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Abstract 

We propose a new parametric model for the modelling and estimation of event distributions for 

individuals in different firms. The analysis uses panel data and takes into account individual and 

firm effects in a non-linear model. Non-observable factors are treated as random effects. In our 

application, the distribution of accidents is affected by observable and non-observable factors from 

vehicles, drivers, and fleets of vehicles. Observable and unobservable factors are significant to 

explain road accidents, which means that insurance pricing should take into account all these 

factors. A fixed effects model is also estimated to test the consistency of the random effects model. 
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1. INTRODUCTION 
 

Since the early 1980s, several researchers have proposed different models to account for 

correlation resulting from temporal repetitions of observations. Indeed, the use of panel-type 

individual data has become popular in many economic applications in the fields of labor 

economics, health economics, firm productivity, patents, transportation, and education (Hausman 

and Wise, 1979; Gourieroux et al, 1984; Hausman et al, 1984; Cameron and Trivedi, 1996; Hsiao, 

1986; Baltagi, 1995; Dionne et al, 1997, 1998). In the domain of count-data applications, the 

ground-breaking contribution is the article of Hausman et al (1984) that proposes a Maximum 

Likelihood Method (MLE) for estimating the parameters.1 In this article we extend Hausman et 

al’s (1984) parametric model to add a firm effect to the individual effect in the estimation of event 

distributions, and we apply the model to the accident distributions of trucks belonging to fleets of 

vehicles.2  

 

To our knowledge there is no non-linear econometric model in the literature that estimates 

individual and firm effects with panel data. The matching of longitudinal individual and firm data 

is very important in environments where the observed results (here accidents) are a function of 

both parties’ characteristics (here, individual and firm) and unobserved actions. For insurance 

companies, knowing all the sources of accidents involving vehicles belonging to a fleet is essential 

to develop a fair pricing scheme that takes into account the negligence of each actor. This is also 

important for the regulator, which has to compute the optimal fines of different infractions (driver, 

fleet owner) that affect accident distributions (Fluet, 1999). 

 

In our application, we estimate the distribution of vehicle accidents for different fleets over time, 

by first decomposing the explanatory factors into heterogeneous factors linked to vehicles and 

their drivers, then into heterogeneous factors linked to fleets, and finally into residual factors. 

                                                 
1 See also Gouriéroux et al (1984) who propose a pseudo-MLE treatment of the data. 
2 On insurance applications with non-parametric models, see Pinquet (2013), Fardilha et al (2016), and 
Desjardins et al (2001). On accident distribution estimation or insurance pricing see Purcaru and Denuit 
(2003), Boucher, Denuit, and Guillen (2008), Boucher and Denuit (2006), Angers et al (2006), Frangos and 
Vrontos (2001), Frees and Valdez (2011), and Cameron and Trivedi (2013a). Another class of models uses 
the hierarchical credibility approach with random effects in linear models (Norberg, 1986). It can be shown 
that the Negative Binomial model is a kind of hierarchical model (see Section 2.2 of this article). All these 
contributions do not consider separately trucks and fleets effects. 
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Factors linked to vehicles and drivers and those linked to fleets can be correlated. For example, a 

negligent manager may not spend enough money on mechanical repair of his trucks and might ask 

his employees to drive too fast. However, the employees may also exceed the speed limit without 

informing the manager. 

 

As mentioned elsewhere, the modelling of Hausman et al (1984) is not directly applicable to the 

ex-post calculation of insurance premiums using a Bayesian model (Angers et al, 2006). However 

the extended model we propose can be used for the insurance pricing of vehicles that includes 

individual and firm effects. Our model can also be applied to any count modelling with random 

individual and common effects. We may think of different principal-agent output such as 

operational risk events in banks, innovations in teams, deaths in hospitals, airline accidents, or any 

other event involving many agents working for different principals under asymmetric information 

(Holmstrom, 1982; Laffont and Martimort, 2001).  

 

This research uses parametric models exclusively. First, we want to compare our results with those 

of Hausman et al (1984), who use parametric estimation methods in their study. It is well known 

that parametric models involve explicit assumptions about the statistical distribution of the data 

and, thus, hypothesis testing involves estimation of the key parameters of the chosen distribution. 

Given that nonparametric models are distribution-free, they could be applied in a broader range of 

situations even where the parametric conditions of validity are not met. In our case we study 

accident distributions. The parametric Poisson family is known to satisfy the necessary conditions 

of validity for accident data. 

 

Another advantage of the nonparametric test is its ability to handle various data types even if 

measured imprecisely or if they comprise outliers, anomalies widely known to seriously affect 

parametric tests. However, the foremost advantage of using parametric models is the statistical 

power of the estimations when the assumptions are satisfied. Under these circumstances, 

parametric tests produce more accurate and precise estimates than do nonparametric tests. 

Therefore, since our data set meets the sample size requirements, is very precise, and does not 

contain outliers that could not safely be removed from the dataset, we find it reasonable to consider 

the above statistical power argument as a third argument in favor of the use of parametric models. 
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Lastly, parametric models are very convenient when we wish to obtain close-form expressions for 

risk and premium forecasting. 

 

In section 2, we propose a short literature review of count data models, and section 3 develops our 

econometric model. Sections 4 and 5 present the data and the results of our estimations. We also 

analyze our results based on various statistical performance criteria, including accidents prediction 

for the next year. Finally, we compare our random effects estimators with those obtained from a 

fixed effects model and we test the consistency of the random effects model. Section 6 concludes 

the paper. 
 
 
 

2. LITERATURE 
 

2.1 BASIC COUNT DATA MODELS 
 
Our presentation is based on trucks accidents but the model can be applied to any other event 

involving count data. Most of the econometric models applied to count variables that takes 

nonnegative values start from the Poisson distribution, where the probability of truck i of fleet f 

being involved in fity  observable accidents (or claims) in period t is estimated. 

 

By definition of the Poisson law, the mathematical expectation of the number of accidents is equal 

to the variance, ( ) ( )fit fit fitE Y Var Y= = λ  where fitY  is the random variable representing the 

number of accidents of truck i, fleet f in period t and ( )fit 0λ >  is the Poisson parameter equal to 

the mean and the variance of the distribution. In fact, the parameter ( )fit fitexp Xλ = β , where the 

vector ( )fit fit1 fitpX x , , x=   represents the p characteristics of truck i of fleet f observed in period t 

and β  is a vector of parameters to be estimated. The exponential form of fitλ  introduces a non-

linear relationship between accidents and control variables included in fitX . fitX  can contain 

continuous variables and such variables can be non-linear. For example, fit 2x  can be the kilometers 

driven and fit3x  the square of the kilometers driven. Moreover, fitX  can contain categorical 

variables with a fixed number of possible values such as size of the fleet or number of traffic 

violations. These variables can also introduce non-linear effects between accidents and different 
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observable categories. All these characteristics are applicable in the usual Generalized Linear 

Model (GLM) setting. Poisson model can also incorporate data that are collected spatially by 

introducing a spatial autocorrelation term or in a Generalized Additive Model (GAM) setting by 

adding smooth functions. It is not clear however that such extensions would significantly improve 

our results for the type of basic data we used where spatial or strong non-linear effects are absent. 

 

The Poisson model is an equidispersion model. This modelling implicitly supposes that the 

distribution of accidents can be explained entirely by observable heterogeneity. To take into 

account the overdispersion property in the data, we can suppose that the parameter fitλ  has a 

random term such that fit iX
fit i fite β+ελ = = α γ  with i

i eεα = and fitX
fit e βγ =  and where iα  is the 

random individual specific effect for truck i. Suppose that iα follows a gamma distribution of 

parameter ( )1 1,− −δ δ , we obtain the negative binomial distribution3 (NB2): 

 ( ) ( )
( ) ( )

1
fity1 1

fit fit
fit fit 1 11

fit fitfit

y
P Y | ,

y 1

−δ− −

− −−

Γ δ +    γδ
γ δ =    δ + γ δ + γΓ δ Γ +    

, (1) 

 
where ( )Γ



 is the gamma function. The mean remains equal to ( )fitexp X β  and the variance to 

mean ratio is equal to ( )1 δ+ δ . (Hausman et al, 1984; Cameron and Trivedi, 1986; Boyer, Dionne, 

and Vanasse, 1992). This modelling does not simply allow for overdispersion. It also lets us 

consider unobserved or latent heterogeneity that is absent from the Poisson model. Unobserved 

heterogeneity is very important for pricing insurance premiums under asymmetric information 

(Dionne and Vanasse, 1989, 1992). The above modelling is appropriate for independent 

observations, meaning those without individual and time effects, and cannot be appropriate for 

panel data. 4 

 

                                                 
3 For an analysis of the Poisson lognormal mixture see Greene (2005). 
4 Note that the Poisson model can also be estimated with panel data. We do not consider this possibility 
here. See Cameron and Trivedi (2013b) for a detailed analysis. 
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2.2 Taking time into account 

 

Let us now consider data that contain observations where the same unit (individual or truck, for 

example) is observed over several successive periods but without firm or group effects. There are 

two treatments for panel data in the literature, the fixed effects and the random effects model. In 

this section we limit our discussion to the random effects Negative Binomial (NB) model applied 

to short periods of time where the number of periods is fixed and the number of individuals is 

large. Hausman et al (1984) propose an extension of the model expressed by equation (1), which 

is not designed to take into account repetitions of observations over time. The new model is a 

hierarchical model that comes directly from the Poisson model. Thus fitY  would be distributed 

according to the NB2 model of parameters i fitα γ  and iφ , where iα  and iφ  vary across individuals. 

iα  is the random firm specific effect and iφ  is an additional random effect that permit the random 

firm specific effect to vary over time (Hausman et al, 1984). Suppose that ( ) 1
i i1 −+ α φ  follows a 

beta distribution of parameters (a,b), we obtain a closed form solution for the random effects 

negative binomial model: 

 

 ( ) ( )
( ) ( )

( )
( ) ( )i

fit fit
t t fit fit

fi1 fiT
t fit fit

fit fit
t t

a b y
a b y

P Y , ,Y .
a b y 1

a b y

   Γ + γ Γ +   Γ + Γ + γ  =
Γ Γ Γ γ Γ + 

Γ + + γ + 
 

∑ ∑
∏

∑ ∑


 (2) 

 

The NB2 model can also be estimated with individual dummies (or other methods) in a fixed effects 

version. The β  parameters can be inconsistent however because of the incidental parameters 

problem, but some contributions have shown that the inconsistency may be not important (Allison 

and Waterman, 2002; Green, 2004).  

 

Estimating the random effects model in (2) can also yield inconsistent random effects estimators 

because iα  and the vector of observable individual characteristics may be correlated. We can apply 

the Hausman (1978) test statistic to determine whether or not we should reject the null hypothesis 

that the individual effects are not correlated with the variables in the regression component. The 

model in (2) is suitable for estimating parameters with individual effects but cannot take into account 
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the firm or the fleet effect when individual observations belong to different firms with common 

characteristics that can affect accident distributions. 
 
 
 

3. Methodology: Taking time and firm effects into account 
simultaneously 

 

We now move on to the generalization of the model, which will allow us to account, simultaneously, 

for the individual effect, the firm effect and the time effect.5 We are interested in observations that 

have common characteristics because they belong to the same firm, for example: workers in a firm, 

vehicles in a fleet, patients in a hospital or children attending the same school. 

 

We consider a set { }maxI 1,..., I=  of individuals, a partition { }1 f FI ,..., I ,..., I  of I, a set { }maxT 1,...,T=  

of dates and a collection { }iT Ii∈  where iT  is a subset of T. fI  is the number of trucks in fleet f. 

For each i we may refer to it as i1, 2,...,T ,  keeping in mind that iT 1=  and jT 1=  does not necessarily 

refers to the same element of T whenever i j.≠  The vector ( )fit fit1 fitk fitpX x , , x , , x=    still 

represents the p characteristics of individual i from firm f observed in period t. Here we can have 

many different firms over a given number of periods. For example, the vector may contain specific 

information about the vehicle or the driver and other specific information about the fleet. β  is a 

vector of p parameters to be estimated. Let fα  be the random effects associated with fleet f (i.e. the 

risk or non-observable characteristics attributable to the fleet), whereas (f )iθ  is the random effects of 

truck i of fleet f where 
fI

(f )i
i 1

1
=

θ =∑ , fI being the number of vehicles in fleet f. Finally (fi) tη  is the time 

random effects of period t of truck i of fleet f such that 
iT

(fi) t
t 1

1
=

η =∑  where iT  is the number of periods 

for truck i. Our model has an embedded structure which explains why the two above summations 

are equal to one. The random variable fα  is independent of other regressors including the 

fitkx , k 1, ,p,=   while the (f )iθ  are dependent between themselves for a given fleet and the (fi)Tη  are 

                                                 
5 Angers et al (2016) propose a model with individual and firm effects but their model cannot be applied to 
panel data. 
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dependent between themselves for the truck i of a given fleet f. Finally, the periods in iT  are not 

necessarily consecutive. An individual or a truck can leave the firm and come back. 

 

Model assumptions: Let us suppose that ( )fit fit f (f )i (fi) t 0λ = γ α θ η >  with fitX
fit e βγ = . We posit that: 

1) fα follows a gamma distribution of parameters
fI

1 1
i

i 1
T ,− −

=

 
κ κ 

 
∑ ; 2) the vector 

( )f(f )1 (f )2 (f )I(f ) , , ,θ θ θθ =   follows a Dirichlet distribution of parameters (
f(f )1 (f )2 (f )I, , ,ν ν ν ); and 

3) the vector 
i(fi) (fi)1 (fi)2 (fi)T( , , , )η = η η η  follows a Dirichlet distribution of parameters 

( )i(fi)1 (fi)2 (fi)T, , ,δ δ δ  where iT  is the number of periods of vehicle i. 

 

The Dirichlet distributions have been proposed because they naturally generalizes the beta 

distribution already used in the Negative Binomial model. They allow us to distribute the whole 

fleet effects on all trucks. Moreover, they permit to obtain an analytical solution for the model. It 

is clear that we can use other distributions than the Dirichlet for that purpose. Suppose that the 

variable iX  on +
  for i 1,...,n=  follows any density. Then i n

i i
i i

X X,...,
X X∑ ∑

 will have the same 

properties as the Dirichlet. 

 

Using a general distribution will add non-necessary complexities, however. Suppose, for example, 

that 1

1 2

XZ
X X

=
+

 with iX  following an uniform distribution over the interval (0,1). We will obtain 

the following distribution:   

2

2

0.5f (z) if 0 z 0.5
(1 z)

0.5f (z) if 0.5 z 1.
z

= < ≤
−

= < <

 

 

Even with such an easy case, computations will become much more complex than by using a 

Dirichlet distribution. 

 

Proposition: The joint distribution of accidents of all vehicles in fleet f is given by: 
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( ) ( )
( )

( )

( )

f fIf
1

ifitf i i 1

Iff If f f1
0 i

i 1
2

I I
1 Ty 10 i (f )iI T

i 1 i 1fit
f11 fI T I I

S Ti 1 t 1 1fit 1
i i (f )ig

i 1 i 1

S T
P Y , ,Y

y 1
T S

−

=

−

=

− κ−
= =

+ κ= = − −

= =

       Γ + κ Γ ν∑         κγ       =       Γ +      ∑   Γ κ Γ + νκ + γ              

∑ ∑
∏∏

∑ ∑


( )

( )

( )

( )
( ) ( )

f

f

f if i

f
2

f i f i

I

i (f )i
i 1

I

(f )i
i 1

I TI T

(fi) tfit (fi) t I
gt 1i 1 1i 1 t 1

2 1 i (f )i 0 i i (f )iI T I T
i 1

(fi) t i (fi) t
i 1 t 1 t 1i 1

S

y
F S ,S T , S ,

S

=

=

== −= =

=

= = ==

 
Γ + ν 

 
 Γ ν  

    Γ δΓ + δ     γ   × × + ν + κ + ν
   Γ δ Γ + δ       

∏

∏

∑∏∏∏
∑

∏∏ ∑∏

1 f
1

2

g I
g

1
i 1 i 1 g

.−
= =

  − γ
    κ + γ  
∑ ∑

 (3) 

 

Proof: The conditional distribution of the number of accidents for all the vehicles in fleet f is given 

by: 

 

( ) ( )

( )
( )

( ) ( )
I Tf

i 1 t 1

f i

f If

fitfitf i

i
f i f i fit

fit

I T

f11 fI T f (f ) (fi) fit fit
i 1 t 1

yI T
fit

i 1 t 1 fit

I T I T
y

fit
i 1 t 1 i 1 t 1fit

P Y , , Y | , , P Y |

e
y 1

1 e .
y 1

= =

= =

−λ

= =

− λ

= = = =

∑∑

α θ η = λ

λ
=

Γ +

    
= λ     Γ +     

∏∏

∏∏

∏∏ ∏∏



 (4) 

 

Since ( )fit fit f (f )i (fi) tλ = γ α θ η  then: 

 ( ) ( ) ( ) ( ) ( )
TI Tf

fitfit
t 1i 1 t 1

yy
iif i f i f f i

fitfit fit
I T I T I I T yy y

fit fit f (f )i (fi) t
i 1 t 1 i 1 t 1 i 1 i 1 t 1

== =

= = = = = = =

∑∑∑      
λ = γ α θ η     

       
∏∏ ∏∏ ∏ ∏∏  (5) 

Let 
iT

i fit
t 1

S y
=

=∑  and 
f i fI T I

0 fit i
i 1 t 1 i 1

S y S
= = =

= =∑∑ ∑ , equation (5) can be rewritten as follows  

( ) ( ) ( ) ( ) ( )
f i f i f f i

i fitfit fit 0
I T I T I I TS yy y S

fit fit f (f )i (fi) t
i 1 t 1 i 1 t 1 i 1 i 1 t 1= = = = = = =

      λ = γ α θ η           
∏∏ ∏∏ ∏ ∏∏ . 

