* * *
1 2 1 2 1 2 1 2f r , r f r r f r , r f r r≤ *

1 2

 

holds for all  and  (Tong, 1980, p. 79). This means that the likehood is larger 

when coordinates take larger values together and smaller values together at the same time. 

*
1r r> *

2r r>

The bivariate normal density is an example of PLRD. 

 

Under the assumption of quadrant dependence, we are able to establish our main result: 

 

Proposition 1: Let be quadrant dependent, and let 1 2(R , R ) ( )* *
1 2,α α  be the optimal portfolio, 

then  can be decomposed for all risk-averse investors as *
iα

* *
i im

*
ihα = α + α , for i 1  with ,  2=

a)  if and only if , and *
im 0α ≥ ( )iE R r≥ 0

b) , for ( ) ( )( )* *
j ih 1 2Sign Sign Cov R , Rα α = − j i.≠  

Proof: See the Appendix. 

 

As before,  and , for i = 1,2, designate respectively, the investment part and the 

hedging part of asset i demand. It should be noted that the decomposition of the optimal 

portfolio is investor-specific, as for the quadratic utility function in the preceding section, 

where  and  in (4) are function of the parameter b that captures risk-aversion. 

However, the above conditions a) and b) do not yield explicit values for  and . In that 

sense they are more vaguely characterized than with the quadratic utility function. The 

intuition behind Proposition 1 is natural and a significant implication of the proposition is that 

we need only know the sign of the covariance and that of the risk premium to sign the hedging 

*
imα *

ihα

*
2hα *

2mα

*
imα *

ihα
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effect and the investment effect, respectively, even if we do not restrict our analysis to the 

mean-variance model. 

 

One corollary from Proposition 1 is that the optimal positions (long vs. short) on the 

investment component  and the hedging component *
im(α ) )*

ih(α  will depend solely on the 

distributions of the risky assets for all risk-averse investors. Preferences determine the trade-

off between the investment component and the hedging component and set the total demand 

for the risky asset. In the next proposition we look at the situations where one asset has a zero 

risk premium or where the assets returns are not correlated. We have the next result. 

 

Proposition 2:  Let  be quadrant dependent, then for all risk-averse investors and 

i=1,2: 

1 2(R , R )

*
ih 0α =  if and only if Cov ( )1 2R ,R 0= , and 

*
im 0α =  if and only if . ( )i 0E R r 0− =

Proof: See the Appendix. 

 

In the particular case where one risky asset has a zero risk premium, Proposition 2 shows that 

a risk-averse investor may invest money in a risky asset even though there is no risk premium 

attached. The reason is that the financial risk can be reduced by investing in a correlated risky 

asset. The returns on this security may display either a strong positive or negative correlation 

with the basic asset. This result, already known for a mean-variance model, is extended in 

Proposition 2 to all risk-averse investors when  is quadrant dependent. To complete 

the characterization of the optimal financial portfolio, we now proceed to identify the different 

1 2(R ,R )
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positions (long vs. short) that the investor will take on one risky asset if the other risky asset 

has a zero risk premium. As we already know, in a mean-variance context, when an agent is 

allocating his wealth between a risk-free asset and one risky asset or when the two risky assets 

have independent returns, a positive risk premium is necessary and sufficient to obtain a 

positive investment. In the next proposition we generalize this result to all risk-averse 

investors when  is quadrant dependent. 1 2(R ,R )

 

Proposition 3:  Let  be quadrant dependent. If 1 2(R ,R ) jm 0, j 1, 2,= =  and i 1 , , 2= i j≠  then 

for all risk-averse investors and for i 1, 2= , i j≠ *
i 0α ≥  if and only if  In this case, 

the position to take on  (long vs. short) will depend on the covariance between  and  

( )i 0E R r ,≥

jR 1R 2R .

Proof: See the Appendix. 