 

Moreover, the summation
f iI T

fit
i 1 t 1= =

λ∑∑  in equation (4) can be written as  

f iI T

f (f )i fit (fi) t
i 1 t 1= =

α θ γ η∑ ∑ . 
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Writing the general form of the joint distribution of the number of accidents for all the vehicles in 

fleet f as: 

 ( ) ( ) ( )
f I f If ff11 fI T f11 fI T (fi) (fi) (fi)P Y , ,Y P Y , ,Y | f d= η η η∫ ∫  

 (6) 

with  ( ) ( ) ( )
f I f If ff11 fI T (fi) f11 fI T (f ) (fi) (f ) (f )P Y , ,Y | P Y , , Y | , f dη = θ η θ θ∫ ∫  

  (7) 

and  ( ) ( ) ( )
f I f If ff11 fI T (f ) (fi) f11 fI T f (f ) (fi) f f

0

P Y , ,Y | , P Y , , Y | , , f d
∞

θ η = α θ η α α∫ 

, (8) 

 
and integrating equation (8) with respect to , we obtain 

 

 

( )
( ) ( ) ( ) ( )

Iffit 1f i f f i f
ii fit

i 1

If
1

0 i
f f i i 1

yI T I I T ITS y 1 1fit
(f )i (fi) t 0 i

i 1i 1 t 1 i 1 i 1 t 1fit

S TI I T
1 1

i (f )i fit (fi) t
i 1 i 1 t 1

S T
y 1

T

−

=

−

=

κ− −

== = = = =

+ κ

− −

= = =

    γ      ∑θ η κ Γ + κ        Γ +             

∑   
Γ κ κ + θ γ η   
   

∑∏∏ ∏ ∏∏

∑ ∑ ∑
 
 
 
  

. (9) 

 

By replacing ( )f Iff11 fI T (f ) (fi)P Y , ,Y | ,θ η

 in equation (7) by its value given in (9) and by replacing the 

density function ( )(f )f θ by the density of a parametric Dirichlet distribution of parameters 

( )f(f )1 (f )2 (f )I, , ,ν ν ν , we obtain the following expression: 

 

( )
( ) ( )

( ) ( )

( )

f If

If
1 f if f

i fit
i 1

f i ff

f11 fI T (fi)

I TI IT y1 1
0 i (f )i fit (fi) t (f )ii 1 i 1 i 1 t 1

I T II
1

fit i (f )i
i 1i 1 t 1 i 1

P Y , ,Y |

S T

y 1 T

−

=

κ− −

= = = =

−

== = =

η

         ∑Γ + κ κ Γ ν γ η          θ
          =

     
Γ + Γ κ Γ ν     

     

∑ ∑ ∏∏

∑∏∏ ∏





f
i ( f ) i

If
1

0 i
f i i 1

I S 1

i 1
(f )

S TI T
1

(f )i fit (fi) t
i 1 t 1

d
−

=

+ν −

=

+ κ

−

= =

θ
∑ 

κ + θ γ η 
 

∏
∫ ∫

∑ ∑

(10) 

 

We must estimate the multidimensional integral of equation (10) to obtain the model parameters. 

We analyze two possibilities. 

 

fα
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i) All trucks of the same fleet have identical a priori risk

This first possibility, which greatly simplifies the estimations, is to suppose that all the fitγ  of the 

If vehicles are identical and equal to fγ , for all periods. Under this hypothesis, the 

multidimensional integral of equation (10) is reduced to: 

( ) ( )

( ) ( )

f f
i ( f ) i

I If f1 1 f
0 i 0 if i i 1 i 1

I IS 1

(f )i i (f )i
i 1 i 1

(f ) IS T S TI T 1
1 f i (f )i

f (f )i (fi) t i 1
i 1 t 1

S
d

S
− −

= =

+ν −

= =

+ κ + κ−
−

=
= =

θ Γ + ν
θ =

   ∑ ∑  κ + γ Γ + ν   κ + γ θ η       
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and the joint distribution of  the number of accidents at period t for the  vehicles in fleet f is 

given by the following expression: 
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 (12) 

Further, by replacing ( )f Iff11 fI T (fi)P Y , ,Y |η

 in equation (6) by the expression in (12) and by 

replacing the density function ( )(fi)f η by the density of a parametric Dirichlet distribution of 

parameters (
i(fi)1 (fi)2 (fi)T, , ,δ δ δ ), we obtain the following approximation for (6), the joint 

distribution of the number of accidents for all the vehicles in all fleets: 

fI
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 (13) 

 

This is an approximation because the main working hypothesis for this first scenario supposes 

implicitly that all the vehicles in the fleet represent identical a priori risks, which is probably a 

very strong hypothesis because, as we shall see, several variables distinguishing vehicles and 

driver behavior are significant in estimating the probabilities of accidents of different vehicles. 

Another possibility is to divide the vehicles into homogeneous risk groups, as insurers do when 

classifying risks. 

 

ii) Trucks belong to different groups 
 

Under this second possibility, we suppose that fit fi it 1, ,Tγ = γ ∀ = 
 where 

iT

fi fit
i 1i

1
T =

γ = γ∑ . We can 

separate the vehicles into two groups (high risk and low risk) and define 1 1G 1, ,g=   as the set of 

all vehicles of the first group with 

1

1

g

fi
i 1

g
1g

=

γ
γ =

∑
, and 2 1 fG g 1, , I= +  , as the set of all vehicles of 

the second group with 

f

1

2

I

fi
i g 1

g
2g

= +

γ
γ =

∑
. 

 

The integral of equation (10) thus becomes: 
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Let 
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θ

=  and 
( ) 2i

(f )i
iw

1 v
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−

. si 1χ =  if truck i belongs to group s ( )s 1,2=  and 

0 otherwise. The integral of equation (14) can be rewritten as follows: 
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By integrating we obtain: 
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Thus, by replacing the integral in equation (14) by its value given in (15) we obtain the following 

approximation for ( )f Iff11 fI T (fi)P Y , ,Y |η

 in (10): 
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where 2 1F  is a hypergeometric function whose value is equal to: 
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with [ ] ( ) ( )h h h 1 h 1= + + +

  , being an increasing factorial function. 

 

Further, by replacing ( )f Iff11 fI T (fi)P Y , ,Y |η

 in equation (6) by the expression in (16) and by 

replacing the density function ( )(fi)f η by the density of a parametric Dirichlet distribution of 

parameters (
i(fi)1 (fi)2 (fi)T, , ,δ δ δ ), we obtain (3), which completes the proof. 

 

This procedure in estimating the integral can be generalized to several homogeneous groups, but it 

is not obvious that the precision gained would be greater than that corresponding to a Monte Carlo 

approximation of the multivariate integral of equation (10), which is not presented here.6 In Section 

5, we present the econometric results obtained from equation (3).  

 
3.3  Parameters estimation 

 

Let (f )i iν = ν ∀  and (fi) t tδ = δ ∀ . We can apply the maximum likelihood method to estimate the 

unknown parameters, 1, ,−ν κ δ  and β  of the log likelihood corresponding function of equation 

(3).7 In the application, presented in Section 5, we will apply the quasi-Newton method of 

estimation (known as a variable metric algorithm). We use the package Optim available in R (see 

Appendix D for more details). The initial values of the vector β  are the maximum likelihood 

estimates of the NB2 model, and the initial values for 1, ,−ν κ δ  parameters are set to one. To 

determine the variance-covariance matrix of the asymptotic distribution, we solve the Hessian 

                                                 
6 This third possibility of estimating the integral in (10) by the Monte Carlo method is presented in Angers 
et al (2006). It is shown that the results are very similar to the two groups method. 
7 We could have used the Monte Carlo method with importance sampling to perform the parameters 
estimation. However, since the likelihood function is highly skewed and given the large number of 
parameters to estimate, we have chosen to use the maximum likelihood method. 
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matrix at 1 ˆˆ ˆ, ,−ν κ δ  and β̂ . The size of the data is quite large; to reduce the computation time 

drastically, we compute the log likelihood function with a homemade C program inside the R 

system.  

 

To divide the trucks of a fleet into two homogeneous groups as shown in Section 3.2, we take the 

maximum likelihood estimates ( )β̂ of the NB2 model to estimate fit
ˆX

fitˆ e βγ =  for all the vehicles. 

Given that a truck has an estimate by year of follow-up, we calculated its mean
iT

fi fit
i 1i

1ˆ ˆ
T =

γ = γ∑ . We 

sorted fiγ̂  for fi 1, , I=   and calculated the difference ( )fi 1 fi
ˆ ˆ

+γ − γ  for fi 1, , I 1= − . After, we 

choose a cut-off point fcγ where c is such that ( )fi 1 fi
ˆ ˆarg max +γ − γ . The truck i is in group 1 if 

fi fcγ̂ < γ  or is in group 2 if fi fcγ̂ ≥ γ for all the observations of the truck i. 

 

For example, for a fleet of 8 trucks and 20 observations (truck-years) as shown in Table 1, 

( )c arg max 0.08732 6= = . Then the cutoff point fc f 6
ˆ 0.23357γ = γ = . All observations of truck 1 

to truck 5 will therefore be in group 1 (low risk group ) and all the others will be in group 2 (high 

risk group) . If we use the median or the mean instead of the maximum difference then the cut-off 

point will be respectively 0.12067 ((0.09509+0.14625)/2) and 0.14605, and truck 5 will change to 

group 2. However, it is more appropriate to be in group 1 because f 5γ̂  is nearer to those in group 

1. 

Table 1 
Example of group division, fleet of 8 trucks and 20 truck-years 

Truck Year fitγ̂  fiγ̂  Difference Group 

1 94 0.02527   1 
 95 0.06524 0.04526  1 

2 91 0.02417   1 
 92 0.07178   1 
 93 0.06422   1 
 94 0.07340   1 
 95 0.06423 0.05956 0.01430 1 

3 91 0.09947   1 
 92 0.09067 0.09067 0.03111 1 
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4 91 0.09677   1 
 92 0.09817   1 
 93 0.09033 0.09509 0.00442 1 

5 91 0.15184   1 
 92 0.14065 0.14625 0.05116 1 

6 91 0.22807   2 
 92 0.23906 0.23357 0.08732 2 

7 91 0.25807   2 
 92 0.23906 0.24857 0.01500 2 

8 91 0.25989   2 
 92 0.23906 0.24948 0.00091 2 

Mean       0.14605 

4. DATA  
 

The Société de l’assurance automobile du Québec (SAAQ) provided the files for our data set. The 

SAAQ is in charge of monitoring whether vehicles engaged in road transportation of people or 

merchandise comply with applicable laws and regulations. The SAAQ is also the insurer for bodily 

injuries linked to traffic accidents for individuals and fleets of vehicles and collects information on 

all truck accidents. Our starting point is the whole population of carriers registered in a SAAQ file 

on July 1997. To be in that file of carriers, a carrier must be the owner of a vehicle that meets different 

administrative conditions. Linked to each carrier, the data contain: (1) information on violations 

(with convictions) committed by the carrier during the 1990-1998 period, either for non-compliance 

with the Highway Safety Code’s provisions on mechanical inspection; with rules on vehicles and 

their equipment; with codes on driving and hours of service or for oversize or poor load securement, 

etc., and (2) information identifying the carrier. 

 

We also have access to information on vehicles registered in Quebec for the period of January 1, 

1990 to December 31, 1998. We can link vehicles to carriers in each period. From the authorization 

status, we obtained information describing vehicles and plates. For each plate number, we have data 

covering the 1990-1998 period drawn from the files on mechanical inspection of vehicles and from 

the record of drivers’ violations with conviction and demerit points for speeding, failure to stop at a 

red light or stop sign, and illegal passing, and for accidents. 
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The type of insurance coverage we consider is for property damages of the trucks. The premium for 

these losses is paid by the owner of the fleet to a private insurer. A truck can be driven by different 

drivers and a driver can drive different trucks during a policy period. We assume that the owner 

knows who drives each truck of the fleet at any point in time. The insurer does not observe the safety 

actions of both the driver and the fleet owner and there is also asymmetric information on prevention 

between the driver and the owner of the fleet. In the application of the model, the individuals are the 

trucks and their accidents are function of both observable and non-observable characteristics or 

actions from drivers, vehicles and fleets. The owner observes accidents and the drivers’ traffic 

violations committed while driving a truck of the company. The choice and the description of the 

variables used in this study are presented in Appendix A. 

5. RESULTS 
 

5.1 Descriptive statistics 

5.1.1 By fleet 
 
We have 17,542 fleets with at least two trucks with a follow-up of at least two periods. In 

December 31, 1998, the average number of years each carrier is in the sample is seven, the 

minimum is one year and three months, and the maximum is 20 years and 9 months. Table 2 shows 

the distribution of fleets according to their main economic sector: 76.75% of 17,542 carriers are 

independent trucking firms, 13.09% are bulk public trucking firms and 8.70% are general public 

trucking firms. The sector is unknown for only a few firms. In addition, a few fleets also transport 

passengers or are short-term leasing firms. 

 



18 
 

Table 2 
Distribution of firm’s main activity 

Firm’s main activity N %  

Unknown (sect_00) 63 0.36 

Transporting passengers (sect_14) 71 0.40 

General public trucking (sect_05) 1,526 8.70 

Independent trucking (sect_07) 13,464 76.75 

Short-term leasing firm (sect_08) 121 0.69 

Bulk public trucking (sect_06) 2,297 13.09 

Total 17,542 100.00 
 
 
We note in Table 3 that approximately 4% of 17,542 fleets have over 20 trucks. On average, a 

truck has 3.87 observation periods ranging from 3.38 (a truck from a fleet of size 2) to 4.30 (a 

truck from a fleet of 10 to 20 trucks). 

 
Table 3 
Size of fleet distribution 

Size of fleet N %  Average observation 
period per truck 

2 6,888 39.27 3.38 
3 3,203 18.26 4.07 

4 to 5 3,285 18.73 4.18 
6 to 9 2,171 12.38 4.29 

10 to 20 1,298 7.40 4.30 
21 to 50 496 2.83 4.24 

More than 50 201 1.15 4.03 
 
 
We note in Table 4 that a quarter of the 17,542 carriers have eight years of follow-up. 
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Table 4 
Number of years of follow-up of the firm 

Number of years of 
follow-up  N %  

2 3,649 20.80 
3 2,512 14.32 
4 2,075 11.83 
5 1,654 9.43 
6 1,645 9.38 
7 1,567 8.93 
8 4,440 25.31 

Total 17,542 100.00 
 
Table 5 shows that there are 3,629 fleets for which we have two consecutive years of follow-up, 

which is 99.5% (3,629/3,649) of fleets with two observation periods (Table 4). This percentage 

varies from 98.96 (3 periods) to 87.17% (7 periods). The higher the number of years of follow-up, 

the higher the percentage of carriers with absences during the reporting period. 

 
Table 5 
Number of consecutive years of follow-up of the fleets by year of follow-up start, Quebec 1991 to 1997 

Number of years of follow-up  Year of follow-up start Total 1991 1992 1993 1994 1995 1996 1997 
2 949 296 263 272 332 325 1,192 3,629 
3 708 251 178 180 231 938  2,486 
4 619 174 166 169 807   1,935 
5 448 181 131 739    1,499 
6 565 144 783     1,492 
7 483 883      1,366 
8 4,440       4,440 

Total 8,212 1,929 1,521 1,360 1,370 1,263 1,192 16,847 

5.1.2 By truck-years 
 
There are 43,037 trucks in 1991. This number increased to 63,749 in 1996. It decreases to 52, 392 

in 1998 for a total of 456,177 truck-years, 15% of which had an accident during one year (Table 6). 

In 1991, nearly 86 out of 100 vehicles had no accident; this percentage rises to 88 out of 100 in 

1997. Other statistics are presented in Appendix B. 
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Table 6 
Number of truck accidents distribution according to year of observation  

Number of truck 
accidents 

% (by year of observation) 
Total  

1991 1992 1993 1994 1995 1996 1997 1998 
0 85.61 86.07 87.19 86.66 86.47 87.04 88.44 86.52 86.78 
1 12.22 11.93 11.05 11.47 11.53 11.14 10.11 11.56 11.36 
2 1.82 1.67 1.47 1.58 1.65 1.49 1.24 1.60 1.56 
3 0.28 0.27 0.23 0.23 0.28 0.26 0.17 0.26 0.24 

4 and more 0.07 0.06 0.05 0.06 0.07 0.06 0.04 0.06 0.06 
Number of trucks 43,037 55,388 57,795 59,347 61,917 63,749 62,552 52,392 456,177 
Means truck crash 0.1696 0.1632 0.1489 0.1556 0.1596 0.1515 0.1327 0.1578 0.1541 

 
 

5.2 Estimation of the models 
 

For comparison we first estimate the Hausman (1994) random effects model that cannot take into 

account the firm-specific effect. The results are presented in columns 2 and 3 of Table 7. Several 

variables measure observable heterogeneity. Some of these variables (type of fuel, number of 

cylinders, number of axles, type of vehicle used) are characteristics concerning vehicles, whereas 

others (sector, fleet size, etc.) have to do with the fleet. We also include the number of violations 

of the trucking standards the year before the accidents and the number of violations of the road 

safety code leading to demerit points the year before the accidents. The first group of violations is 

more related to fleet behavior, and the second group is more related to drivers’ behavior. Almost 

all coefficients are significant at 1%. 

 

Table C1.1 (see appendix C), present the corresponding estimates of the Poisson model in columns 

2 and 3 and the NB2 model in columns 4 and 5. The estimate of δ  is equal to 0.8135 with the 

standard error of 0.0282. The implied variance to mean ratio ( )1 δ+ δ  is 2.23, which is greater than 

1. Thus, the NB2 model specification allows for overdispersion in accidents distribution so we 

reject the Poisson model. Otherwise, the coefficients of the observable characteristics are very 

stable between the two models. All these results do not control for firm-specific effect so the serial 

correlation of residuals may be a problem having panel data. Columns 4 and 5 in Table 7 present 

the estimates of our Gamma-Dirichlet model when we add random firm-specific effect. The 

estimated coefficients are also very stable between the two models in the table, with the exception 

of the year variables. In the Hausman model, the year coefficients reflect the statistics provided 

for truck accidents in Table 6, where the fleet effect is not present. When we look at Table B3 in 
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Appendix B, we see that the average truck accident by fleet size does not have the same pattern 

during many years, as in Table 6. Since the year variables in the Gamma-Dirichlet model are for 

trucks of a given fleet, this may explain the difference. In Table C1.2, we present three other 

estimations of the Gamma-Dirichlet model by omitting different categorical variables, including 

the year variables. We observe that all parameters, including the random effects parameters, are 

stable. 
 
 

Table 7 
Estimation of the parameters of the distribution of the number of annual truck accidents for the 1991-1998 
period (fleet of two trucks or more and trucks with two periods or more), with the Hausman and Gamma-
Dirichlet models. 

Explanatory variables 
Hausman model Gamma-Dirichlet model 

Coefficient Standard 
error Coefficient Standard 

error 
Constant -0.1254 0.0819 -3.9070* 0.0573 
Number of years as carrier at 31 December  -0.0436* 0.0031 -0.0464* 0.0044 
Sector of activity in 1998     
 Other sector -0.2484* 0.0929 -0.1426 0.1163 
 General public trucking 0.1003* 0.0252 0.1685* 0.0304 

Bulk public trucking Reference group Reference group 
 Private trucking 0.1574* 0.0213 0.2290* 0.0256 
 Short-term rental firm 0.4480* 0.0336 0.5633* 0.0483 
Size of fleet     

2 Reference group Reference group 
3 0.1260* 0.0180 0.0801* 0.0205 
4 to 5 0.1941* 0.0172 0.1385* 0.0205 
6 to 9 0.2798* 0.0171 0.2137* 0.0210 
10 to 20 0.3617* 0.0166 0.2937* 0.0209 
21 to 50 0.3574* 0.0177 0.3010* 0.0223 
More than 50 0.3591* 0.0167 0.3077* 0.0217 

Number of days authorized to drive in previous year  1.6878* 0.0300 2.0537* 0.0300 
Number of violations of trucking standards in year 
before     

 For overload 0.1216* 0.0117 0.0966* 0.0115 
 For excessive size 0.1456*** 0.0883 0.1480*** 0.0860 
 For poorly secured cargo 0.2522* 0.0363 0.2054* 0.0354 
 For failure to respect service hours 0.2585* 0.0663 0.1984* 0.0664 
 For failure to pass mechanical inspection 0.2383* 0.0308 0.1778* 0.0298 
 For other reasons 0.2678* 0.0779 0.1754** 0.0743 
Type of vehicle use     
 Commercial use including transport of goods 
without C.T.Q. permit 

-0.1407*  0.0213 -0.1938* 0.0212 

 Transport of other goods -0.0513**  0.0244 -0.1148* 0.0243 
Transport of "bulk" goods Reference group Reference group 
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Explanatory variables 
Hausman model Gamma-Dirichlet model 

Coefficient Standard 
error Coefficient Standard 

error 
Type of fuel     

Diesel Reference group Reference group 
 Gas -0.4089* 0.0145 -0.3973* 0.0136 
 Other -0.3109* 0.0775 -0.3079* 0.0736 
Number of cylinders     
 1 to 5 cylinders 0.3591* 0.0440 0.2167* 0.0403 
 6 to 7 cylinders 0.3778* 0.0136 0.3780* 0.0126 

8 or more than 10 cylinders Reference group Reference group 
Number of axles     

2 axles (3,000 to 4,000 kg) -0.1620* 0.0210 -0.2916* 0.0208 
2 axles (more than 4,000 kg) -0.1715* 0.0150 -0.2850* 0.0150 
3 axles -0.1559* 0.0151 -0.1278* 0.0149 
4 axles -0.1896* 0.0199 -0.1321* 0.0190 
5 axles -0.2182* 0.0173 -0.1973* 0.0174 
6 axles or more Reference group Reference group 

Number of violations with demerit points year before     
For speeding 0.2585* 0.0105 0.1946* 0.0103 

 For driving with suspended license 0.4494* 0.0426 0.3830* 0.0422 
 For running a red light 0.3838* 0.0247 0.3094* 0.0239 
 For ignoring stop sign or traffic officer 0.4264* 0.0267 0.3597* 0.0258 
 For not wearing a seat belt 0.2044* 0.0304 0.1568* 0.0294 
Observation period     
1991 0.0187 0.0251 0.0760** 0.0332 
1992 -0.0183 0.0226 0.0548*** 0.0293 
1993 -0.0837* 0.0208 0.0806* 0.0259 
1994 -0.0201 0.0190 0.1845* 0.0226 
1995 0.0014 0.0175 0.2073* 0.0197 
1996 -0.0426* 0.0165 0.1198* 0.0175 
1997 -0.1583* 0.0163 -0.0791* 0.0163 
1998 Reference group Reference group 
â  56.9383* 3.4587   
b̂  1.8274* 0.0384   
ν̂     2.0086* 0.0422 
κ̂     12.6597* 0.2508 
δ̂    4.6690* 0.3102 
Number of observations:  456,117 456,117 

* significant at 1%;   ** significant at 5%;   *** significant at 10% 
 

The random effects parameters are significant in both models. Let us concentrate on the Gamma-

Dirichlet model proposed in this article. The significance of the three random effects parameters 

means that the random effects associated with the fleets (or the non-observable risk of the fleets) 

( κ̂ ), as well the random effects of the trucks including the drivers ( ν̂ ) and the random time effect 

( δ̂ ) significantly affect the truck distribution of accidents even when we control for many 

observable characteristics.  
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Suppose we are proposing a parametric model to rate insurance for vehicles belonging to a fleet. 

According to the results in Table 7, this premium will be a function of observable characteristics 

of the vehicle and fleet of the vehicle, as well a function of violations of the road-safety code 

committed by drivers and carriers.8 This will not be enough because many unobservable 

characteristics of trucks, drivers and carriers also affect the trucks’ distribution of accidents. The 

premiums will also have to be adjusted using the parameters of the random effects so as to account 

for the impact that the unobservable characteristics or actions of carrier, truck and drivers and even 

time can have on the truck accident rate. This form of rating makes it possible to visualize the 

impact (observable and non-observable) of behaviors of owners and drivers on the predicted rate 

of accidents, and consequently on premiums under potential moral hazard (see Angers et al, 2006, 

for more details). We show below how we can predict the number of truck accidents. 

 
5.3 Fit statistics of different models according to fleet size 

 

We now analyze the performance of the models. Model fits are based on the log likelihood 

statistics as well on other measures of information criteria such as the Akaike's information 

criterion (AIC) and the Bayesian information criterion (BIC). One advantage of using these two 

information criterion measures is that they can compare non-nested models.  
 
 
Table 8 
Fit statistics of the two models with two data sets 

Statistics Hausman 
model 

Gamma-Dirichlet 
model 

Hausman 
model 

Gamma-Dirichlet 
model 

 17,542 fleets having more than 1 truck 5,423 fleets having more than 4 trucks 
Log L -197,165.23 -197,116.18 -155,634.46 -154,793.07 
BIC  394,903.67 394,818.74 311,803.46 310,133.41 
AIC 394,418.46 394,322.36 311,352.92 309,672.14 
Number of trucks 111,106 111,106 79,609 79,609 
Number of observations 456,177 456,177 336,772 336,772 
Number of parameters 44 45 42 43  

 

Bayesian Information Criterion (BIC) 2ln L k ln(N)= − + ; ( )Akaikes Information Criterion AIC 2ln L 2k= − +  where k and N are 
the number of parameters and observations respectively, LogL = Log Likelihood ratio.  
 

                                                 
8 It can also be a function of observable characteristics of the drivers but we do not consider them here. 
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For two models estimated from the same data set, the model with the smaller BIC and AIC is 

preferable. We note in Table 8 that the Gamma-Dirichlet model is preferred to the Hausman model 

wathever the fleet size.  

 

The same results were obtained for fleets with more than two trucks and fleets with more than 

three trucks. Because the large majority of trucks belong to fleets that have more than two trucks, 

it is clear that our model permits better estimation of accident distributions than the Hausman 

model does. Detailed estimation results of the models with fleets having more than four trucks are 

presented in Appendix C2.  

 

5.4 Predicted numbers of accidents 
 

In order to check how the Gamma-Dirichlet model performs in predicting the number of truck 

accidents per fleet at time t+1, we assess an out-of-sample performance of the model in 1998 and 

we compare its forecasting performance with the observed accidents in 1998. From a 

methodological point of view, we proceed as follows: We partition the original sample period into 

two subsamples: an estimation sample for the 1991-1997 period and a forecasting sample for the 

year 1998.  

 

The estimating sample consists of 16,344 fleets with at least two trucks and 393,634 trucks with a 

follow-up of at least two periods from 1991 to 1997. We obtain the coefficient estimates for the 

Gamma-Dirichlet model presented in Table C1.3, where we observe that the coefficients are 

similar to those presented in Table 7. We should mention that the year variable is continuous in 

table C1.3 to simplify the computation of the predictive accident distribution. This modification 

does not affect the estimation results. 

 

One interesting feature of the Bayesian parametric model is to compute a parametric predictive 

distribution of accidents, ( )1 f I 1 f f If ff1T 1 fI T 1 f11 f1T fI 1 fI TP Y , ,Y | Y , ,Y , ,Y , ,Y+ +   

, which is equal to: 

( ) ( )
( )

1 1 f f I f If f

1 f I 1 f f If f

1 f f If

f11 f1T f1T 1 fI 1 fI T fI T 1

f1T 1 fI T 1 f11 f1T fI 1 fI T

f11 f1T fI 1 fI T

P Y , ,Y ,Y , ,Y , ,Y ,Y
P Y , ,Y | Y , ,Y , ,Y , ,Y

P Y , ,Y , ,Y , ,Y

+ +

+ + =
  

   

  

 (18) 
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Using the Gamma-Dirichlet model, we obtain: 
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where  

* means that the truck i is present in the forecasting sample; 
t 1
fI +  is the number of trucks of fleet f in the forecasting sample; 

ifiT 1+γ  are calculated for the forecasting sample with the coefficient estimates for the years 1991 to 1997 

presented in Table C1.3; 

0S  is the total number of trucks accidents of fleet f before t+1. 

t 1
0S +  is the total number of truck accidents of fleet f  at t+1; 

1

t 1
gS +  is the total number of truck accidents in group 1 of fleet f at t+1. 

 

The forecasting sample consists of 8,401 fleets with 2 trucks or more for a total of 41,614 trucks. 

In Table 9, we observe that out of the 8,401 fleets, 5,670 of them had no accident in 1998 (i.e. 

67.5%). The average predictive probability of having zero accident is equal to 68.9% for the same 

year, in supposing that the number of accidents of truck i at time iT 1+ , 1ifiTy + , is equal to zero for 
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all trucks of fleet f and so on for all fleets. Consequently there is 68.9% chance that a fleet will 

have no accident during the next year. 

 

The average predictive probability that a fleet has 1 accident during the next year is 18.6% while 

the observed one is 19.1%. For two accidents, the respective probabilities are 6.1% and 6.5%, 

while for three accidents, they are 2.6% and 2.7%. Results for more than three accidents are 

available from the authors. Details of the computations are presented in Appendix E. 

 

We used a paired t-test to compare the observed percentages and the predicted ones from the 

Gamma-Dirichlet model. First we need to check whether the differences between the two 

percentages follow a Normal distribution (i.e. Shapiro-Wilk test of normality). In Table 9 we 

observe large p-values for the normality test, thus, we do not reject the Normal distribution. 

Moreover, since the p-values of paired t-tests are greater than 0.05, we do not reject H0 that the 

mean difference between the observed and the predicted percentages of accidents do not differ 

from zero at the 5% level of significance. 

 

Table 9 
Percentage of 8,401 fleets having no accident, 1 accident, 2 accidents or 3 accidents in forecasting sample 
and the average predictive probability of having n accidents from the Gamma-Dirichlet model by size of 
fleet and for all firms.  

Size of fleet % of firms with 0 
accident 

% of firms with 1 
accident 

% of firms with 2 
accidents 

% of firms with 3 
accidents 

 Observed Gamma-
Dirichlet Observed Gamma-

Dirichlet Observed Gamma-
Dirichlet Observed Gamma-

Dirichlet 
2 84.5 84.8 14.4 13.1 2.6 2.0 0.4 0.4 
3 78.8 80.4 20.5 19.9 5.8 4.7 2.1 1.3 
4 to 5 71.3 74.3 25.6 26.3 9.4 8.7 3.8 2.9 
6 to 9 60.7 62.3 31.0 30.7 13.0 15.8 5.9 7.4 
10 to 20 39.5 41.2 22.2 25.7 21.3 21.4 11.2 14.8 
21 to 50 20.3 18.5 7.4 8.8 11.7 12.8 9.2 14.4 
More than 50 5.7 5.4 0.0 0.2 5.8 0.6 3.3 2.1 
All firms 67.5 68.9 19.1 18.6 6.5 6.1 2.6 2.7 
Shapiro-Wilks 
normality test  0.946  0.930  0.915  0.863  

    p-value 0.689  0.549  0.433  0.162  
Paired t-test -1.453  -0.860  0.553  -1.121  
 df  6   6  6  6  
 p-value 0.197  0.423  0.600  0.305  
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5.5 Fixed and random effects models 
 

We now analyze the consistency of the random effects estimators for the Gamma-Dirichlet model. 

One important assumption in the random effects model is that the random effects are uncorrelated 

with the observed explanatory variables used in the estimations. One way to verify the consistency 

of the random effects model is to compare the results with those obtained from a fixed effects 

model by applying the Hausman (1978) test. In the Gamma-Dirichlet model, we assume that fitY  

follows a Poisson distribution with parameter fitλ . Let fitλ  be a log-linear function of the 

explanatory variables: 

 0 ( ) ( )log fit fit fi f f i fi tx zλ β β ξ α θ η= + + + + +  (20) 

 
where fitx  represents the time-varying explanatory variables, fiz  represents the time-invariant 

explanatory variables, fα  denotes the firm effects, ( )f iθ  the truck effects with ( )
1

1
fI

f i
i
θ

=

=∑  and ( )f iη  

the time effects with ( )
1

1
iT

fi t
t
η

=

=∑ . 

 

In the random effects model, fα  is assumed to be an independent and identically distributed (iid) 

random variable following the Gamma distribution implying no correlation with the other 

regressors. In the fixed effects model, such an assumption is not needed because fα  is estimated 

using dummy variables. In the Gamma-Dirichlet model, the vector ( )f iθ  follows a Dirichlet 

distribution. Hence, its components are not independent from one another. The same situation 

holds for the vector ( )f iη . When the random effects model is correctly specified, both the fixed 

and the random effects estimators would be consistent. The difference between the two estimators 

can be used as the basis for a Hausman test. Cameron and Trivedi (2013b) propose the following 

representation of the test: 

 ( ) ( )1ˆ ˆ ˆˆ[ ]H RE FE FE RE RE FET Vβ β β β β β
−′  = − − − 

    (21) 

 

where HT  is the Hausman test statistic, FEβ  are the estimated parameters obtained from the fixed 

effects model and ˆ
REβ  are the estimated parameters obtained from the random effects model. To 
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estimate the variance term ˆˆ[ ]FE REV β β−  we can use a panel bootstrap method that resamples over 

the 5 423 firms of the sample: 

 ( )( )( ) ( ) ( ) ( )

1

1ˆ ˆ ˆˆ[ ]
1

B
b b b b

FE RE FE RE FE RE
b

V
B

β β β β β β
=

− = − −
− ∑    (22) 

 

where ( )b
FEβ  and ( )ˆ b

REβ  are the estimates obtained from the bth bootstrap replication (see Appendix 

F for more details). If 2
,0,05H pT χ<  then, at the 5% level of significance, we do not reject the null 

hypothesis that the random effects are uncorrelated with the regressors and there is no need to use 

the fixed effects estimation. 
 

In the fixed effects model, all characteristics that are not time-varying are captured by the fixed 

effects variables and have to be removed from the model. So we carry out the Hausman test only 

on the coefficients of the time-varying variables. We estimated the fixed effects Poisson regression 

model with the conventional Poisson model using 5,423 dummy variables for the fleets of four 

trucks and more.9 Greene (2004) has demonstrated the computational feasibility of this approach. 

Table 10 shows the estimated coefficients and standard deviations of the time-varying variables of 

both the fixed effects Poisson model and the Gamma-Dirichlet random effects model. The 

estimates of the two models are likewise quite similar, with few exceptions. 

 

We must mention that the Gamma-Dirichlet model has a constant term while the Poisson model 

does not by construction. Moreover, as for Table 7, the coefficients of the year variables differ 

between the two models. These differences, again, seem to be explained by the presence of the 

fleets effects in the Gamma-Dirichlet model. But the main point in this section is to test if the 

random effects are uncorrelated with the regressors. As Equation (21) above shows, the test 

consists in verifying whether the coefficients between the two regressions are statistically different. 

 

                                                 
9 We used this group of fleets to reduce the number of dummies. It is clear that the methodology can be 
used for all groups of fleets. 
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Table 10 
Estimation of the parameters of the distribution of the number of annual truck accidents for the 
period 1991-1998 (fleets of four trucks or more and with trucks having at least two periods) of the 
fixed effects Poisson model with 5,423 dummy variables (coefficients not presented here) and the 
Gamma Dirichlet model. 

Explanatory variables 
Fixed effects Poisson model Gamma-Dirichlet model 

Coefficient Standard 
error Coefficient Standard 

error 
Constant   -1.9611 * 0.0213 
Number of violations of trucking standards 
in previous year      

 For overload 0.1584* 0.0125 0.2006* 0.0127 
 For excessive size 0.2828* 0.0975 0.2675* 0.0993 
 For poorly secured cargo 0.2321* 0.0387 0.2770* 0.0397 
 For failure to obey service hours 0.2245* 0.0693 0.2777* 0.0717 
 For failure to pass mechanical inspection 0.1583* 0.0334 0.2012* 0.0347 
 For other reasons 0.2331* 0.0784 0.2369* 0.0807 
Number of violations with demerit points in 
previous year      

For speeding 0.2248* 0.0112 0.2584* 0.0116 
 For driving under suspension 0.3857* 0.0479 0.4245* 0.0502 
 For running a red light 0.3068* 0.0268 0.3804* 0.0274 
 For ignoring a stop sign or traffic agent 0.3443* 0.0287 0.4105* 0.0295 
 For not wearing a seat belt 0.1219* 0.0337 0.1651* 0.0342 
Size of fleet     
 5 trucks Reference group Reference group 
 6 to 9 trucks 0.0283 0.0235 0.0168 0.0198 
 10 to 20 trucks 0.0532* 0.0307 0.0864* 0.0219 
 20 to 50 trucks  0.0347 0.0403 0.0829* 0.0244 
 More than 50 trucks 0.0841* 0.0511 0.0849* 0.0243 
Observation period     
 1991 0.0586* 0.0189 0.0995* 0.0188 
 1992 0.0292 0.0178 0.0823* 0.0178 
 1993 -0.0584* 0.0178 0.0877* 0.0178 
 1994 -0.0209 0.0173 0.1694* 0.0173 
 1995 -0.0157 0.0170 0.1631* 0.0170 
 1996 -0.0608* 0.0170 0.0672* 0.0170 
 1997 -0.1914* 0.0175 -0.1759* 0.0174 
 1998 Reference group Reference group 
ν̂     1.7438* 0.0360 
κ̂     23.2452* 0.5708 
δ̂    4.7249* 0.3431 
Log L -150,397.2 -159,255.61 
Number of observations:  336,772 336,772 

* Significant at 1%. 
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Figure 1 presents the values of Hausman test statistic, TH, based on the number of bootstrap 

replications (for the bootstrap variance matrix estimated in the Hausman test). We observe that 

after 300 replications, 2
22,0,05HT χ<  where 2

22,0,05 33.9χ = . So, at 5% or any lower level of 

significance, we do not reject the null hypothesis that the random effects are uncorrelated with the 

regressors. Consequently, there is no statistical difference between the coefficients of the Gamma-

Dirichlet model and those of the fixed effects Poisson model presented in Table 10. 
 
 

 
 

Figure 1: TH values of the Hausman test is based on the number of bootstrap replications for the 
firm effects 

 
 

6. CONCLUSION 
 

In this article, we propose a new parametric model with random effects for the estimation of 

accidents distribution in the presence of individual and firm effects. Non-observable factors are 

treated as random effects. A Poisson fixed effects model is estimated to verify the consistency of 

the random effects model. We do not reject the null hypothesis that the random effects are 

uncorrelated with the regressors. 

 

This type of model can be used to compute insurance premiums for drivers or vehicles belonging 

to a fleet because the characteristics and the management behavior of the fleets can affect the 

accident rate of vehicles and their drivers. For example, the manager of a given fleet may have a 
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high risk appetite and ask their drivers to drive faster or to work more than the regulated number 

of hours during a week. He may also ask them to transport poorly secured cargo. A pricing rule 

that includes the observable and non-observable characteristics of all parties that affect accident 

distributions should consequently be fairer, and introduce the appropriate incentives of all parties 

under asymmetric information. Our results show that the Gamma-Dirichlet model performs well 

in predicting out-of-sample accidents. 

 

The methodology developed in this study can be applied to estimating event distributions in many 

other domains than insurance pricing. Since 2004, banks are regulated by Basel II for keeping 

capital for operational risk. The operational risk of different banks is a function of the observable 

characteristics and the non-observable behavior of the personnel and of the management. A similar 

environment is present for the default risk of different firms or for the accident risk of any public 

institution or transportation firm including airline accidents. Other domains of applications include 

the failure or success rate of hospitals, universities, or any institution with principal-agent 

situations with teams. 