 

Note that since a nil covariance is equivalent to independence in the class of quadrant 

dependent distributions (Lehmann, 1966), the position on  iR , i 1, 2=  will also depend on its 

risk premium, if the covariance between  and  is nil. In the next section, we discuss 

examples of quadrant dependent distributions (for other examples see Lehmann, 1959; Tong, 

1980). 

1R 2R

 

3. Examples 

 

Example 1. A quadrant dependent distribution.  Let 1 2R a dR U= + + , where  and U 

are independent. Then  is positively or negatively quadrant dependent as the 

2R

1 2(R ,R )
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parameter  In particular, if Rd  or 0.≥ ≤ 2 and U are normally distributed, R1 and R2 become 

the components of a bivariate normal distribution having the same sign for correlation as d.  

 

The second example concerns the set of distributions that allow for two-fund separation as 

defined by Ross (1978). This set is related to the set of quadrant dependent distributions since 

many distributions generating separation are included in the set of quadrant dependent 

distributions. Examples are the normal and the t-distribution. 

 

An interesting question is the following: Can quadrant dependence only be satisfied by a two-

fund separating distribution? The next example addresses this question and shows that 

quadrant dependence does not imply two-fund separation. 

 

Example 2. We consider a simple case with three states of the world: The corresponding 

returns are −3, 1 and 3 for the second risky asset and −2, 1 and 2 for the first risky asset. We 

assume a zero risk-free interest rate. Table 1 gives the joint density of the returns with perfect 

correlation (the result can be obtained without this assumption). The proof of quadrant 

dependence for this distribution is straightforward. 

 

(Table 1 about here) 

 

We consider two risk-averse investors with preferences given respectively by 

2
1

1u (W) W W
4

= −  (with 11 W
2

− > 0  for all W), and 
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 2

W 1  if  W 1
1u (W) (W 1)  if  1 W 2
3
1   if  W 2.  
3

⎧
⎪ − ≤
⎪
⎪= − ≤⎨
⎪
⎪ ≥⎪⎩

≤ . (7) 

 

Note that investor  is not in the Cass-and-Stiglitz (1970) family of separating functions. The 

optimal investments in the two risky assets for investor  are 

2u

1u ( )8 / 3, 5 / 3− . The optimal 

choice for investor  is given by the semi-line 2u * *
1 22 3 0α + α =  and * *

1 2 1α +α ≥ ; this does not 

include the optimal choice for investor , as illustrated in Figure 1 (see Example 2 in the 

Appendix for details). Two-fund separation is then not allowed by the quadrant dependent 

distribution provided in Table 1. 

1u

 

(Figure 1 about here) 

 

Other examples (Lehmann, 1966; Tong, 1980).  The Cauchy distribution (given that 

[ ]2r 0,∈ 1 ) is a positive quadrant dependent distribution. The main difference between the 

normal distribution and the Cauchy distribution is the longer and flatter tails of the latter. 

Other examples of a negative quadrant dependent distribution are the bivariate Dirichlet and 

the bivariate hypergeometric. The Dirichlet extends the beta distribution to multivariate 

distributions. 
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4. Conclusion 

 

We have proposed the concept of quadrant dependence (Lehmann, 1966) to analyze portfolio 

choice. This concept describes how two random variables behave together when they are 

simultaneously small or large. By assuming that the returns on risky assets are quadrant 

dependent, we were able to decompose the demand for one risky asset into an investment part 

based on the risk premium offered by the asset and a hedging part used against the fluctuations 

in the return on the other risky asset. Our characterization of the optimal portfolio was done 

for all risk-averse investors. Quadrant dependence was shown to be related to two-fund 

separating distributions (Ross, 1978). These results open up the search for broader asset-

pricing models that can free stochastic dependence from its connection with linear correlation. 

 

Several extensions of our article are possible. For example, we may look at orthant dependent 

distributions. Orthant dependence generalizes the bivariate notion of quadrant dependence to 

higher dimensions. Intuitively, as for PQD,  are positive orthant dependent if 

they are more likely to have simultaneously large values as they would be were they 

independent. A natural and significant extension to our framework would be to verify whether 

orthant dependence can result in a similar decomposition between the investment component 

and the hedging component for portfolios with more than two risky assets. Affiliated random 

variables (Milgrom and Weber, 1982) can also be used for such extension. 