 

In this study, we used a parametric model to estimate accident distributions. The main motivation 

was to obtain explicit parameter estimates for the insurance pricing of vehicles that includes 

individual and firm effects. Since we have a very large dataset, we could also have used the 

Classification and Regression Tree (CART) approach which does not require any ex-ante 

relationship between dependent and independent variables (Chang and Chen, 2005). It would be 

interesting to extend our analysis to such data mining techniques and see their advantages and 

disadvantages with respect to our pricing objectives. 
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APPENDIX A: CHOICE AND DESCRIPTION OF VARIABLES 

The unit of observation is an eligible vehicle with authorization to circulate at least one day in year 
t, and which has been followed up for at least two years. We analyze the accident totals found in 
SAAQ files. These totals include all the traffic accidents causing bodily injuries and all accidents 
causing material damage reported by the police in Quebec. 

Dependent variable 

fitY  = the number of accidents in which vehicle i of fleet f has been involved during year t. 

fitY  can take the values 0, 1, 2, 3, 4 and over. 

Explanatory variables 

We have two types of explanatory variables: those concerning the carrier and those concerning 
vehicles and drivers. 

Variables concerning the carrier 

 Size of fleet for year t: 7 dichotomous variables have been created.
The two-vehicle size is used as the reference category. 

 Sector of economic activity: 5 dichotomous variables have been created for vehicles
transporting goods :

sect_14 = 1 if the main sector of activity is transporting passengers; 
sect_05 = 1 if the sector of activity is general public trucking; 
sect_06 = 1 if the sector of activity is public bulk trucking; 
sect_07 = 1 if the sector of activity is independent trucking; 
sect_08 = 1 if the sector of activity is a short-term leasing firm. 

The “public bulk trucking” sector is used as the reference category. 

 Seven (7) variables have been created for vehicles engaged in the transportation of goods, to
measure the number of convictions per vehicle in the year preceding year t for each carrier:

♦ Number of violations per vehicle for overweight committed by a carrier in the year
preceding year t. A positive sign is predicted, because more overweight violations
should, on average, generate more accidents.

♦ Number of violations per vehicle for oversize committed by a carrier in the year
preceding year t: A positive sign is predicted, because more violations for oversize
should, on average, generate more accidents.

♦ Number of violations per vehicle for poorly secured loads committed by a carrier in
the year preceding year t: A positive sign is predicted, because more violations for
poorly secured loads should, on average, generate more accidents.

♦ Number of violations per vehicle of Highway Safety Code provisions regarding
transportation of hazardous materials committed by a carrier in the year preceding
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year t: A positive sign is predicted, because more violations of regulations for the 
transportation of hazardous materials should, on average, generate more accidents. 

♦ Number of violations per vehicle of hours-of-service regulations committed by a
carrier in the year preceding year t: A positive sign is predicted because more
violations of hours-of-service regulations should, on average, generate more
accidents.

♦ Number of violations per vehicle of Highway Safety Code provisions regarding
mechanical inspection committed by a carrier in the year preceding year t: A
positive sign is predicted, because more violations of regulations regarding
mechanical inspection should, on average, generate more accidents.

♦ Number of violations per vehicle, other than those already mentioned, committed by
a carrier in the year preceding year t: A positive sign is predicted, because more
violations other than those already mentioned should, on average, generate more
accidents.

Variables concerning vehicles and drivers (a vehicle may have more than one driver) 

 Vehicle’s number of cylinders: 4 dichotomous variables have been created:
cyl_0 = 1 if the vehicle’s number of cylinders is not known; 
cyl1_5 = 1 if the vehicle has 1 to 5 cylinders; 
cyl6_7 = 1 if the vehicle has 6 to 7 cylinders; 
cyl_8p = 1 if the vehicle has 8 or more than 10 cylinders. 

The group of vehicles with 8 or more than 10 cylinders is used as the reference category. 

 Vehicle’s type of fuel: 3 dichotomous variables have been created:
diesel = 1 if the vehicle uses diesel as fuel; 
fuel = 1 if the vehicle uses gas as fuel; 
other = 1 if the vehicle uses another type of fuel. 

The group of vehicles using diesel as fuel is considered the reference category. 

 maximum number of axles: 7 dichotomous variables have been created:
ess_0 = 1 if the maximum number of axles does not apply to this type of vehicle; 
ess_2 = 1 if the vehicle has two axles and a mass of between 3,000 and 4,000 kg; 
ess_2p = 1 if the vehicle has two axles and a mass higher than 4,000 kg; 
ess_3 = 1 if the vehicle is supported by a maximum of three axles; 
ess_4 = 1 if the vehicle is supported by a maximum of four axles; 
ess_5 = 1 if the vehicle is supported by a maximum of five axles; 
ess_6p = 1 if the vehicle is supported by six or more axles. 

The group of vehicles with two axles and a mass of between 3 000 and 4 000 kg is used as the 
reference category.  

 Vehicle’s type of use: 3 dichotomous variables for vehicles transporting goods have been
created:
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compr = 1 if the vehicle is meant for commercial use, including transportation of 
goods without a CTQ permit; 

tbrgn = 1 if the vehicle is meant for transportation of goods but other than in bulk, 
which requires a CTQ permit; 

tbrvr = 1 if the vehicle is meant for transportation of bulk goods. 
 
The group of vehicles transporting bulk goods is used as the reference category.  

 
 Six (6) variables have been created to measure the number of convictions per vehicle 

accumulated in the year preceding year t by one or more drivers: 

♦ Number of violations for speeding per vehicle, committed in the year preceding year 
t. A positive sign is predicted because more speeding violations should, on average, 
generate more accidents. 

♦ Number of violations for driving with a suspended license per vehicle, committed in 
the year preceding year t. A positive sign is predicted because more driving with a 
suspended license should, on average, generate more accidents. 

♦ Number of violations for running a red light per vehicle, committed in the year 
preceding year t. A positive sign is predicted because more incidences of running a 
red light should, on average, generate more accidents. 

♦ Number of violations for failure to obey a stop sign or a signal from a traffic officer 
per vehicle, committed in the year preceding year t. A positive sign is predicted 
because more incidents of failure to respect a stop sign or a signal from a traffic cop 
should, on average, generate more accidents. 

♦ Number of violations for failure to wear a seat belt per vehicle, committed in the year 
preceding year t. A positive sign is predicted because more incidents of failure to 
wear a seat belt should, on average, generate more accidents. 

♦ Number of violations other than those mentioned per vehicle, committed in the year 
preceding year t. A positive sign is predicted because a greater number of violations 
other than those mentioned should, on average, generate more accidents. 
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APPENDIX B: ADDITIONAL DESCRIPTIVE STATISTICS 

Table B1 shows the distribution of the size of the fleet by year and for a total of 8 years. In 1991, 

we have 8,650 fleets, this number increases to 11,965 fleets in 1996 and decreases to 10,321 in 

1998 for a total of 87,771 fleet-years. Among the 87,771 fleet-years, 46.51% have two vehicles 

and about 3% have over 20 vehicles. 

Table B1 
Size of fleet distribution (in %) by year 

Size of fleet % by year % total 
1991 1992 1993 1994 1995 1996 1997 1998 

2 47.86 46.31 46.60 46.82 45.98 46.08 45.83 47.03 46.51 

3 19.63 19.75 19.92 19.71 19.45 19.30 19.28 19.10 19.51 

4 to 5 15.26 15.99 15.75 15.54 16.28 16.02 16.40 16.26 15.96 

6 to 9 9.16 9.40 9.19 9.46 9.62 9.88 9.62 9.27 9.47 

10 to 20 5.45 5.72 5.76 5.74 5.76 5.68 5.95 5.64 5.72 

21 to 50 1.97 2.06 2.00 1.89 2.05 2.14 2.08 2.01 2.03 

More than 50 0.68 0.78 0.78 0.83 0.86 0.89 0.85 0.70 0.80 

Number of fleets 8,650 10,691 11,132 11,445 11,733 11,965 11,834 10,321 87,771 

From Table B2, we observe that 9,963 fleets remain in the same class of fleet size during the eight 

years of observation (sum of the diagonal of the table), which is 56.80% of 17,542 fleets. There 

are 2,722 fleets whose size varies between 2 and 3 trucks, and 1,423 fleets whose size varies 

between 2 trucks to 4-5 trucks. 

Table B2 
Minimum and maximum fleet size distribution during the follow-up, Québec 1991-1998 

Minimum size 
of fleet 

Maximum size of fleet Total 
   2      3 4 to 5 6 to 9 10 to 20 21 to 50 + 50       N       % 

2 7,884 2,722 1,423 365 101 19 2 12,561 71.35 

3 790 946 368 85 14 2 2,205 12.57 

4 to 5 551 644 172 22 1 1,390 7.92 

6 to 9 320 394 57 12 783 4.46 

10 to 20 268 152 22 442 2.52 

21 to 50 93 56 149 0.85 

More than 50 57 57 0.32 

Total               N 7,884 3,512 2,920 1,697 1,020 357 152 17,542 100.00 
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Minimum size 
of fleet 

Maximum size of fleet Total 
   2      3 4 to 5 6 to 9 10 to 20 21 to 50 + 50       N       % 

% 44.94 20.20 16.65 9.67 5.81 2.04 0.84 100.00  

 

We observe from Table B3 that the average accident rate of trucks per fleet is lowest for the year 

1997, followed by 1993, 1998, 1996 and 1994. In the years 1991, 1992 and 1995, the highest 

average rates of truck accidents per fleet were recorded. These observations are almost stable for 

different fleet sizes.  

 

Table B3 
Average truck accidents per fleet according to size of fleet and year. 

Size of fleet Average truck accident per fleet by year  Total 1991 1992 1993 1994 1995 1996 1997 1998 
2 0.2626 0.2480 0.2219 0.2215 0.2219 0.2155 0.1809 0.2186 0.2224 

3 0.4370 0.4154 0.3811 0.4007 0.4194 0.3712 0.3129 0.4049 0.3909 

4 to 5 0.6689 0.6864 0.6030 0.6296 0.6408 0.5863 0.5507 0.6490 0.6239 

6 à 9 1.3914 1.2259 1.0909 1.1311 1.1833 1.0981 1.0018 1.1996 1.1550 

10 to 20 2.6730 2.6127 2.3744 2.5099 2.4527 2.4824 2.0767 2.5223 2.4497 

21 to 50 5.9176 5.3818 5.0448 5.3565 5.8875 5.2461 4.8618 5.7681 5.4094 

More than 50 22.6780 22.4096 21.7701 22.0421 22.0198 21.0935 18.4700 22.5417 21.5014 
Average truck   

accidents per fleet 0.8575 0.8561 0.7824 0.8157 0.8531 0.8153 0.7106 0.8120 0.8109 

 

We have 111,106 different trucks in the database, nearly three-quarters of which are for 

commercial use, including transportation of goods. As indicated in Table B4, 17.52% of the trucks 

are used for transportation of goods other than bulk and 8% for transportation of goods in bulk. 
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Table B4 
Vehicle use distribution. 

Vehicle use N %  
Commercial use, including transport of 
goods without CTQ permit. (combr) 82,798 74.52 

Transport of goods other than in bulk (tbrgn) 19,470 17.52 
Transport of goods in bulk (tbrvr) 8,838 7.95 
Total 111,106 100.00 

 

Table B5 presents the variation of average annual accidents per truck relative to the number of 

driver’s violations of the Highway Safety Code during the year preceding the accidents. Violations 

committed by drivers are very powerful in explaining truck accidents during the next year. Indeed, 

we observe that the year t accident rate is an increasing function of previous year violations 

committed by drivers.  
 
Table B5 
Average truck accidents according to the driver’s violations committed the previous year. 

Violations committed 
by the driver the 

previous year  

Year 
Total 

1991 1992 1993 1994 1995 1996 1997 1998 

For speeding          

0 0.1642 0.1586 0.1432 0.1486 0.1516 0.1435 0.1240 0.1498 0.1472 

1 0.2974 0.2592 0.2640 0.2723 0.2631 0.2523 0.2161 0.2609 0.2556 

2 0.2701 0.3410 0.3045 0.4000 0.3566 0.3249 0.3207 0.3281 0.3337 

3 and more 0.4194 0.5000 0.2424 0.4651 0.5506 0.4821 0.3973 0.4600 0.4505 

For driving with a 
suspended license          

0 0.1696 0.1629 0.1485 0.1547 0.1584 0.1507 0.1321 0.1574 0.1535 

1 and more 0.7500 0.5217 0.3750 0.4076 0.3549 0.3426 0.3017 0.3265 0.3566 

For running a red 
light          

0 0.1679 0.1617 0.1473 0.1538 0.1571 0.1491 0.1308 0.1555 0.1521 

1 0.2726 0.2846 0.2764 0.2999 0.3350 0.3135 0.2981 0.3413 0.3036 

2 and more 0.5294 0.6667 0.3846 0.2727 0.6000 0.7272 0.2308 0.2727 0.5040 

For disobeying stop 
signs or police 
signals 
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Violations committed 
by the driver the 

previous year  

Year 
Total 

1991 1992 1993 1994 1995 1996 1997 1998 

0 0.1677 0.1618 0.1474 0.1541 0.1572 0.1498 0.1315 0.1561 0.1524 

1 0.3204 0.3140 0.2797 0.2823 0.3570 0.2931 0.2411 0.3100 0.2993 

2 and more 0.5000 0.2857 0.2500 0.5833 0.2941 0.5263 0.3125 0.5000 0.4016 

For failing to wear a 
seat belt 

0 0.1689 0.1626 0.1481 0.1554 0.1588 0.1508 0.1316 0.1576 0.1534 

1 0.2304 0.2246 0.2293 0.1770 0.2376 0.2100 0.2096 0.2124 0.2164 

2 and more 0.4138 0.4333 0.2571 0.2750 0.1774 0.2653 0.3137 0.1200 0.2741 

For overweight 

0 0.1649 0.1583 0.1448 0.1517 0.1544 0.1461 0.1293 0.1540 0.1497 

1 0.2430 0.2764 0.2410 0.2501 0.2432 0.2383 0.1889 0.2631 0.2394 

2 and more 0.3387 0.2956 0.3364 0.2926 0.3552 0.3026 0.2155 0.3874 0.3065 

For oversize 

0 0.1695 0.1632 0.1488 0.1554 0.1596 0.1515 0.1326 0.1577 0.1540 

1 and more 0.2836 0.1000 0.2917 0.2603 0.1574 0.1545 0.2269 0.2821 0.2119 

For poorly secured 
loads 

0 0.1688 0.1625 0.1482 0.1550 0.1587 0.1509 0.1323 0.1570 0.1534 

1 and more 0.3185 0.3198 0.2667 0.2665 0.2656 0.2621 0.2214 0.3778 0.2791 

For exceeding hours 
of service 

0 0.1696 0.1632 0.1486 0.1556 0.1592 0.1513 0.1325 0.1575 0.1539 

1 and more 0.5714 0.3000 0.6333 0.1951 0.3529 0.2743 0.3881 0.3571 0.3496 

For failure to 
undergo mechanical 
inspection 

0 0.1691 0.1626 0.1474 0.1546 0.1578 0.1509 0.1321 0.1572 0.1532 

1 and more 0.2890 0.3180 0.2388 0.2534 0.3024 0.2251 0.2168 0.2768 0.2591 

We note in Table B6 that 78.80% of the 111,106 trucks use diesel as fuel. 
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Table B6 
Type of fuel distribution 

Type of fuel N %  
Diesel 87,546 78.80 
Gas 22,999 20.70 
Other 561 0.50 
Total 111,106 100.00 

 
 
Table B7 illustrates that 21.15% of the 111,106 trucks have six axles or more and 28.57% have 

two axles and weigh more than 4,000 kg, and Table B8 shows that 64.95% of the 111,106 trucks 

have 6 to 7 cylinders. Only 1.15% has 5 cylinders or fewer.  

 
Table B7 
Number of axles distribution 

Number of axles N %  
2 axles (3,000 to 4,000 kg) 15,960 14.36 
2 axles (More than 4,000 kg) 31,747 28.57 
3 axles 21,856 19.67 
4 axles 7,377 6.64 
5 axles 10,666 9.60 
6 axles and more 23,500 21.15 

Total 111,106 100.00 
 
 

Table B8 
Number of cylinders distribution 

Number of cylinders N %  
Unknown 501 0.45 
1 to 5 cylinders 1,283 1.15 
6 to 7 cylinders 71,159 64.05 
8 or more than 10 cylinders 38,163 34.35 
Total 111,106 100.00 

 
 
Table B9 indicates that 10.64% of the 111,106 trucks have 8 years of follow-up, which represents 

10.64% of the population. 
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Table B9 
Number of years of follow-up of the truck 

Number of years of 
follow-up N % 

2 30,716 27.65 
3 23,270 20.94 
4 17,831 16.05 
5 11,998 10.80 
6 9,241 8.32 
7 6,225 5.60 
8 11,825 10.64 

Total 111,106 100.00 

We note in Table B10 that there are 30,432 trucks for which we have two consecutive years of 

follow-up, which corresponds to 99.07% (30,432/30,716) of trucks with two observation periods. 

This percentage varies from 98.43 (3 periods) to 97.65 (7 periods). 

Table B10 
Number of consecutive years of follow-up of the trucks by year of follow-up start, Quebec 1991 to 1997. 