1 2R , R ,...,Rn

 

Denuit and Scaillet (2004) provided two-test procedures for positive quadrant dependence 

which are closely related to those proposed by Davidson and Duclos (2000). These procedures 
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did not reject the positive quadrant dependence among data for US and Danish insurance 

claims. Mimouni (2002) applied the two-test procedures to data on financial assets and found 

that positive quadrant dependence was not rejected. Further developments of these tests, for 

portfolios containing many stocks and derivatives, are open for future research. A last 

extension would be to consider how the variation of different measures of association could 

affect the results. Covariance is a measure of association. Another one is the quadrant measure 

of association (q) discussed by Blomqvist (1950). Lehmann (1966) showed that if  is 

positively quadrant dependent, then both 

1 2(R ,R )

( )1 2Cov R ,R  and q are non-negative. 

 

Up to now, the analysis was limited to two random variables which may reduce the 

applicability of the model. As a referee suggested, the model could be very useful to study the 

asset allocation between a stock index, a bond index, and money (or a risk free asset). 

Recently, Elton and Gruber (2000) used that framework to analyze the asset allocation puzzle. 

It would be interesting to see how the notion of quadrant dependence could add more insights 

to solve the puzzle. 
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Table 1 

Joint Density Function of Example 2 

 

This table presents the joint density function of a quadrant dependent distribution. Quadrant 

dependence describes how two random variables behave together when they are 

simultaneously small or large. Here we observe that the two assets are positively quadrant 

dependent. Notice that ( )1E R 0.83= , ( )2E R 1= , 11 1.81σ = , 22 4σ = , and . 12 2.7σ =

 

2r  

1r  -3 1 3 

-2 1/6 0 0 

1 0 1/2 0 

2 0 0 1/3 
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•

•
1
• 

1 

•

•

-5/3 • 

8/3

1α  

3 

-2 •

2α

 

Figure 1. Optional solutions to Example 2. This figure depicts the optimal solution of 

investor  at (8/3, -5/3) and that of investor  corresponding to the semi-line  

and  when the data are from Table 1. The joint distribution of this example does 

not yield a separating solution since the point (8/3, -5/3) is not on the semi-line. 

1u 2u * *
1 22 3α + α = 0

* *
1 2 1α +α ≥
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Derivation of  and  in the mean-variance model *
1α

*
2α

( )( ) ( ) ( ) ( )( )( )2
0 1 1 2 2 0 1 1 0 2 2 0

bE u W 1 r m m E 1 r R r R r
2

= + +α +α − + +α − +α − . 

The FOC with respect to  is 1α

 
( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

1 1 0 0 1 1 0 2 2 0

2
1 0 1 1 1 0 2 1 0 2 0

m bE R r 1 r R r R r

m b 1 r m b E R r b E R r R r 0

− − + +α − +α −

= − + − α − − α − − = .
 (A0) 

Moreover, 

( ) ( )( ) ( )( )( )
( )( )( ) ( )( ) ( )( )

22
1 0 1 1 1 0

2 2
1 1 1 1 1 1 0

2
11 1

E R r E R E R E R r

E R E R 2E R E R m E R r

m

− = − + −

= − + − + −

= σ +

 

 

( )( )( ) ( ) ( )( )( )( )
( )( )( )( )

1 0 2 0 1 1 1 0 2 0

1 1 2 0 1 2

12 1 2

E R r R r E R E R E R r R r

E R E R R r m m

m m .

− − = − + − −

= − − +

= σ +

 

 

The FOC with respect to  (A0) can now be written as 1α

( ) ( ) ( )2
1 0 1 1 11 1 2 12 1 2m b 1 r m b m b m m− + − α σ + − α σ + = 0 . 

 A-1



By symmetry, the FOC with respect to 2α  can be written as 

( ) ( ) ( )2
2 0 2 2 22 2 1 12 1 2m b 1 r m b m b m m 0− + − α σ + − α σ + = .  

 

The optimal portfolio is the solution to the system 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
1 11 1 2 12 1 2 1 0 1

2
1 12 1 2 2 22 2 2 0 2

1m m m m b 1 r
b

1m m m m b 1 r m
b

⎧α σ + +α σ + = − +⎪⎪
⎨
⎪α σ + +α σ + = − +⎪⎩

m
 

or as a matrix format 

1

2

A B
α⎛ ⎞

=⎜ ⎟α⎝ ⎠
 

with 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+σ+σ

+σ+σ
=

2
2222112

2112
2
111

m        mm
mm             m

A   
( )( )

( )( )

1 0

2 0

1 m b 1 r m
bB
1 m b 1 r m
b

⎛ ⎞− +⎜ ⎟
= ⎜ ⎟
⎜ ⎟− +⎜ ⎟
⎝ ⎠

1

2

. 

 

The solution to this system is 

B
mm        mm

mm         m1

21112112

2112
2
222

*
2

*
1 ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−σ−+σ
+σ−σ−

Δ
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

α

α
 

or 

( )0* 1 22 2 12
1

1 b 1 r m m
b

− + σ − σ
α =

Δ
 

( )0* 2 11 1 12
2

1 b 1 r m m
b

− + σ − σ
α =

Δ
. 
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Finally, the calculation of Δ, the determinant of A, is as follows: 

( )( ) ( )

2
12 1 211 1

2
22 212 1 2

22 2
11 1 22 2 12 1 2

2 2 2 2 2 2
11 22 11 2 22 1 1 2 12 1 2 12 1 2

2 2 2
11 2 22 2 1 2 12 11 22 12

m mm
mm m

m m m m

m m m m 2m m m

m m 2m m .

σ +σ +
Δ =

σ +σ +

= σ + σ + − σ +

= σ σ +σ +σ + −σ − σ −

= σ +σ − σ +σ σ −σ

2m
 

 

Proof of Proposition 1: Since the problem is symmetric we only prove the decomposition 

for . Also, for the presentation, we suppose *
2α

*
1 0α ≥  and we restrict our analysis to PQD. The 

proof for negative quadrant dependence and *
1 0α ≤  is similar. 

 

The first-order condition with respect to 2α  can be written as 

 

 
( )( )( ) ( )( ) ( )( ) ( )

( )( ) ( )

2 1

12

2 1

2 1

r r
* * * *
1 2 2 2 1 2 1 2

2 r r

r r
* *

2 1 2 1 2
r r

E u W , r E R u ' W , dF r , r

m u ' W , dF r , r 0.

∂
α α = − α α

∂α

+ α α =

∫ ∫

∫ ∫
 (A1) 

 

Let  be the solution to *
2hα

 

 ( )( ) ( )( )( ) ( )( )( )*
2 2 1 2h 2 1 2hE R E R u ' W , Cov R ,u ' W ,− α α = α α* 0= . (A2) 

 

The proof for part b) of Proposition 1 is done in two folds. First we prove that (A2) cannot 

have a positive solution, if it has any; and second, we prove the existence of a solution to (A2). 

We will get back to this but for now suppose that  exists and let us present the proof of 

part a) of the proposition. 

*
h2α
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Part a): 

By (A2), (A1) can be rewritten as 

 

 ( )( )( ) ( )( ) (
2 1

2 1

r r
* * * *
1 2h 2 1 2h 1 2

2 r r

E u W , m u ' W , dF r , r∂
α α = α α

∂α ∫ ∫ )

2h

. (A3) 

 

It follows from the concavity of the objective function that * *
2α ≥ α  if and only if  or 

that  has the same sign as  Defining 

2m 0≥ ,

h
** *

2 2α −α 2m . * *
2m 2 2hα = α −α  ends the proof of part a). 