Number of year of 
follow-up  

Year of follow-up start 
Total 

1991 1992 1993 1994 1995 1996 1997 
2 8,326 2,581 2,193 2,081 2,844 2,351 10,056 30,432 
3 6,421 2,291 1,624 1,855 1,947 8,766 22,904 
4 5,273 1,535 1,711 1,524 7,304 17,347 
5 3,967 1,289 1,067 5,226 11,549 
6 3,680 818 4,441 8,939 
7 2,630 3,449 6,079 
8 11,825 11,825 

Total 42,122 11,963 11,036 10,686 12,095 11,117 10,056 109,075 
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APPENDIX C1: POISSON AND NB2 MODELS ESTIMATION RESULTS 

Table C1.1: Poisson negative binomial estimates 
Estimation of the parameters of the distribution of the number of annual truck accidents for the 
1991-1998 period (fleet of two trucks or more and trucks with two periods or more), Poisson and 
NB2 models 

Explanatory variables 
Poisson model NB2 model 

Coefficient Standard 
error Coefficient Standard error 

Constant -3.5846* 0.0415 -3.5895* 0.0438 
Number of years as carrier at 31 December -0.0424* 0.0026 -0.0432* 0.0028 
Sector of activity in 1998 

Other sector -0.2766* 0.0804 -0.2694* 0.0839 
General public trucking 0.0933* 0.0210 0.0977* 0.0226 
Bulk public trucking Reference group Reference group 
Private trucking 0.1548* 0.0177 0.1595* 0.0190 
Short-term rental firm 0.4055* 0.0275 0.4185* 0.0299 

Size of fleet 
2 Reference group Reference group 
3 0.1245* 0.0161 0.1246* 0.0171 
4 to 5 0.1900* 0.0151 0.1926* 0.0160 
6 to 9 0.2764* 0.0148 0.2797* 0.0158 
10 to 20 0.3704* 0.0142 0.3761* 0.0152 
21 to 50 0.3698* 0.0151 0.3782* 0.0161 
More than 50 0.3837* 0.0142 0.3892* 0.0151 

Number of days authorized to drive in previous year 1.6703* 0.0290 1.6765* 0.0300 
Number of violations of trucking standards in year 
before 

For overload 0.1456* 0.0104 0.1502* 0.0117 
For excessive size 0.1607*** 0.0825 0.1615*** 0.0910 
For poorly secured cargo 0.2927* 0.0329 0.2991* 0.0380 
For failure to respect service hours 0.2771* 0.0598 0.2880* 0.0710 
For failure to pass mechanical inspection 0.2819* 0.0280 0.2977* 0.0316 
For other reasons 0.2812* 0.0699 0.2602* 0.0807 

Type of vehicle use 
 Commercial use including transport of goods 
without C.T.Q. permit -0.1167* 0.0177 -0.1249* 0.0191 

Transport of other than "bulk" goods -0.0325 0.0203 -0.0387*** 0.0220 
Transport of "bulk" goods Reference group Reference group 

Type of fuel 
Diesel Reference group Reference group 
Gas -0.3922* 0.0124 -0.3939* 0.0130 
Other -0.3169* 0.0684 -0.3161* 0.0713 

Number of cylinders 
1 to 5 cylinders 0.3536* 0.0360 0.3527* 0.0385 
6 to 7 cylinders 0.3752* 0.0114 0.3763* 0.0121 
8 or more than 10 cylinders Reference group Reference group 
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Explanatory variables 
Poisson model NB2 model 

Coefficient Standard 
error Coefficient Standard error 

Number of axles     
2 axles (3,000 to 4,000 kg) -0.1603* 0.0177 -0.1616* 0.0188 
2 axles (more than 4,000 kg) -0.1505* 0.0122 -0.1541* 0.0132 
3 axles -0.1156* 0.0124 -0.1203* 0.0133 
4 axles -0.1818* 0.0163 -0.1817* 0.0175 
5 axles -0.2040* 0.0145 -0.2056* 0.0156 
6 axles or more Reference group Reference group 

Number of violations with demerit points year before     
For speeding 0.2961* 0.0092 0.3098* 0.0106 

 For driving with suspended license 0.4895* 0.0350 0.5590* 0.0433 
 For running a red light 0.4549* 0.0226 0.4723* 0.0256 
 For ignoring stop sign or traffic officer 0.4953* 0.0244 0.5107* 0.0277 
 For not wearing a seat belt 0.2295* 0.0281 0.2386* 0.0310 
Observation period     
1991 0.0099 0.0222 0.0142 0.0239 
1992 -0.0225 0.0202 -0.0195 0.0217 
1993 -0.0881* 0.0189 -0.0876* 0.0203 
1994 -0.0228 0.0174 -0.0218 0.0187 
1995 -0.0012 0.0163 -0.0011 0.0175 
1996 -0.0463* 0.0157 -0.0453* 0.0168 
1997 -0.1605* 0.0158 -0.1597* 0.0168 
1998 Reference group Reference group 
δ̂    0.8135 0.0282 
Number of observations:  456,117 456,117 

* significant at 1%;   ** significant at 5%;   *** significant at 10% 
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Table C1.2: Robustness analysis of the estimations 
Estimation of the parameters of the distribution of the number of annual truck accidents for the 1991-1998 
period (fleet of two trucks or more and trucks with two periods or more), Gamma-Dirichlet models 
(excluding the variable fleet size at left, cylinders in the middle, and observation period at right). 

Explanatory variables 

Gamma-Dirichlet model Gamma-Dirichlet model Gamma-Dirichlet model 
Fleet size omitted Cylinders omitted Period omitted 

Coefficient Standard 
error Coefficient Standard 

error Coefficient Standard 
error 

Constant -3.8990* 0.0572 -3.5304* 0.0563 -3.7451* 0.0408 
Number of years as carrier 
at 31 December  -0.0331* 0.0044 -0.0467* 0.0044 -0.0578* 0.0019 
Sector of activity in 1998       
 Other sector -0.0802 0.1173 -0.1170 0.1169 -0.1505 0.1159 
 General public trucking 0.2429* 0.0303 0.1843* 0.0305 0.1658* 0.0303 

Bulk public trucking Reference group Reference group Reference group 
 Private trucking 0.2775* 0.0257 0.2358* 0.0258 0.2201* 0.0256 
 Short-term rental firm 0.6832* 0.0482 0.5976* 0.0488 0.5655* 0.0482 
Size of fleet       

2  Reference group Reference group 
3   0.0830* 0.0206 0.0811* 0.0205 
4 to 5   0.1467* 0.0206 0.1403* 0.0205 
6 to 9   0.2237* 0.0211 0.2184* 0.0209 
10 to 20   0.3093* 0.0211 0.2981* 0.0208 
21 to 50   0.3137* 0.0225 0.3051* 0.0222 
More than 50   0.3182* 0.0219 0.3193* 0.0215 

Number of days 
authorized to drive in 
previous year  2.0586* 0.0299 2.0414* 0.0299 2.0408* 0.0297 
Number of violations of 
trucking standards in year 
before 

      

 For overload 0.0949* 0.0115 0.1015* 0.0114 0.0983* 0.0114 
 For excessive size 0.1434*** 0.0862 0.1378 0.0859 0.1514*** 0.0861 
 For poorly secured 
cargo 0.2011* 0.0357 0.2048* 0.0355 0.2227* 0.0355 
 For failure to respect 
service hours 0.1963* 0.0667 0.2012* 0.0664 0.2141* 0.0663 
 For failure to pass 
mechanical inspection 0.1685* 0.0300 0.1807* 0.0299 0.1994* 0.0300 
 For other reasons 0.1709** 0.0744 0.1779** 0.0743 0.1717** 0.0744 
Type of vehicle use       
 Commercial use 
including transport of 
goods without C.T.Q. 
permit -0.1802* 0.0212 -0.2139* 0.0212 -0.1901* 0.0212 
 Transport of other than 
"bulk" goods -0.0900* 0.0243 -0.1233* 0.0243 -0.1138* 0.0242 

Transport of "bulk" 
goods Reference group Reference group Reference group 
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Explanatory variables 

Gamma-Dirichlet model Gamma-Dirichlet model Gamma-Dirichlet model 
Fleet size omitted Cylinders omitted Period omitted 

Coefficient Standard 
error Coefficient Standard 

error Coefficient Standard 
error 

Type of fuel       
Diesel Reference group Reference group Reference group 

 Gas -0.3993* 0.0137 -0.4945* 0.0134 -0.3976* 0.0136 
 Other -0.2933* 0.0738 -0.4617* 0.0734 -0.3058* 0.0736 
Number of cylinders       
 1 to 5 cylinders 0.2171* 0.0406   0.2162* 0.0402 
 6 to 7 cylinders 0.3865* 0.0127   0.3782* 0.0126 

8 or more than 10 
cylinders Reference group  Reference group 

Number of axles       
2 axles (3,000 to 4,000 kg) -0.3091* 0.0209 -0.5535* 0.0189 -0.2854* 0.0208 
2 axles (> 4,000 kg) -0.3003* 0.0151 -0.3884* 0.0147 -0.2806* 0.0150 
3 axles -0.1371* 0.0150 -0.1603* 0.0149 -0.1238* 0.0149 
4 axles -0.1302* 0.0191 -0.1551* 0.0190 -0.1315* 0.0190 
5 axles -0.2048* 0.0175 -0.2027* 0.0174 -0.1954* 0.0174 
6 axles or more Reference group Reference group Reference group 
Number of violations with 
demerit points year before       

For speeding 0.1898* 0.0103 0.1974* 0.0103 0.1918* 0.0103 
 For driving with 
suspended license 0.3725* 0.0423 0.3816* 0.0421 0.4026* 0.0421 
 For running a red light 0.3014* 0.0239 0.3178* 0.0239 0.3130* 0.0239 
 For ignoring stop sign or 
traffic officer 0.3519* 0.0258 0.3626* 0.0258 0.3620* 0.0258 
 For not wearing a seat 
belt 0.1484* 0.0295 0.1559* 0.0294 0.1536* 0.0295 
Observation period       
1991 0.1575* 0.0332 0.0442 0.0334   
1992 0.1299* 0.0293 0.0271 0.0295   
1993 0.1431* 0.0260 0.0592** 0.0261   
1994 0.2348* 0.0226 0.1689* 0.0227   
1995 0.2483* 0.0197 0.1978* 0.0198   
1996 0.1502* 0.0175 0.1146* 0.0175   
1997 -0.0590* 0.0163 -0.0813* 0.0163   
1998 Reference group Reference group  
ν̂   2.0152* 0.0424 1.9876* 0.0415 2.0077* 0.0422 
κ̂   13.3070* 0.2580 13.0769* 0.2556 12.6287* 0.2503 
δ̂  4.6682* 0.3100 4.6666* 0.3098 4.6683* 0.3101 
Number of observations:  456,117 456,117 456,117 

* Significant at 1%; ** Significant at 5%; *** Significant at 10% 
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Table C1.3: Estimating sample results for predicted numbers of accidents 
Estimation of the parameters of the distribution of the number of annual truck accidents for the 1991-1997 
period (fleet of two trucks or more and trucks with two periods or more), Gamma-Dirichlet models.  

Explanatory variables Gamma-Dirichlet model 
Coefficient Standard error 

Constant -3.6903* 0.0438 
Number of years as carrier at 31 December  -0.0468* 0.0051 
Sector of activity in 1998   
 Other sector -0.1260 0.1201 
 General public trucking 0.1792* 0.0326 

Bulk public trucking Reference group 
 Private trucking 0.2336* 0.0275 
 Short-term rental firm 0.5916* 0.0508 
Size of fleet   

2 Reference group 
3 0.0774* 0.0219 
4 to 5 0.1357* 0.0219 
6 to 9 0.2071* 0.0224 
10 to 20 0.2871* 0.0222 
21 to 50 0.2817* 0.0237 
More than 50 0.3070* 0.0229 

Number of days authorized to drive in previous year  2.0100* 0.0317 
Number of violations of trucking standards in year 
before   

 For overload 0.0965* 0.0120 
 For excessive size 0.1423 0.0901 
 For poorly secured cargo 0.2081* 0.0377 
 For failure to respect service hours 0.2213* 0.0757 
 For failure to pass mechanical inspection 0.1877* 0.0315 
 For other reasons 0.1568*** 0.0812 
Type of vehicle use   
 Commercial use including transport of goods 
without C.T.Q. permit -0.1936* 0.0228 
 Transport of other than "bulk" goods -0.1061* 0.0261 

Transport of "bulk" goods Reference group 
Type of fuel   

Diesel Reference group 
 Gas -0.3819* 0.0142 
 Other -0.3830* 0.0810 
Number of cylinders   
 1 to 5 cylinders 0.2319* 0.0433 
 6 to 7 cylinders 0.3702* 0.0133 

8 or more than 10 cylinders Reference group 
Number of axles   

2 axles (3,000 to 4,000 kg) -0.2738* 0.0221 
2 axles (more than 4,000 kg) -0.2809* 0.0160 
3 axles -0.1303* 0.0160 
4 axles -0.1421* 0.0203 
5 axles -0.1958* 0.0186 
6 axles or more Reference group 



16 

Explanatory variables Gamma-Dirichlet model 
Coefficient Standard error 

Number of violations with demerit points year before   
For speeding 0.1961* 0.0113 

 For driving with suspended license 0.4088* 0.0449 
 For running a red light 0.3041* 0.0256 
 For ignoring stop sign or traffic officer 0.3495* 0.0277 
 For not wearing a seat belt 0.1684* 0.0306 
Observation period -0.0238* 0.0053 
ν̂   2.0657* 0.0480 
κ̂   11.7490* 0.2480 
δ̂  4.7158* 0.3412 
Number of observations:  393,634 

     * Significant at 1%;    ** Significant at 5%;    *** Significant at 10%. 
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APPENDIX C2: ESTIMATION RESULTS FOR FLEETS OF MORE THAN FOUR 
TRUCKS  

 
Table C2.1 
Estimation of the parameters of the distribution of the number of annual truck accidents for the 
1991-1998 period (fleet of more than four trucks and trucks with two periods or more): Poisson 
and NB2 models. 

Explanatory variables 
Poisson model NB2 model 

Coefficient Standard 
deviation Coefficient Standard 

deviation 
Constant -3.5145* 0.0495 -3.5211* 0.0524 
Number of years as carrier at 31 December  -0.0372* 0.0032 -0.0377* 0.0034 
Sector of activity in 1998     
 Other sector -0.3248* 0.0923 -0.3180* 0.0964 
 General public trucking 0.0913* 0.0242 0.0964* 0.0262 

Bulk public trucking Reference group Reference group 
 Private trucking 0.1714* 0.0214 0.1776* 0.0232 
 Short-term rental firm 0.4264* 0.0301 0.4416* 0.0329 
Size of fleet     

5 Reference group Reference group 
6 to 9 0.0654* 0.0140 0.0661* 0.0150 
10 to 20 0.1622* 0.0132 0.1649* 0.0142 
21 to 50 0.1596* 0.0142 0.1644* 0.0153 
More than 50 0.1705* 0.0133 0.1720* 0.0142 

Number of days authorized to circulate year before 1.7167* 0.0328 1.7231* 0.0339 
Number of violations of trucking standards year 
before     

 For overload 0.1375* 0.0119 0.1413* 0.0135 
 For excessive size 0.1725*** 0.0964 0.1786*** 0.1071 
 For poorly secured cargo 0.2669* 0.0374 0.2720* 0.0433 
 For failure to respect service hours 0.2507* 0.0668 0.2557* 0.0785 
 For failure to pass mechanical inspection 0.2330* 0.0327 0.2449* 0.0374 
 For other reasons 0.3083* 0.0758 0.2846* 0.0885 
Type of vehicle use     
 Commercial use including transport of goods 
without C.T.Q. permit 

-0.0748* 0.0210 -0.0813* 0.0229 

 Transport of other than "bulk" goods -0.0065 0.0232 -0.0118 0.0253 
Transport of "bulk" goods Reference group Reference group 

Type of fuel     
Diesel Reference group Reference group 

 Gas -0.3387* 0.0140 -0.3400* 0.0148 
 Others -0.2869* 0.0735 -0.2859* 0.0769 
Number of cylinders     
 1 to 5 cylinders 0.3369* 0.0424 0.3352* 0.0454 
 6 to 7 cylinders 0.3725* 0.0130 0.3732* 0.0137 

8 or more than 10 cylinders Reference group Reference group 
Number of axles     

2 axles (3,000 to 4,000 kg) -0.1840* 0.0202 -0.1859* 0.0215 
2 axles (more than 4,000 kg) -0.1308* 0.0134 -0.1344* 0.0145 
3 axles -0.0678* 0.0137 -0.0723* 0.0148 
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Explanatory variables 
Poisson model NB2 model 

Coefficient Standard 
deviation Coefficient Standard 

deviation 
4 axles -0.1951* 0.0178 -0.1951* 0.0191 
5 axles -0.1850* 0.0159 -0.1864* 0.0171 
6 axles or more Reference group Reference group 

Number of violations with demerit points year before     
For speeding 0.2819* 0.0105 0.2930* 0.0122 

 For driving under suspension 0.5355* 0.0461 0.5713* 0.0558 
 For running a red light 0.4070* 0.0262 0.4200* 0.0299 
 For ignoring stop sign or traffic agent 0.4735* 0.0280 0.4843* 0.0321 
 For not wearing a seat belt 0.1910* 0.0331 0.1969* 0.0367 
Observation period     
1991 0.0109 0.0268 0.0146 0.0290 
1992 -0.0221 0.0242 -0.0188 0.0262 
1993 -0.0817* 0.0224 -0.0811* 0.0241 
1994 -0.0147 0.0204 -0.0129 0.0220 
1995 0.0044 0.0188 0.0050 0.0202 
1996 -0.0373** 0.0177 -0.0355*** 0.0191 
1997 -0.1443* 0.0176 -0.1438* 0.0189 
1998 Reference group Reference group 
 δ̂    0.8032* 0.0203 
Number of observations:  336,772 336,772 
* significant at 1%;   ** significant at 5%;   *** significant at 10% 
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Table C2.2 
Estimation of the parameters of the distribution of the number of annual truck accidents for the 
1991-1998 period (fleet of more than four trucks and trucks with two periods or more): Hausman’s 
model and Gamma-Dirichlet model. 

Explanatory variables 
Hausman’s model Gamma-Dirichlet model 

Coefficient Standard 
deviation Coefficient Standard 

deviation 
Constant -0.0290 0.0963 -3.8350* 0.0829 
Number of years as carrier at 31 December  -0.0381* 0.0038 -0.0401* 0.0068 
Sector of activity in 1998     
 Other sector -0.3001* 0.1068 -0.1768 0.1561 
 General public trucking 0.0988* 0.0293 0.1442* 0.0402 

Bulk public trucking Reference group Reference group 
 Private trucking 0.1761* 0.0261 0.2470* 0.0358 
 Short-term rental firm 0.4730* 0.0369 0.5967* 0.0626 
Size of fleet     

5 Reference group Reference group 
6 to 9 0.0648* 0.0161 -0.0004 0.0918 
10 to 20 0.1466* 0.0158 0.0522** 0.0219 
21 to 50 0.1396* 0.0170 0.0489** 0.0244 
More than 50 0.1373* 0.0160 0.0515** 0.0245 

Number of days authorized to circulate in year 
before 1.7256* 0.0338 2.1354* 0.0338 

Number of violations of trucking standards in year 
before     

 For overload 0.1099* 0.0133 0.0828* 0.0219 
 For excessive size 0.1570 0.1030 0.1571 0.0992 
 For poorly secured cargo 0.2282* 0.0411 0.1786* 0.0397 
 For failure to respect service hours 0.2329* 0.0732 0.1709** 0.0728 
 For failure to pass mechanical inspection 0.1807* 0.0359 0.1141* 0.0346 
 For other reasons 0.2982* 0.0853 0.1800** 0.0806 
Type of vehicle use     
 Commercial use including transport of goods 
without C.T.Q. permit -0.1004* 0.0254 -0.1646* 0.0251 

 Transport of other than "bulk" goods -0.0300 0.0280 -0.1009* 0.0278 
Transport of "bulk" goods Reference group Reference group 

Type of fuel     
Diesel Reference group Reference group 

 Gas -0.3521* 0.0167 -0.3509* 0.0152 
 Others -0.2782* 0.0840 -0.2652* 0.0789 
Number of cylinders     
 1 to 5 cylinders 0.3366* 0.0526 0.1441* 0.0462 
 6 to 7 cylinders 0.3724* 0.0156 0.3695* 0.0141 

8 or more than 10 cylinders Reference group Reference group 
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Explanatory variables 
Hausman’s model Gamma-Dirichlet model 

Coefficient Standard 
deviation Coefficient Standard 

deviation 
Number of axles     

2 axles (3,000 to 4,000 kg) -0.1852* 0.0242 -0.3573* 0.0237 
2 axles (more than 4,000 kg) -0.1505* 0.0166 -0.3135* 0.0167 
3 axles -0.1088* 0.0170 -0.0963* 0.0167 
4 axles -0.2013* 0.0218 -0.1174* 0.0208 
5 axles -0.1968* 0.0190 -0.1768* 0.0193 
6 axles or more Reference group Reference group 

Number of violations with demerit points year before     
For speeding 0.2433* 0.0118 0.1719* 0.0115 