 

Part b): 

We now prove part b) of the proposition. As we already said we need to prove that (A2) 

cannot have a positive solution, if it has any; and second, we prove the existence of a solution 

to (A2).  

 

Let us prove that (A2) cannot have a positive solution. We use the next property (P) that 

follows from positive quadrant dependence: 

 

  (see Tong, 1980). (P) ( )1 2Cov f (R ),g(R ) 0 for all nondecreasing functions f  and g≥

 

For  and since  is decreasing we have: 2h 0α > u '

 

 For ( )2 2 2r r E R≤ ≤ : 

( )2 2r E R 0− ≤  
and 

 ( ) ( )( ) ( ) ( )( )( )* *
0 1 1 0 2h 2 0 0 1 1 0 2h 2 0u ' 1 r r r r r u ' 1 r r r E R r+ +α − +α − > + +α − +α − . (A4) 

 

It follows that: 
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( )( ) ( ) ( )( )

( )( ) ( ) ( )( )( )

*
2 2 0 1 1 0 2h 2 0

*
2 2 0 1 1 0 2h 2 0

r E R u ' 1 r r r r r

r E R u ' 1 r r r E R r

− + +α − +α −

≤ − + +α − +α − .
 (A5) 

 

 For ( )2 2E R r r≤ ≤ 2 : 

 

( )2 2r E R 0− ≥  

and 

 ( ) ( )( ) ( ) ( )( )( )* *
0 1 1 0 2h 2 0 0 1 1 0 2h 2 0u ' 1 r r r r r u ' 1 r r r E R r+ +α − +α − < + +α − +α − . (A6) 

 

It follows that: 

 

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )( )

*
2 2 0 1 1 0 2h 2 0

*
2 2 0 1 1 0 2h 2 0

r E R u ' 1 r r r r r

r E R u ' 1 r r r E R r

− + +α − +α −

≤ − + +α − +α − .
 

 

(A1) can be written as: 

 

 
( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

1 112 2

2 1 2 1

112

12

r rr E(R )
* *

2 2 1 2h 1 2 2 2 1 2h 1
r r r r

rr
*

2 2 1 2h 1 2
E(R ) r

r E R u ' W , dF r , r r E R u ' W , dF r , r

                                                               r E R u ' W , dF r , r .

− α α = − α α

+ − α α

∫ ∫ ∫ ∫

∫ ∫

2

 (A7) 

 

By integrating over ( )2 2r , E R⎡ ⎤⎣ ⎦  and ( )2 2E R , r⎡ ⎤⎣ ⎦ , we obtain that, for , (A7) is lower 

than: 

2h 0α >

 

 ( )( ) ( ) ( )( )( ) ( )
12

2 1

rE(R )
*

2 2 0 1 1 0 2h 2 0 1
r r

r E R u ' 1 r r r E R r dF r , r− + +α − +α −∫ ∫ 2  
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( )( ) ( )( ) ( )
2 1

12

r r
*

2 2 0 1 1 0 2h 2 0 1
E(R ) r

r E R u ' 1 r (r r ) E(R ) r dF r , r+ − + +α − +α −∫ ∫ 2 .  

 

The sum of the last two integrals gives: 

 

 ( )( ) ( ) ( )( )( ) ( )
12

2 1

rr
*

2 2 0 1 1 0 2h 2 0 1
r r

r E R u ' 1 r r r E R r dF r , r− + +α − +α −∫ ∫ 2 ,  (A8) 

 

which is equal to: 

 ( ) ( )( )(( )*
2 0 1 1 0 2h 2 0Cov R ,u ' 1 r R r E R r 0.+ +α − +α − ≤)  (A9) 

 

The last inequality follows from property (P) where 

( ) ( ) ( )( )( )*
1 0 1 1 0 2h 2f r u ' 1 r r r E R r= − + +α − +α − 0  

and  2 2g(r ) r .=

 

The solution to (A2) is then certainly negative since for 2h 0α > , 

 ( )( ) ( )( )( *
2 2 1 2hE R E R u ' W ,− α )α  (A10) 

is strictly negative. 

 

To prove the existence of , we make use of the theorem of the intermediate value. By the 

continuity of 

*
2hα

( )( ) ( )( )( )*
2 2 1 2hE R u ' W ,− α α 2hE R  in α , we will be done if we prove that there 

exists a 2hα  where ( )( ) ( )( )*
2h2 2 1E R E R u ' W ,⎛ − α⎜

⎝ ⎠
⎞α ⎟  is positive (we already know from 

(A10) that ( )( ) ( )( )( )*
2 2 1 2hE R E R u ' W ,− α α  takes negative values). 

 

After integration by parts, (A2) simplifies to: 
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2

2

r
'

2 2
r

(r )K (r )dr ,− θ∫ 2  

where 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )
2 1

2 1

r r
*

2 2 2 1 1 0 2h 2 0
r r

r t E R dG t , K r u ' 1 r r r r dF rθ = − = +α − +α −∫ ∫ 1 2r  

and 

( ) ( ) ( )1 2 1 2 2dF r , r dF r r dG r .=  

 

( )2K ' r  is analyzed in more details below. Since ( )θ ⋅  is negative, to complete the proof we 

need to show that  is positive for a given value of ( )2K ' r 2hα . 

 

Let n be a positive integer and replace 2hα  by *
1n− α  in ( )2K r . ( )2K ' r  simplifies to 

 

 ( ) ( ) ( )( ) ( ) ( )
1

1

r
* * *

2 1 1 1 0 1 2 0 1 2 1 2 1
1 2r

K ' r u '' 1 r r n r r n F r r F r r dr .
r r

⎡ ⎤∂ ∂
= −α +α − − α − +⎢ ⎥∂ ∂⎣ ⎦

∫  (A11) 

 

By continuity, and since 1 1r , r⎡⎣ ⎤⎦  and 2 2r , r⎡ ⎤⎣ ⎦  are compact and ( 1 2
1

F r r
r

)∂
∂

 is positive, there 

exists at least one n  where ( ) ( )1 2 1 2
1 2

n F r r F r r 0
r r

 ∂ ∂
+ ≥

∂ ∂
 for all . As a result, for 1 2r , r

*
2h 1n ,α = − α   is positive for all 2K '(r ) 22r r , r2 ,⎡ ⎤∈ ⎣ ⎦  and hence 

 

( )( ) ( )( )( )* *
2 2 0 1 1 0 1 2 0E R E R u ' 1 r r r n(r r 0− + +α − −α − .≥  

 

To complete the proof, we analyze in more detail the expression ( )2K ' r . By definition 

( ) ( )( ) ( )
1

1

r
*

2 1 1 0 2h 2 0
r

K(r ) u ' 1 r r r r dF r r ,= +α − +α −∫ 1 2  
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and its derivative is 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

1

1

1

1

r
*

2 2h 1 1 0 2h 2 0 1 2
r

r
*
1 1 0 2h 2 0 1 2

2r

K ' r u" 1 r r r r dF r r

u ' 1 r r r r dF r r .
r

= α +α − +α −

∂
+ +α − +α −

∂

∫

∫
 

 

The second term in the last expression can be written, after integration by parts, as  

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

1

1

1

1

1

1

r
* *
1 1 0 2h 2 0 1 2 1 1 0 2h 2 0 1 2

2 2r

r
* * *

1 11 0 2h 2 0 2 1 1 1 0 2h 2 0 1 2
2 2r

r
* *
1 1 1 0 2h 2 0 1 2 1

2r

 u ' 1 r r r r dF r r u ' 1 r r r r F r r
r r

u ' 1 r r r r F r r  u" 1 r r r r F r r dr
r r

 u" 1 r r r r F r r dr .
r

∂ ∂
+α − +α − = +α − +α −

∂ ∂

∂ ∂
− +α − +α − − α +α − +α −

∂ ∂

∂
= − α +α − +α −

∂

∫

∫

∫

`

  (A12) 