 For driving under suspension 0.4705* 0.0519 0.3862* 0.0495 
 For running a red light 0.3392* 0.0286 0.2697* 0.0272 
 For ignoring stop sign or traffic agent 0.4042* 0.0306 0.3337* 0.0292 
 For not wearing a seat belt 0.1659* 0.0357 0.1211* 0.0341 
Observation period     
1991 0.0231 0.0309 0.1004** 0.0496 
1992 -0.0151 0.0276 0.0833*** 0.0433 
1993 -0.0761* 0.0251 0.1252* 0.0375 
1994 -0.0111 0.0225 0.2314* 0.0316 
1995 0.0091 0.0203 0.2498* 0.0262 
1996 -0.0319*** 0.0188 0.1615* 0.0216 
1997 -0.1409* 0.0182 -0.0464** 0.0188 
1998 Reference group Reference group 
â  57.9375* 4.0818   
b̂  1.8363* 0.0420   
ν̂     1.9181* 0.0416 
κ̂     22.0245* 0.5539 
δ̂    4.7245* 0.3430 
Number of observations:  336,772 336,772 

* significant at 1%;   ** significant at 5%;   *** significant at 10% 
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APPENDIX D: MODEL ESTIMATIONS, R-CODE  
 
# 
#Read the dataset 
# 
library(foreign, pos=15) 
Dataset <- read.table("donnee.csv", header=TRUE, sep=",",na.strings="NA", dec=".", strip.white=TRUE) 
library(abind, pos=16) 
library(e1071, pos=17) 
library("BMS") 
library("spuRs") 
library("MASS") 
 
# Poisson model estimation 
GLM.2 <- glm(NB_ATOT ~ AN_TRANS + SECT_14 + SECT_05 + SECT_07 + SECT_08 + 
                       N_VH3 + N_VH45 + N_VH69 + N_VH20 + N_VH50 + N_VH51 + 
                       DUREE_AT + NB_INF1 + NB_INF2 + NB_INF3 + NB_INF6 + NB_INF7 + NB_INF89 + 
                       COMPR + TBRGN + ESSENCE + CARB_AUT + CYL1_5 + CYL6_7 + 
                       ESS_02 + ESS_02P + ESS_03 + ESS_04 + ESS_05 + 
                       VIT + SANCT + ROUGE + ARRET + CEINTURE + 
                       an_91 + an_92 + an_93 + an_94 + an_95 + an_96 + an_97, 
             family=poisson(log), data=Dataset) 
est=GLM.2$coefficients 
 
# Negative Binomial model estimation 
GLM.3 <- glm.nb(NB_ATOT ~ AN_TRANS + SECT_14 + SECT_05 + SECT_07 + SECT_08 + 
                  N_VH3 + N_VH45 + N_VH69 + N_VH20 + N_VH50 + N_VH51 + 
                  DUREE_AT + NB_INF1 + NB_INF2 + NB_INF3 + NB_INF6 + NB_INF7 + NB_INF89 + 
                  COMPR + TBRGN + ESSENCE + CARB_AUT + CYL1_5 + CYL6_7 + 
                  ESS_02 + ESS_02P + ESS_03 + ESS_04 + ESS_05 + 
                  VIT + SANCT + ROUGE + ARRET + CEINTURE + 
                  an_91 + an_92 + an_93 + an_94 + an_95 + an_96 + an_97,  
             start=est,init.theta=1, data=Dataset) 
estNB=GLM.3$coefficients 
  
# Negative Binomial model with random effect  (Hausman’s model) estimation 
#Create the vector y: number of accident of truck i at time t 
y <- as.matrix(cbind(Dataset$NB_ATOT)) 
max_y <- max(y) 
s_y <- sum(y) 
 
 
#Create the matrix x : Variables concerning the carriers, vehicles and the drivers (a vehicle may have more than one  
#driver  
x <- as.matrix(cbind(1, Dataset$AN_TRANS, Dataset$SECT_14, Dataset$SECT_05,  Dataset$SECT_07,  

Dataset$SECT_08, Dataset$N_VH3, Dataset$N_VH45, Dataset$N_VH69, Dataset$N_VH20, 
Dataset$N_VH50, Dataset$N_VH51, Dataset$DUREE_AT, Dataset$NB_INF1, 
Dataset$NB_INF2, Dataset$NB_INF3, Dataset$NB_INF6,  Dataset$NB_INF7, 
Dataset$NB_INF89, Dataset$COMPR, Dataset$TBRGN, Dataset$ESSENCE, 
Dataset$CARB_AUT,  Dataset$CYL1_5, Dataset$CYL6_7, Dataset$ESS_02, Dataset$ESS_02P, 
Dataset$ESS_03, Dataset$ESS_04, Dataset$ESS_05, Dataset$VIT, Dataset$SANCT, 
Dataset$ROUGE, Dataset$ARRET, Dataset$CEINTURE, Dataset$an_91, Dataset$an_92, 
Dataset$an_93, Dataset$an_94, Dataset$an_95,  Dataset$an_96, Dataset$an_97)) 

 
n <- nrow(x) # Total number of observations 
p <- ncol(x) # Number of parameters  
p1 <- p+1 
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p2 <- p+2 
 
nper<- as.matrix(cbind(Dataset$n_period,Dataset$camion)) 
nper1<-nper[Dataset$camion == 1,] 
n_period<-cbind(nper1[,1]) 
 
#number of trucks 
ki <- nrow(n_period) 
 
#Initial values 
r_beta <- c(est, 57, 1.8) 
 
#Log likelihood function 
llf <- function (r_beta) { 
   
  parp <- r_beta[1:p] 
  a <- r_beta[p1] 
  b <- r_beta[p2] 
   
  r_llf <- 0  
  nx <- 0 
  for (j in 1:ki){ 
    rl <- 0 
    ni <- n_period[j] 
    i_deb <- nx+1 
    i_fin <- nx+ni 
    ri <- i_deb : i_fin 
    nx <- i_fin 
    yi <- y[ri] 
    xi <- x[ri,] 
    zi <- xi%*%parp 
    mui <- exp(zi) 
    s_mui <- sum(mui) 
    s_yi <- sum(yi) 
    ter_1 <- lgamma(a+b) + lgamma(a+s_mui) + lgamma(b+s_yi) 
    ter_2 <- lgamma(a) + lgamma(b) + lgamma(a+b+s_yi+s_mui) 
    ter_3 <- lgamma(mui+yi) - lgamma(mui) - lgamma(yi+1) 
    s_ter_3=sum(ter_3) 
    rl <- ter_1-ter_2+s_ter_3 
    r_llf=r_llf+rl 
  } 
 return(r_llf) 
} 
 
#Gradient function 
llg <- function (r_beta) { 
  parp <- r_beta[1:p] 
  a <- r_beta[p1] 
  b <- r_beta[p2] 
  r_llg <- matrix(0,1,p2) 
  lla <- 0 
  llb <- 0 
  llp <-  matrix(0,1,p) 
  nx <- 0 
  for (j in 1:ki){ 
    ter1 <- 0 
    ter2 <- 0 
    ter3 <- matrix(0,p,1) 
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    ni <- n_period[j] 
    i_deb <- nx+1 
    i_fin <- nx+ni 
    ri <- i_deb : i_fin 
    nx <- i_fin 
    yi <- y[ri] 
    xi <- x[ri,] 
    zi <- xi%*%parp 
    mui <- exp(zi) 
    s_mui <- sum(mui) 
    s_yi <- sum(yi) 
    ter1 <- digamma(a+b) +digamma(a+s_mui) -digamma(a) - digamma(a+b+s_yi+s_mui) 
    lla = lla +ter1 
    ter2 <- digamma(a+b) + digamma(b+s_yi) - digamma(b) - digamma(a+b+s_yi+s_mui) 
    llb = llb+ter2 
    ter3 <- (t(xi)%*%mui)*(digamma(a+s_mui)) - (t(xi)%*%mui)*(digamma(a+b+s_yi+s_mui)) 
    ter3mui <- matrix(0,ni,p) 
    for (iii in 1:p) { 
      ter3mui[,iii] <- (xi[,iii]*mui[,1]) 
    } 
     
    ter3b <- t(ter3mui)%*%(digamma(mui+yi) - digamma(mui)) 
    ter3c <- ter3 + ter3b 
    llp=llp+t(ter3c) 
     
  } 
  r_llg[1:p]=llp 
  r_llg[p1]=lla 
  r_llg[p2]=llb 
  return(r_llg) 
   
} 
 
#Lower bound of the parameters 
Low <- c( "-inf", "-inf", "-inf", "-inf",  "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", "-inf",  
          "-inf", "-inf",  "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", "-inf",  
          "-inf", "-inf",  "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", 
          "-inf", "-inf",  "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", "-inf", 
           1e-8, 1e-8)  
#Optimization 
hausman <- optim(r_beta, fn=llf, gr=llg, method="L-BFGS-B", lower=Low, control=list(trace=5, fnscale=-1, 
report=1, maxit=1000), hessian=TRUE) 
 
hausman$convergence  # the method  converge 
#Result 
parlistL<-hausman$par 
print(parlistL)   
 
#Hessian at the optimal values 
hessL<-hausman$hessian   
inv_hessL<- solve(hessL) 
 
#Standard errors 
 r_stder=sqrt(abs(diag(inv_hessL))) 
print(r_stder) 
 
t_ratio=parlistL/r_stder 
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#P-values 
n_df=n-p2 
p_value=2*(1-pt(abs(t_ratio),df=n_df)) 
print(p_value) 
 
# Poisson fixed effect model estimation 
# 
GLMmboot.2 <- glmmboot(NB_ATOT ~ NB_INF1 + NB_INF2 + NB_INF3 + NB_INF6 + NB_INF7 + 

NB_INF89+ VIT + SANCT + ROUGE + ARRET + CEINTURE + N_VH69 + N_VH20  
+ N_VH50 + N_VH51 +an_91 + an_92 + an_93 + an_94 + an_95 + an_96 + an_97,  
family = poisson(log), data=Dataset, cluster=TRNIP, 
start.coef = NULL, control = list(epsilon = 1e-08, maxit = 200, trace = FALSE)) 

summary(GLMmboot.2) 
# 
#Gamma-Dirichlet model estimation# 
#Create the vector y: number of accident of truck i at time t 
y <- as.matrix(cbind(Dataset$NB_ATOT)) 
max_y <- max(y) 
 
#Create the matrix x : Variables concerning the carriers, vehicles and the drivers (a vehicle may have more than one  
#driver  
x <- as.matrix(cbind(1, Dataset$AN_TRANS, Dataset$SECT_14, Dataset$SECT_05,  Dataset$SECT_07,  

Dataset$SECT_08, Dataset$N_VH3, Dataset$N_VH45, Dataset$N_VH69, Dataset$N_VH20, 
Dataset$N_VH50, Dataset$N_VH51, Dataset$DUREE_AT, Dataset$NB_INF1, 
Dataset$NB_INF2, Dataset$NB_INF3, Dataset$NB_INF6,  Dataset$NB_INF7, 
Dataset$NB_INF89, Dataset$COMPR, Dataset$TBRGN, Dataset$ESSENCE, 
Dataset$CARB_AUT,  Dataset$CYL1_5, Dataset$CYL6_7, Dataset$ESS_02, Dataset$ESS_02P, 
Dataset$ESS_03, Dataset$ESS_04, Dataset$ESS_05, Dataset$VIT, Dataset$SANCT, 
Dataset$ROUGE, Dataset$ARRET, Dataset$CEINTURE, Dataset$an_91, Dataset$an_92, 
Dataset$an_93, Dataset$an_94, Dataset$an_95,  Dataset$an_96, Dataset$an_97)) 

 
head(x) 
n <- nrow(x) # Total number of observations 
p <- ncol(x) # Number of parameters  
p1=p+1 
p2=p+2 
p3=p+3 
 
per_max <- 8 
n_kappa <- 1 
 
#Create indcam  matrix: Equal to 1 if the truck i is present at the year  t; 0 otherwise 
indc <- as.matrix(cbind(Dataset$ind1, Dataset$ind2,  Dataset$ind3, Dataset$ind4, Dataset$ind5, Dataset$ind6, 

Dataset$ind7, Dataset$ind8, Dataset$camion)) 
indc1<-indc[Dataset$camion == 1,] 
indcam<-indc1[,1:8] 
 
ncamion <- nrow(indcam) # Total number of trucks  
pcam <- ncol(indcam)  # Maximum number of  observed periods 
 
#Create the vector period: Equal to 1 if the truck i is present at the year  1991 ; ….; Equal to 8 1 if the truck i is 
present at the year  1998 
period <- as.matrix(cbind(Dataset$PERIOD))   
nperf <- as.matrix(cbind(Dataset$nper_f,Dataset$FLOTTE)) 
nperf1<-nperf[Dataset$FLOTTE == 1,] 
nper_f<-cbind(nperf1[,1]) #Number of periods per firm 
nflotte <- nrow(nper_f) # Total number of firms 
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taillet<- as.matrix(cbind(Dataset$taille_t,Dataset$FLOTTE)) 
taillet1<-taillet[Dataset$FLOTTE == 1,] 
tt<-cbind(taillet1[,1])  # Number of trucks per firm  
 
taillec<- as.matrix(cbind(Dataset$taille_c,Dataset$FLOTTE)) 
taillec1<-taillec[Dataset$FLOTTE == 1,] 
ttc<-cbind(taillec1[,1]) # Number of truck-years per  firm  
 
nper<- as.matrix(cbind(Dataset$n_period,Dataset$camion)) 
nper1<-nper[Dataset$camion == 1,] 
n_period<-cbind(nper1[,1]) # Number of  periods per truck 
 
# We divide the vehicles into two groups (high risk and low risk) 
grp <- as.matrix(cbind(Dataset$grp,Dataset$camion)) 
grp1<-grp[Dataset$camion == 1,] 
grpc<-cbind(grp1[,1]) 
 
#A vector of starting values 
nu<- 2.06 
kap<- 12.65 
del<- 4.67 
parlist<-c(nu,kap,del,betaest) 
newparlist<-c(4,8,3,estNB) 
 
#Beginning of the R and C++ interface 
library(Rcpp) 
library(inline) 
foo <- paste(readLines("flotte_8periode_1v_1k_1d_ttf_maxdiff_chg_grp.cc"),collapse="\n")  
fx <- cxxfunction(signature(),plugin="Rcpp",include=foo) 
tclass <- Module("test",getDynLib(fx)) 
Vraisemblance <- tclass$Vraisemblance 
 
#Initialisation Vraisemblance object 
vsemblance <- new(Vraisemblance, ttc, tt, nflotte, p, n, per_max, y) 
vsemblance$init_x(x) 
vsemblance$init_indcam(ncamion, indcam) 
 
#Optimisation, A quasi-Newton medthod (BFGS) 
essaiL<-optim(newparlist,vsemblance$r_llf,method="BFGS",control=list(trace=5, fnscale=-1, report=1, 
maxit=1000), hessian=TRUE) 
 
#Optimation results 
essaiL$convergence  # The method converged 
parlistL<-essaiL$par 
hessL<-essaiL$hessian   
print(parlistL)   
inv_hessL<- solve(hessL)  # Invert the  Hessian matrix 
r_stder=sqrt(abs(diag(inv_hessL))) #Standard errors 
print(r_stder) 
t_ratio=parlistL/r_stder 
n_df=n-p3 
p_value=2*(1-pt(abs(t_ratio),df=n_df)) 
print(p_value) 
 
#C++ files : flotte_8periode_1v_1k_1d_ttf_maxdiff_chg_grp.cc 
 
#include <Rcpp.h> 
using namespace Rcpp; 
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#include <iostream> 
#include <iomanip> 
#include <fstream> 
#include <vector> 
#include <numeric> 
#include <algorithm> 
 
#include <math.h> 
#include <values.h> 
 
#include <unistd.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <strings.h> 
 
#include <gsl/gsl_sf_hyperg.h> 
#include <gsl/gsl_sf_psi.h> 
#include <gsl/gsl_sort_double.h> 
#include <gsl/gsl_statistics.h> 
#include <gsl/gsl_errno.h> 
 
/************************  
To compile the program we must include this file: 
~/.R/Makevars ceci 
 
PKG_LIBS=-L/home/apps/Logiciels/GSL/1.16/lib -lgsl -lgslcblas $(shell "/home/apps/Logiciels/R/3.2.1-
gcc/bin/Rscript" -e "Rcpp:::LdFlags()") 
 
It is also necessary to load these modules 
 1) R/3.2.1-gcc   2) GSL/1.16   
*******************************/ 
 
#ifdef _OPENMP 
#include <omp.h> 
#endif 
 
typedef std::vector<double> My_Vector; 
 
class Vraisemblance 
{ 
public: 
  Vraisemblance(My_Vector ttc_, My_Vector tt_, double nflotte_, double p_, double n_, double per_max_, 
My_Vector y_); 
  void init_x(NumericVector x_); 
  void init_indcam(int ncamion, NumericVector indcam_); 
 
  double   r_llf(My_Vector& r_beta); 
  double   r_llf_autrestermes(double delta); 
 
  void     chg_grp_moyenne(My_Vector& r_beta); 
  void     chg_grp_mediane(My_Vector& r_beta); 
  void     chg_grp_maxdiff(My_Vector& r_beta); 
         
 
private: 
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  //variables from  R 
  int *ttc;     //number of truck per firm 
  int *tt;      //number of truck-years per firm 
  int p;        //number of parameters  
  int n;        // Total number of observations 
  int nb_alpha; //number of  kappa (1/alpha)  
  int per_max; // maximum number of observed periods 
  double *y;     
  double **x;   //truck characteristics 
  double** indcam;   //indicate the period (year) the truck is present 
  double *d;     
  int nflotte;  // total number of firms 
  int *grp;     / It indicate in  which group the truck is 
   
  //Variables internes 
  int *vect_nx; 
  int *vect_nxc; 
  int *nb_camion_par_annee; 
   
  double  *mui;    // mui = exp ( x * beta) 
  double *zi;      // for the intermediate calculation of mui; 
  double *s_yi;     // sum of yi for each fleet  
  double *s_vij;   // sum of vij for each fleet 
}; 
 
Vraisemblance::Vraisemblance( My_Vector ttc_, My_Vector tt_, double nflotte_, double p_, double n_, double 
per_max_, My_Vector y_ ) : 
  nflotte(static_cast<int> (nflotte_)), 
  p(static_cast<int> (p_)), 
  n(static_cast<int> (n_)), 
  nb_alpha(1), 
  per_max(static_cast<int> (per_max_)) 
{ 
  gsl_set_error_handler_off (); 
 
  tt = new int[nflotte]; 
  ttc = new int[nflotte]; 
  std::cout << "nflotte " << nflotte << '\n'; 
  std::cout << "p " << p << '\n'; 
  std::cout << "n " << n << '\n'; 
  std::cout << "permax " << per_max << '\n'; 
 
  for (int i=0; i<nflotte; i++) 
    { 
      tt[i] = static_cast<int>(tt_[i]); 
      ttc[i] = static_cast<int>(ttc_[i]); 
    } 
 
  int y_size = y_.size(); 
  y = new double[y_size]; 
  for (int i=0; i<y_size; i++) 
      y[i]=y_[i]; 
 
  vect_nx = new int[nflotte]; 
  vect_nx[0] = 0; 
  for (int i=1; i<nflotte; i++) 
    vect_nx[i] = vect_nx[i-1] + tt[i-1]; 
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  vect_nxc = new int[nflotte]; 
  vect_nxc[0] = 0; 
  for (int i=1; i<nflotte; i++) 
    vect_nxc[i] = vect_nxc[i-1] + static_cast<int>(ttc[i-1]); 
 
  mui = new double[n]; 
  zi = new double[n]; 
  s_yi = new double[nflotte]; 
  s_vij = new double[nflotte]; 
 
  grp = new int[n]; 
 
  for (int f=0; f<nflotte; f++) 
    { 
      int tt_f = tt[f]; 
      int nx_t=vect_nx[f]; 
 
      s_yi[f] = std::accumulate(y+nx_t, y+nx_t+tt_f, 0.0); 
    } 
 
  nb_camion_par_annee = new int[nflotte]; 
  for (int i=0; i<nflotte; i++) 
    { 
      int tt_f =static_cast<int>(tt[i]); 
      int nx_t = vect_nx[i]; 
 
      nb_camion_par_annee[i] = tt_f; 
 
      if (tt_f==2) 
        { 
   grp[nx_t] = 0; 
   grp[nx_t+1] = 1; 
        } 
    } 
} 
 