 

The last inequality follows from 

( ) ( )11 2 2
2 2

F r r F r r 0.
r r
∂ ∂

= =
∂ ∂

 

 

So  can be written as: ( )2K ' r

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
1 1

1 1

r r
* * *

2 2h 1 1 0 2h 2 0 1 2 1 1 1 0 2h 2 0 1 2 1
2r r

K ' r u" 1 r r r r dF r r  u" 1 r r r r F r r dr .
r
∂

= α +α − +α − − α +α − +α −
∂∫ ∫

  (A13) 

 

We can now write  for  as: ( )2K ' r *
2h 1nα = − α

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1

1

1

1

r
* * *
1 1 1 0 1 2 0 1 2 1 2 1

2r

r
* * *
1 1 1 0 1 2 0 1 2 1 2 1

1 2r

u" 1 r r n r r ndF r r dF r r dr
r

u" 1 r r n r r n F r r F r r dr        
r r

             

⎛ ⎞∂
= −α +α − − α − +⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂
= −α +α − − α − +⎜ ⎟∂ ∂⎝ ⎠

∫

∫
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which is (A6). This ends the proof of the existence of *
2hα  and the proof of Proposition 1. 

Q.E.D. 

 

Proof of Proposition 2:  By symmetry we only prove the result for . We write the joint 

distribution of as 

*
2α

( )1 2R ,R ( ) ( )1 2 2dF r r dG r .  We know that if Cov ( )1 2R ,R 0=  then *
2h 0.α =  

It remains to show that if  then the two random variables have a nil covariance. 

Integrating by parts the left-hand-side term in (A2) yields 

*
2h 0α =

 

 ( ) ( )( ) ( )( ) ( )
12 2

2 2 1

rr r
*

2 1 1
2r r r

t E R dG t u ' W ,0 dF r r dr 0
r

⎛ ⎞⎛ ⎞ ∂
− − α =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ 2 2 . (A14) 

 

Under our assumption of quadrant dependence and since ( )( ) ( )
2

2

r

2
r

t E R dG t 0− ≤∫  for all , 

in order for equality in (A14) to hold under the assumption of quadrant dependance, we need 

to have 

2r

 ( )1 2
2

F r r 0
r
∂

=
∂

 for all  2r ,

which means that  and  have a nil covariance. 1R 2R

 

Part b) of the proposition follows from Proposition 1. 

Q.E.D. 

 

Proof of Proposition 3:  Proving the first part of Proposition 3 is equivalent to proving that  

 

 ( ) ( )*
1Sign Sign m .α = 1  (A15) 

 

Since the agent is risk averse he will always prefer the certainty equivalent to a gamble with 

the same expected return. In fact, with Jensen’s inequality, one has 
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( )( )( ) ( )( )( )

( )

* *
1

*
0 1 1

E u W ,0 u E W ,0

u 1 r m .

α ≤ α1

= + + α
 (A16) 

 

If  have opposite signs then *
1  and mα 1 0*

1 1m α <  and hence 

 

 ( )( )( ) (*
1E u W ,0 u 1 r .α < + )0  (A17) 

 

The latter inequality contradicts the optimality of ( )*
1 ,0α  since  is a better investment 

strategy. Consequently,  is a necessary and sufficient condition for . In addition, 

from Proposition 2, and since 

(0,0)

1m 0≥ *
1 0α ≥

2m 0,=  we know that *
2m 0α = . The optimal position to take on 

 is then given by part b) of Proposition 1. 2R

Q.E.D. 

 

Example 2:  Since  is normalized to 0, the random end-of-period wealth is 

 

0r

( )1 2 1 1 2 2W , 1 R Rα α = +α +α .