//conversion of NumericVector in the matrix x 
void Vraisemblance::init_x(NumericVector x_) 
{ 
  x = new double*[n]; 
  for (int i=0; i<n; i++) 
    x[i] = new double[p]; 
 
  int k=0; 
  for (int j=0; j<p; j++) 
    for (int i=0; i<n; i++) 
      { 
 x[i][j] = x_[k];    
 k++; 
      } 
} 
  
//conversion of NumericVector in the matrix indam 
void Vraisemblance::init_indcam(int ncamion, NumericVector indcam_) 
{ 
  indcam = new double*[ncamion]; 
  for (int i=0; i<ncamion; i++) 
    indcam[i] = new double[per_max]; 
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  int k=0; 
  for (int j=0; j<per_max; j++) 
    for (int i=0; i<ncamion; i++) 
      { 
 indcam[i][j] = indcam_[k];    
 k++; 
      } 
} 
 
//Function to evaluate 
double Vraisemblance::r_llf(My_Vector& r_beta) 
{ 
  double *v = &r_beta[0]; 
  double *alpha = &r_beta[1]; 
  double delta = r_beta[2]; 
  int    debut_beta = 1 + nb_alpha + 1; 
  double *beta = &r_beta[debut_beta]; 
 
  /* reading the observations of carrier f */ 
       
  double r_ll_f1=0; 
  double r_ll_f2=0; 
  double r_ll_f3=0; 
  double r_ll_f=0; 
 
  //int size_x_col = x[0].size(); 
 
  //My_Vector zi(ni); 
  //zi=xi*par`; 
  //zi += x_ptr[j] * beta[j]; 
  for (int f=0; f<nflotte; f++) 
    {  
      int ni = static_cast<int>(tt[f]); 
      int nx =  vect_nx[f]; 
      for (int i=0; i<ni; i++) 
 { 
   zi[nx+i]=0.0; 
   for (int k=0; k<p; k++) 
     zi[nx+i] += x[nx+i][k] * beta[k]; 
 } 
    } 
 
#pragma omp parallel for 
  //My_Vector mui(ni); 
  //=(di#exp(zi)); 
  for (int i=0; i<n; i++) 
    mui[i] = exp (zi[i]); 
#pragma omp parallel for reduction(+:r_ll_f1, r_ll_f2, r_ll_f3) schedule (static, 10) 
  for (int f=0; f<nflotte; f++) 
    {  
      int ttc_f=static_cast<int>(ttc[f]); 
      int tt_f =static_cast<int>(tt[f]); 
      int nx_c = vect_nxc[f];  
      int nx_t = vect_nx[f]; 
     
      //there is only one  alpha 
      int ind_kappa = 0; 
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      double min_mui= *std::min_element(mui+nx_t, mui+nx_t+tt_f);//min(mui); 
      double max_mui= *std::max_element(mui+nx_t, mui+nx_t+tt_f);//max(mui); 
      double s_mui = std::accumulate(mui+nx_t, mui+nx_t+tt_f, 0.0);//sum(mui); 
 
      s_vij[f]=0; 
      double lgamma_v = 0; 
      double present_v; 
      for (int i=0; i<ttc_f; i++) 
 { 
   s_vij[f] += v[0]; 
   lgamma_v += lgamma(v[0]); 
 }  
 
      double s_y_mui = 0; 
      for (int i=0; i<tt_f; i++) 
 s_y_mui += y[nx_t+i]*log(mui[nx_t+i]);  
       
 
      { 
 double g1=0; 
 double g2=0; 
 double s_yi1=0; 
 double s_yi2=0; 
 double s_vi1=0; 
 double s_vi2=0; 
 double s_mui1=0; 
 double s_mui2=0; 
 
 int ind = 0; 
 for (int i=0; i<ttc_f; i++) 
   { 
     double somme_y=0; 
     double somme_v=v[0]; 
     double somme_mui=0; 
     double nb = 0; 
     int    groupe; 
     for (int j=0; j<per_max; j++) 
       if (indcam[nx_c+i][j]>0) 
  { 
    groupe = grp[nx_t+ind]; 
    somme_y += y[nx_t+ind]; 
    somme_mui += mui[nx_t+ind]; 
    nb++; 
    ind++; 
  } 
     
     if (groupe == 0) 
       { 
  g1++; 
  s_yi1 += somme_y; 
  s_vi1 += somme_v; 
  s_mui1 += somme_mui/nb; 
       } 
     else 
       { 
  g2++; 
  s_yi2 += somme_y; 
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  s_vi2 += somme_v; 
  s_mui2 += somme_mui/nb; 
       } 
   }  
        
 
 double mui1, mui2; 
 if (g1 > 0) 
   mui1=s_mui1/g1; 
 else 
   mui1=s_mui2/g2;  
 if (g2 > 0) 
   mui2=s_mui2/g2; 
 else 
   mui2=mui1; 
 
 double par1, par2; 
 double ter_11; 
 double par3 = s_yi[f] + s_vij[f]; 
 double par4 = s_yi[f]+nb_camion_par_annee[f]/alpha[ind_kappa]; 
        
 if (mui1 <= mui2) 
   { 
     if (g1>0) 
       par2=s_yi1+s_vi1; 
     else 
       par2=s_yi2+s_vi2; 
     par1=((mui2-mui1)/(1/alpha[ind_kappa]+mui2)); 
     ter_11=par4*log(1+alpha[ind_kappa]*mui2); 
   } 
 else if (mui1 > mui2)  
   { 
     par2=s_yi2+s_vi2; 
     par1=((mui1-mui2)/(1/alpha[ind_kappa]+mui1)); 
     ter_11=par4*log(1+alpha[ind_kappa]*mui1); 
   } 
  
 double f_hyp1=gsl_sf_hyperg_2F1(par2,par4,par3,par1);        
 double ter_1= 
   s_yi[f]*log(alpha[ind_kappa]) 
   +lgamma(par4) 
   -lgamma(nb_camion_par_annee[f]/alpha[ind_kappa]) 
   +lgamma(s_vij[f]) 
   +s_y_mui 
   -lgamma(par3) 
   -ter_11 
   +log(f_hyp1);  
 
        
 double s_ter_3= -lgamma_v; 
 for (int i=0; i<tt_f; i++) 
   s_ter_3 -= lgamma(y[nx_t+i]+1); 
        
 ind = 0; 
 for (int i=0; i<ttc_f; i++) 
   { 
     double syv = v[0]; 
     for (int j=0; j<per_max; j++) 
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       if (indcam[nx_c+i][j]>0) 
  { 
    syv += y[nx_t+ind]; 
    ind++; 
  } 
     s_ter_3 += lgamma(syv); 
   } 
 
 double rl3 = ter_1 + s_ter_3; 
 r_ll_f3 += rl3; 
      } 
    } 
 
  r_ll_f = r_ll_f1 + r_ll_f2 + r_ll_f3 + r_llf_autrestermes(delta); 
 
  if (!finite(r_ll_f)) 
      r_ll_f=-1000000000000.5; 
 
  return (r_ll_f); 
 
  //end  r_llf 
} 
 
 
double Vraisemblance::r_llf_autrestermes(double delta) 
{ 
  double r_ll_f_temps=0; 
  
#pragma omp parallel for reduction(+:r_ll_f_temps) schedule (static, 10) 
  for (int f=0; f<nflotte; f++) 
    {  
      int ttc_f=static_cast<int>(ttc[f]); 
      int tt_f =static_cast<int>(tt[f]); 
      int nx_c = vect_nxc[f];  
      int nx_t = vect_nx[f]; 
      
      double lgamma_d = 0; 
      for (int i=0; i<ttc_f; i++) 
 { 
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       lgamma_d += lgamma(delta); 
 }  
 
      int ind = 0; 
      double lgamma_sd=0; 
      double lgamma_sy_plus_sd=0; 
      for (int i=0; i<ttc_f; i++) 
 { 
   double somme_delta = 0; 
   double somme_y = 0; 
   for (int j=0; j<per_max; j++) 
     { 
       if (indcam[nx_c+i][j]>0) 
  { 
    somme_delta += delta; 
    somme_y += y[nx_t+ind]; 
    ind++; 
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  } 
     } 
   lgamma_sd += lgamma(somme_delta); 
   lgamma_sy_plus_sd += lgamma(somme_y + somme_delta); 
 }  
 
       
      ind = 0; 
      double lgamma_y_plus_d = 0; 
      for (int i=0; i<ttc_f; i++) 
 for (int j=0; j<per_max; j++) 
   if (indcam[nx_c+i][j]>0) 
     { 
       lgamma_y_plus_d += lgamma(y[nx_t+ind] + delta); 
       ind++; 
     } 
 
      r_ll_f_temps += (lgamma_y_plus_d + lgamma_sd - lgamma_d - lgamma_sy_plus_sd); 
          } 
 
  return (r_ll_f_temps); 
} 
void Vraisemblance::chg_grp_moyenne(My_Vector& r_beta) 
{ 
  double *v = &r_beta[0]; 
  double *alpha = &r_beta[1]; 
  double delta = r_beta[2]; 
  int    debut_beta = 1 + nb_alpha + 1; 
  double *beta = &r_beta[debut_beta]; 
 
  //My_Vector zi(ni); 
  //zi=xi*par`; 
  //zi += x_ptr[j] * beta[j];   
  for (int f=0; f<nflotte; f++) 
    {  
      int ni = static_cast<int>(tt[f]); 
      int nx =  vect_nx[f]; 
      for (int i=0; i<ni; i++) 
 { 
   zi[nx+i]=0.0; 
   for (int k=0; k<p; k++) 
     zi[nx+i] += x[nx+i][k] * beta[k]; 
 } 
    } 
 
#pragma omp parallel for 
  //My_Vector mui(ni); 
  //=(di#exp(zi)); 
  for (int i=0; i<n; i++) 
    mui[i] = exp (zi[i]); 
 
  //Compute the mean of  mui 
  for (int f=0; f<nflotte; f++) 
    { 
      double somme_mui = 0; 
      int ttc_f=static_cast<int>(ttc[f]); 
      int tt_f =static_cast<int>(tt[f]); 
      int nx_c = vect_nxc[f];  
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      int nx_t = vect_nx[f]; 
 
      for (int cam=0; cam<tt_f; cam++) 
 somme_mui += mui[nx_t+cam]; 
 
      double moyenne_mui = somme_mui / tt_f; 
 
      //Sum of mui  
      int ind1 = 0; 
      int ind2 = 0; 
      for (int i=0; i<ttc_f; i++) 
 { 
   somme_mui = 0.0; 
   int nb_annee = 0; 
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       { 
  somme_mui += mui[nx_t+ind1]; 
  nb_annee++; 
  ind1++; 
       } 
   double moyenne_mui_cam = somme_mui / nb_annee; 
             
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       { 
  if (moyenne_mui_cam <= moyenne_mui) 
    grp[nx_t+ind2] = 0; 
  else       
    grp[nx_t+ind2] = 1; 
  ind2++; 
       } 
 } 
    } 
} 
  //end chg_grp 
 
 
void Vraisemblance::chg_grp_mediane(My_Vector& r_beta) 
{ 
  double *v = &r_beta[0]; 
  double *alpha = &r_beta[1]; 
  double delta = r_beta[2]; 
  int    debut_beta = 1 + nb_alpha + 1; 
  double *beta = &r_beta[debut_beta]; 
 
  //My_Vector zi(ni); 
  //zi=xi*par`; 
  //zi += x_ptr[j] * beta[j]; 
  for (int f=0; f<nflotte; f++) 
    {  
      int ni = static_cast<int>(tt[f]); 
      int nx =  vect_nx[f]; 
      for (int i=0; i<ni; i++) 
 { 
   zi[nx+i]=0.0; 
   for (int k=0; k<p; k++) 
     zi[nx+i] += x[nx+i][k] * beta[k]; 
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 } 
    } 
 
#pragma omp parallel for 
  //My_Vector mui(ni); 
  //=(di#exp(zi)); 
  for (int i=0; i<n; i++) 
    mui[i] = exp (zi[i]); 
 
  //Compute the mean of  mu 
  for (int f=0; f<nflotte; f++) 
    { 
      int ttc_f=static_cast<int>(ttc[f]); 
      int tt_f =static_cast<int>(tt[f]); 
      int nx_c = vect_nxc[f];  
      int nx_t = vect_nx[f]; 
 
      int ind1 = 0; 
      std::vector<double> mediane; 
      for (int i=0; i<ttc_f; i++) 
 { 
   double somme_mui = 0.0; 
   int nb_annee=0; 
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       { 
  somme_mui += mui[nx_t+ind1]; 
  nb_annee++; 
  ind1++; 
       } 
   mediane.push_back(somme_mui/nb_annee); 
 } 
         
      std::sort(mediane.begin(), mediane.end()); 
         
      double val_mediane = mediane[mediane.size()/2]; 
 
      //calcul des somme des mui sur les camions 
      ind1=0; 
      int ind2 = 0; 
      for (int i=0; i<ttc_f; i++) 
 { 
   double somme_mui = 0.0; 
   int nb_annee=0; 
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       { 
  somme_mui += mui[nx_t+ind1]; 
  ind1++; 
       } 
             
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       { 
  if (somme_mui/nb_annee < val_mediane) 
    grp[nx_t+ind2] = 0; 
  else       
    grp[nx_t+ind2] = 1; 
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  ind2++; 
       } 
 } 
    } 
} 
 
template <class random_iterator> 
class IndexedComparison 
{ 
public: 
  IndexedComparison (random_iterator begin, 
       random_iterator end) 
    : p_begin (begin), p_end (end) {} 
  bool operator () (unsigned int a, unsigned int b) const 
  { return *(p_begin + a) < *(p_begin + b); } 
 
private: 
  random_iterator const p_begin; 
  random_iterator const p_end; 
}; 
 
void Vraisemblance::chg_grp_maxdiff(My_Vector& r_beta) 
{ 
  double *v = &r_beta[0]; 
  double *alpha = &r_beta[1]; 
  double delta = r_beta[2]; 
  int    debut_beta = 1 + nb_alpha + 1; 
  double *beta = &r_beta[debut_beta]; 
     
  //My_Vector zi(ni); 
  //zi=xi*par`; 
  //zi += x_ptr[j] * beta[j]; 
  for (int f=0; f<nflotte; f++) 
    {  
      int ni = static_cast<int>(tt[f]); 
      int nx =  vect_nx[f]; 
      for (int i=0; i<ni; i++) 
 { 
   zi[nx+i]=0.0; 
   for (int k=0; k<p; k++) 
     zi[nx+i] += x[nx+i][k] * beta[k]; 
 } 
    } 
 
#pragma omp parallel for 
  //My_Vector mui(ni); 
  //=(di#exp(zi)); 
  for (int i=0; i<n; i++) 
    mui[i] = exp (zi[i]); 
 
  //Compute the mean of mu 
  for (int f=0; f<nflotte; f++) 
    { 
      int ttc_f=static_cast<int>(ttc[f]); 
      int tt_f =static_cast<int>(tt[f]); 
      int nx_c = vect_nxc[f]; 
      int nx_t = vect_nx[f]; 
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      int ind1 = 0; 
      std::vector<double> moymui; 
      for (int i=0; i<ttc_f; i++) 
 { 
   double somme_mui = 0.0; 
   int nb_annee=0; 
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       { 
  somme_mui += mui[nx_t+ind1]; 
  nb_annee++; 
  ind1++; 
       } 
   moymui.push_back(somme_mui/nb_annee); 
 } 
 
      std::vector<unsigned int> indices(ttc_f); 
      for (int i = 0; i < indices.size (); i++) 
 indices [i] = i; 
         
      std::sort (indices.begin (), indices.end (), 
   IndexedComparison<std::vector<double>::const_iterator> 
   (moymui.begin(), moymui.end())); 
 
      double val_mui = 0; 
      double maxdiff = -1e300; 
      for (int i=0; i<ttc_f-1; i++) 
 { 
   double diff = moymui[indices[i+1]] - moymui[indices[i]]; 
   if (diff > maxdiff) 
     { 
       val_mui = moymui[indices[i+1]]; 
       maxdiff = diff; 
     } 
 } 
 
      float nbCamTot=0; 
      float nbCamGrp1=0;  
      //Compute the sum of  mui on trucks 
      ind1=0; 
      int ind2 = 0; 
      for (int i=0; i<ttc_f; i++) 
 { 
   double somme_mui = 0.0; 
   int nb_annee=0; 
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       { 
  somme_mui += mui[nx_t+ind1]; 
  nb_annee++; 
  ind1++; 
       } 
            
   for (int j=0; j<per_max; j++) 
     if (indcam[nx_c+i][j]>0) 
       { 
  nbCamTot += 1.0; 
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  if (somme_mui/nb_annee < val_mui) 
    { 
      grp[nx_t+ind2] = 0; 
      nbCamGrp1 += 1.0; 
    } 
  else       
    grp[nx_t+ind2] = 1; 
  ind2++; 
       } 
 } 
    } 
 
} 
 
 
RCPP_MODULE(test){ 
  class_<Vraisemblance>( "Vraisemblance" ) 
    //.constructor() 
    .constructor< My_Vector, My_Vector, double, double, double, double, My_Vector >() 
    .method( "init_x", &Vraisemblance::init_x) 
    .method( "init_indcam", &Vraisemblance::init_indcam) 
    .method( "r_llf", &Vraisemblance::r_llf ) 
    .method( "chg_grp_moyenne", &Vraisemblance::chg_grp_moyenne ) 
    .method( "chg_grp_mediane", &Vraisemblance::chg_grp_mediane ) 
    .method( "chg_grp_maxdiff", &Vraisemblance::chg_grp_maxdiff ) 
    ; 
} 
  



39 

APPENDIX E: PREDICTIVE PROBABILITIES 

Table E1 presents an example of predictive probabilities calculated for a fleet f of three vehicles 

in 1998. In the estimating sample, the same fleet f  had five vehicles, so in equation (19), fI 5=  

and t 1
fI 3+ = . The estimated values of the random effects parameters are equal to 

1ˆ 1/11.749 0.0851−κ = = , ˆ 2.0657ν = , and ˆ 4.7158δ =  (see Table C1.3). Suppose that fleet f will have 

no accident at time t+1, then t 1
0S 0+ =  which means that the three vehicles of the fleet f in the 

forecasting sample will have no accident. In applying the formula in (19) with the estimated 

parameters, the predictive probability of fleet f to have no accident at t+1 is equal to 80.2% 

(1×1.2656×0.8979×0.7839×1×1×1×0.875×1.0290)×100. The calculations are given below. 
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If now we suppose that fleet f will have 1 accident at t+1, then t 1
0S 1+ =  in table E1. Since fleet f 

has three vehicles, there are 3 possibilities for the fleet to accumulate 1 accident. In applying the 

formula in (19) we obtain that the predictive probability of fleet f to have 1 accident is equal to 

12.7% (Table E1). There are 6 possibilities for the fleet f of three vehicles to accumulate 2 

accidents at t+1 (Table E1). The predictive probability that the fleet f will have 2 accidents during 

the next year is then 1.5%. And so on… 

 

We observe that the predictive probabilities in Table E1 differ from the average predictive 

probabilities in Table 9 for fleets of 5 trucks. The fleet in this example represents a lower risk than 

the average fleet of this size: during the last 7 years, the fleet had only one accident by assumption 

meaning that the implied accident rate for a truck in this fleet is 3% while the mean is 13% for this 

size of fleet. 
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 Table E1: Example of predictive probabilities calculated for a fleet f of three trucks. 