 

From Table 1, the expected utility function of the second agent for an investment ( )  is 1 2,α α

 

 ( ) ( ) ( ) (2 2 1 2 2 1 2 2 1
1 1 1E u u 1 2 3 u 1 u 1 2 3 ,
6 2 3

= − α − α + +α +α + + α + α )2  (A18) 

 

where 

 ( ) ( )
1 2 1 2

2 1 2 1 2 1 2

1 2

2 3  if  2 3 0
1u 1 2 3 2 3  if 1 2 +3 0
3
1  if  2 +3 1.  
3

⎧
⎪− α − α α + α ≥
⎪
⎪− α − α = − α − α − ≤ α α ≤⎨
⎪
⎪ α α ≤ −⎪⎩

 (A19) 
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 ( ) ( )
1 2 1 2

2 1 2 1 2 1 2

1 2

 if  0
1u 1  if  0 + 1
3
1  if  + 1.  
3

⎧
⎪α +α α +α ≤
⎪
⎪+α +α = α +α ≤ α α ≤⎨
⎪
⎪ α α ≥⎪⎩

 (A20) 

 

 ( ) ( )
1 2 1 2

2 1 2 1 2 1 2

1 2

2 3  if  2 3 0
1u 1 2 3 2 3  if  0 2 +3
3
1  if  2 +3 1.  
3

⎧
⎪ α + α α + α ≤
⎪
⎪+ α + α = α + α ≤ α α ≤⎨
⎪
⎪ α α ≥⎪⎩

1 (A21) 

 

We have 12 different scenarios for ( )1 2,α α  that we need to discuss in order to solve for the 

optimal portfolio. As can be seen from ( )2 1u 1 2+α +α , the investor is always better off with 

. This reduces the number of cases for analysis to 4. 1 2+α α ≥1

 

We look at local maximum for each of the 4 possible cases. 
 

1.   1 2 1 22 3 1,  1α + α ≤ − α +α ≥

 

( ) ( )2 1
1 1 1 1 1E u * * 2 3 .
6 3 2 3 3 2= + + α + α  

 

The expected utility is clearly maximized at 1 22 3 1α + α = − , and the maximum utility in this 

semi-plan is ( )2
1 1 1 1 1 1E u * * .
6 3 2 3 3 9

= + − = −  

 

2.   1 2 1 21 2 3 0,  1− ≤ α + α ≤ α +α ≥

 

( ) ( ) ( )

( )

2 1 2 1

1 2

1 1 1 1 1E u 2 3 * 2 3
3 6 2 3 3
5 1         = 2 3 .

18 6

= ∗ − α − α + + α + α

− α + α +

2
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It follows that the expected utility is maximized at 1 22 3 0,α + α =  and the maximum utility 

achieved in the semi-plan is ( )2
5 1E u 0

18 6 6
1

= − ∗ + = . 

 

3.   1 2 1 20 2 3 1,  1≤ α + α ≤ α +α ≥

 

( ) ( ) ( )

( )

2 1 2 1

1 2

1 1 1 1 1E u 2 3 * * 2 3
6 2 3 3 3
1 1         = 2 3 .

18 6

= − α − α + + α + α

− α + α +

2

0,

 

 

the maximum is clearly achieved at 1 22 3α + α =  and the maximum utility achieved in the 

semi-plan is ( )2
1 1E u 0

18 6 6
= − ∗ + =

1 . 

 

4.   1 2 1 21 2 3 ,  1≤ α + α α +α ≥

 

( ) ( )

( )

2 1 2

1 2

1 1 1E u 2 3 * *
6 2 3
1 1 1         = 2 3 .
6 6 9

= − α − α + +

− α + α + +

1 1
3 3

1 1

 

 

Since , the maximum is obtained at 1 22 3− α − α ≤ − 1 22 3α + α = , and the maximum utility in 

this semi-plan is ( )2
1 1 1 1E u .
6 6 9 9

= − + + =  

 

The global maximum is then the set ( ){ }1 2 1 2 1 2, / 2 3 0, 1α α α + α = α +α ≥ ,  in which the 

maximum utility level achieved is 1
6

. 
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