Fleet f Estimating sample 

Forecasting sample 

 t 1
0S 0+ =  t 1

0S 1+ =  t 1
0S 2+ =  

 1 possibility 3 possibilities 6 possibilities 

Truck i Si Group Ti ifiT 1ˆ +γ  
ifiT 1y +  

ifiT 1y +  
ifiT 1y +  

ifiT 1y +  
ifiT 1y +  

ifiT 1y +  
ifiT 1y +  

ifiT 1y +  
ifiT 1y +  

ifiT 1y +  

1 0 2 7 0.1304 0 1 0 0 2 0 0 1 1 0 

2 1 2 7 0.0960 0 0 1 0 0 2 0 1 0 1 

3 0 1 2 0.0633 0 0 0 1 0 0 2 0 1 1 

4 0 1 4 . . . . . . . . . . . 

5 0 2 2 . . . . . . . . . . . 

 S0 = 1 
1g

i
i 1

S 0
=

=∑  
5

i
i 1

T 22
=

=∑   t 1
g1S 0+ =  t 1

g1S 0+ =  t 1
g1S 0+ =  t 1

g1S 1+ =  t 1
g1S 0+ =  t 1

g1S 0+ =  t 1
g1S 2+ =  t 1

g1S 0+ =  t 1
g1S 1+ =  t 1

g1S 1+ =  

Predictive probabilities 
  3.6% +3.9%+5.2% 0.17%+0.17%+0.35%+0.21%+0.29%+0.31% 

 80.2%  12.7%     1.5%   

 
1g

ˆ 0.0749γ =  and 
2g

ˆ 0.1357γ =  are the means of group 1 and group 2 respectively. 
 

ifiT 1ˆ +γ  is calculated from the forecasting sample with  the estimated coefficients presented in Table C1.3.  
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APPENDIX F: BOOSTRAP REPLICATIONS, R-CODE 
 
/************************************ 
Cameron and Trivedi (2013b) propose the following representation of the Hausman test: 

( ) ( )1ˆ ˆ ˆˆ[ ]H RE FE FE RE RE FET Vβ β β β β β
−′  = − − − 

    

 

where HT  is the Hausman test statistic, FEβ  are the estimated parameters obtained from the fixed effects model and 

ˆ
REβ  are the estimated parameters obtained from the random effects model (Gamma-Dirichlet model). To estimate 

the variance term ˆˆ[ ]FE REV β β−  we use a panel bootstrap method that resamples over the 5,423 firms of the sample: 

( )( )( ) ( ) ( ) ( )

1

1ˆ ˆ ˆˆ[ ]
1

B
b b b b

FE RE FE RE FE RE
b

V
B

β β β β β β
=

− = − −
− ∑    

 

where ( )b
FEβ  and ( )ˆ b

REβ  are the estimates obtained from the bth bootstrap replication 
 
**********************************/ 
 
Estimation of the β̂   
 
library(foreign, pos=15) 
 
# 
#Read the data set 
Dataset <- read.table("donneePlusDe4.csv", header=TRUE, sep=",",na.strings="NA", dec=".", strip.white=TRUE) 
 
#Read  B random samples with replacement,  the firm can be selected more than once. 
SampleURS data set include Three variables  
  1. Replication number 

2. Firm identification  
3. Number of hit refers to the number of times a firm  is selected 

SampleURS <- read.table("SampleUSR.csv", header=TRUE, sep=",",na.strings="NA", dec=".", strip.white=TRUE) 
 
library(abind, pos=16) 
library(e1071, pos=17) 
library("BMS") 
library("spuRs") 
library("MASS") 
library(Rcpp) 
library(inline) 
library(splitstackshape) 
 
#Write the 1,000 coefficient estimations in OURRandom  file 
outputfile = "OUTRandom" 
cat("replicate", "nu", "kap", "del", "Intercep", "NB_INF1", "NB_INF2", "NB_INF3", "NB_INF6", "NB_INF7",  
 "NB_INF89", "VIT", "SANCT", "ROUGE", "ARRET", "CEINTURE", "N_VH69", "N_VH20",  

"N_VH50", "N_VH51", "an_91", "an_92", "an_93", "an_94", "an_95",  "an_96", "an_97", 
sep="\t",file=outputfile, append=T) 
cat("\n",file=outputfile , append=T)  
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B = 1000 
for (repl  in 1:B){ 
   
sample <- SampleURS[SampleURS$Replicate==iter,] 
sample_1 <- merge (Dataset, sample, by=c("TRNIP")) 
sample_2  <- expandRows(sample_1, "NumberHits",  drop=FALSE) 
sample_2$frac <- as.numeric(row.names(sample_2)) 
sample_2$integ <- trunc(sample_2$frac) 
sample_2$Hits <- round((sample_2$frac - sample_2$integ)*10,digits=1) 
sample_2$TRNIP_1 <- as.character(paste(sample_2$TRNIP, sample_2$Hits, sep="" )) 
attach(sample_2) 
sort.sample_2 <- sample_2[order(TRNIP_1,VEH_1,AN),] 
detach(sample_2 
 
/************************* 

Estimate ( )ˆ iter
REβ  with sort.sample_2 dataset  

**************************/ 
 
parlistL<-essaiL$par 
cat(i, parlistL,sep="\t",file=outputfile, append=T) 
cat("\n",file=outputfile , append=T) 
 
} 
 
#Write the 1,000 coefficient estimations in OUTFixed file 
outputfile = "OUTFixed" 
cat("replicate ", "NB_INF1", "NB_INF2", "NB_INF3", "NB_INF6", "NB_INF7",  
 "NB_INF89", "VIT", "SANCT", "ROUGE", "ARRET", "CEINTURE", "N_VH69", "N_VH20",  

"N_VH50", "N_VH51", "an_91", "an_92", "an_93", "an_94", "an_95",  "an_96", "an_97", 
sep="\t",file=outputfile, append=T) 
cat("\n",file=outputfile , append=T) 
 
B = 1000 
for (repl in 1:B){ 
   
sample <- SampleURS[SampleURS$Replicate==iter,] 
sample_1 <- merge (Dataset, sample, by=c("TRNIP")) 
attach(sample_1) 
sort.sample_1 <- sample_1[order(TRNIP_1,VEH_1,AN),] 
detach(sample_1 
 
/************************* 

Estimate ( )iter
FEβ   with sort.sample_1 dataset  

If the same firm f appears twice in a bootstrap resample iter then ( )iter
FEβ  needs to treat the fixed effect fα as being 

the same for both observations f.  
**************************/ 
 
#Poisson model  to estimate the initial values of the parameters 
GLM <- glm(NB_ATOT ~ N_VH69 + N_VH20 + N_VH50 + N_VH51 + VIT + SANCT + ROUGE + ARRET + 
CEINTURE + an_91 + 
             an_92 + an_93 + an_94 + an_95 + an_96 + an_97 + NB_INF1 + NB_INF2 + NB_INF3 + NB_INF6 +  
             NB_INF7 + NB_INF89, family=poisson(log), data=sort.sample_1) 
param=GLM$coefficients 
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x <- as.matrix(cbind(sort.sample_1$N_VH69, sort.sample_1$N_VH20, sort.sample_1$N_VH50,  
          sort.sample_1$N_VH51, 

                       sort.sample_1$VIT, sort.sample_1$SANCT, sort.sample_1$ROUGE, sort.sample_1$ARRET,  
                       sort.sample_1$CEINTURE, 
                       sort.sample_1$an_91, sort.sample_1$an_92, sort.sample_1$an_93, sort.sample_1$an_94,  
                       sort.sample_1$an_95,  sort.sample_1$an_96, sort.sample_1$an_97, 
                       sort.sample_1$NB_INF1,sort.sample_1$NB_INF2, sort.sample_1$NB_INF3,  
         sort.sample_1$NB_INF6, sort.sample_1$NB_INF7, sort.sample_1$NB_INF89)) 
 
y= as.matrix(cbind(sort.sample_1$NB_ATOT)) 
max_y=max(y) 
 
parm=c('n_vh69', 'n_vh20', 'n_vh50', 'n_vh51', 'vit', 'sanct', 'rouge', 'arret', 'ceinture', 'an_91', 'an_92', 'an_93', 
             'an_94', 'an_95', 'an_96', 'an_97', 'nb_inf1', 'nb_inf2', 'nb_inf3', 'nb_inf6', 'nb_inf7', 'nb_inf89' ) 
 
p=ncol(x) 
n=nrow(x) 
p1=p+1 
 
#t is number of periods per  truck, 
nper=as.matrix(cbind(sort.sample_1$n_period, sort.sample_1$camion)) 
nper1=nper[sort.sample_1$camion==1,] 
t=cbind(nper1[,1]) 
 
#fl is the number of trucks per fleet, 
taillec=as.matrix(cbind(sort.sample_1$taille_c, sort.sample_1$FLOTTE)) 
taillec1=taillec[sort.sample_1$FLOTTE==1,] 
fl=cbind(taillec1[,1]) 
 
#fl_an is the number of year-trucks per fleet. 
taillet=as.matrix(cbind(sort.sample_1$taille_t, sort.sample_1$FLOTTE)) 
taillet1=taillet[sort.sample_1$FLOTTE==1,] 
fl_an=cbind(taillet1[,1]) 
 
# Number of time the firm had been selected 
Hits<- as.matrix(cbind(sort.sample_1$NumberHits,sort.sample_1$FLOTTE)) 
 Hits1<-Hits[sort.sample_1$FLOTTE == 1,] 
NHits<-cbind(Hits1[,1]) 
 
#ki is  total number of trucks  
ki=nrow(t) 
 
# kf  is total  number of fleets. 
kf=nrow(fl) 
 
#Total number of parameters including firm fixed effects. 
n_parm=p+kf 
 
#Initial values of the parameters. 
ini_fix=matrix(0,1,kf) 
ini_p=param[2:p1] 
r_beta= c(ini_p, ini_fix) 
 
eps=1e-8 
diff=1 
x_sol=matrix(0,nrow=1, ncol=n_parm) 
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for(iter  in 1:100){ 
     
    par=r_beta[1:p] 
    r_ll_ff=0 
    r_ll_gf=matrix(0, nrow=1, ncol=p) 
    r_ll_hf=matrix(0, nrow=p, ncol=p) 
    ster_the=matrix(0, nrow=kf, ncol=1) 
    xpar=matrix(0, nrow=kf, ncol=p) 
    nx=0 
    for(f in 1:kf){ 
      ind_f=f+p 
      thetaf=r_beta[ind_f] 
       
      #Number of trucks in the fleet f 
      nf=fl[f] 
       
      #Number of year-trucks in the fleet f 
      snf=fl_an[f] 
       
      #rf is the vector of subscripts for each year-trucks in the fleet f 
      i_deb=nx+1 
      i_fin=nx+snf 
      rf=i_deb:i_fin 
       
      #nx brings us to the next fleet 
      nx=i_fin 
       
       yf=y[rf] 
      NHitsf <- NHits[f] 
       xf=x[rf,] 
      zf=xf%*%par 
      muf=exp(zf+thetaf) 
      s_muf=sum(muf) 
       
      # log-likelihood (for the fleet f). 
      ter_t=-muf+yf*(thetaf+zf)- lgamma(yf+1) 
       
      #r_ll_ff is the sum of all fleets  
      ster_t= NHitsf *sum(ter_t) 
      r_ll_ff=r_ll_ff+ster_t 
       
       ter_1f=matrix(0,snf,p) 
      for(i in 1:p){ 
        ter_1f[,i]=xf[,i]*muf[,1] 
      } 
      hgf= colSums(ter_1f) 
       
      xparf=hgf/s_muf 
      xpar[f,]=xparf 
       
      ter_2f=matrix(0, nrow=snf, ncol=p) 
      for(ii in 1:snf){ 
          ter_2f[ii,]=xf[ii,]-xparf 
      } 
      
 ter_3=t(ter_2f)%*%(yf-muf) 
      llpf=t(ter_3) 
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      r_ll_gf=r_ll_gf+NHitsf*llpf 
       
      ter2muf=matrix(0,snf,p) 
      for(iii in 1:p){ 
        ter2muf[,iii]=ter_2f[,iii]*muf[,1] 
      } 
  
      ter_p=-t(ter_2f)%*%(ter2muf) 
      r_ll_hf=r_ll_hf+NHitsf*ter_p 
       
  
      ter_the_f=(yf-muf) 
      ster_the_f=sum(ter_the_f) 
      ster_the[f,]=ster_the_f/s_muf 
 
    }  
#end for (f in 1: kf) 
 
    inv_r_ll_hf=solve(r_ll_hf) 
     
    delta=inv_r_ll_hf%*%t(r_ll_gf) 
    delta_theta=-ster_the+xpar%*%delta 
     
    #We iterate on the solution to make it converge to the final estimators. 
    x_sol[1:p]=t(delta) 
    x_sol[p1:n_parm]=t(delta_theta) 
    r_beta=r_beta-x_sol 
    diff1=which.max(abs(x_sol)) 
    diff=max(abs(x_sol)) 
     
    if(diff<=eps) { 
      break } 
 
}  
#end  for(iter in 1:100) 
 
# Optimation results 
beta_sol=r_beta[1:p] 
 
parlistL<- beta_sol 
cat(i, parlistL,sep="\t",file=outputfile, append=T) 
cat("\n",file=outputfile , append=T) 
 
}  
# end for (repl in 1:B) 
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Hausman test R-code 
 
random=read.csv(OUTRandom.csv", header=TRUE, sep=";") 
fixed=read.csv("OUTFixed", header=TRUE, sep="\t") 
 
 
N_VH69_r=random$N_VH69 
N_VH69_f=fixed$N_VH69 
N_VH20_r=random$N_VH20 
N_VH20_f=fixed$N_VH20 
N_VH50_r=random$N_VH50 
N_VH50_f=fixed$N_VH50 
N_VH51_r=random$N_VH51 
N_VH51_f=fixed$N_VH51 
VIT_r=random$VIT 
VIT_f=fixed$VIT 
SANCT_r=random$SANCT 
SANCT_f=fixed$SANCT 
ROUGE_r=random$ROUGE 
ROUGE_f=fixed$ROUGE 
ARRET_r=random$ARRET 
ARRET_f=fixed$ARRET 
CEINTURE_r=random$CEINTURE 
CEINTURE_f=fixed$CEINTURE 
an_91_r=random$an_91 
an_91_f=fixed$an_91 
an_92_r=random$an_92 
an_92_f=fixed$an_92 
an_93_r=random$an_93 
an_93_f=fixed$an_93 
an_94_r=random$an_94 
an_94_f=fixed$an_94 
an_95_r=random$an_95 
an_95_f=fixed$an_95 
an_96_r=random$an_96 
an_96_f=fixed$an_96 
an_97_r=random$an_97 
an_97_f=fixed$an_97 
NB_INF1_r=random$NB_INF1 
NB_INF1_f=fixed$NB_INF1 
NB_INF2_r=random$NB_INF2 
NB_INF2_f=fixed$NB_INF2 
NB_INF3_r=random$NB_INF3 
NB_INF3_f=fixed$NB_INF3 
NB_INF6_r=random$NB_INF6 
NB_INF6_f=fixed$NB_INF6 
NB_INF7_r=random$NB_INF7 
NB_INF7_f=fixed$NB_INF7 
NB_INF89_r=random$NB_INF89 
NB_INF89_f=fixed$NB_INF89 
 
n_vh69=N_VH69_f-N_VH69_r 
n_vh20=N_VH20_f-N_VH20_r 
n_vh50=N_VH50_f-N_VH50_r 
n_vh51=N_VH51_f-N_VH51_r 
vit=VIT_f-VIT_r 
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sanct=SANCT_f-SANCT_r 
rouge=ROUGE_f-ROUGE_r 
arret=ARRET_f-ARRET_r 
ceinture=CEINTURE_f-CEINTURE_r 
an91=an_91_f-an_91_r 
an92=an_92_f-an_92_r 
an93=an_93_f-an_93_r 
an94=an_94_f-an_94_r 
an95=an_95_f-an_95_r 
an96=an_96_f-an_96_r 
an97=an_97_f-an_97_r 
nb_inf1=NB_INF1_f-NB_INF1_r 
nb_inf2=NB_INF2_f-NB_INF2_r 
nb_inf3=NB_INF3_f-NB_INF3_r 
nb_inf6=NB_INF6_f-NB_INF6_r 
nb_inf7=NB_INF7_f-NB_INF7_r 
nb_inf89=NB_INF89_f-NB_INF89_r 
 
diff=cbind(n_vh69, n_vh20, n_vh50, n_vh51, vit, sanct, rouge, arret, ceinture, an91, an92, an93, an94, an95, an96, 
an97, nb_inf1, nb_inf2, nb_inf3, nb_inf6, nb_inf7, nb_inf89) 
 

# FEβ , Table 10 column 2 page 26 
FE=c(0.0283,0.0532,0.0347,0.0841,0.2248,0.3857,0.3068,0.3443,0.1219,0.0586,0.0292,-0.0584,-0.0209,-0.0157,  
          -0.0608,-0.1914,0.1584,0.2828,0.2321,0.2245,0.1583,0.2331) 
 

# ˆ
REβ , Table 10 column 4 page 26 

RE=c(0.0168,0.0864,0.0829,0.0849,0.2584,0.4245,0.3804,0.4105,0.1651,0.0995,0.0823,0.0877,0.1694,0.1631, 
          0.0672,-0.1759,0.2006,0.2675,0.2770,0.2777,0.2012,0.2369) 
 

# ˆ
RE FEβ β−   

diff_true=RE-FE 
 

# ( )( )( ) ( ) ( ) ( )

1

1ˆ ˆ ˆˆ[ ]
1

B
b b b b

FE RE FE RE FE RE
b

V
B

β β β β β β
=

− = − −
− ∑    

V=cov(diff[1:B,]) 
V_1=solve(V) 
 
# Hausman test statistic 
TH[=t(diff_true)%*%V_1%*%diff_true 
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