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Abstract

We analyze firms’ entry, production and hedging decisions under

imperfect competition. We consider an oligopoly industry producing

a homogeneous output in which risk-averse firms incur a sunk cost

upon entering the industry, and then compete in Cournot with one

another. Each firm faces uncertainty in the input cost when making

production decision, and has access to the futures market to hedge

its random cost. We provide two sets of results. First, under gen-

eral assumptions about risk preferences, demand, and uncertainty, we

characterize the unique equilibrium. In contrast to previous results

in the literature (without entry), production and output price depend

on uncertainty and risk aversion. In other words, when entry is en-

dogenized, access to the futures market does not lead to separation.

Second, to study the effect of access to the futures market on entry

and production, we restrict attention to constant absolute risk aver-

sion (CARA) preferences, a linear demand, and a normal distribution

for the spot input price. In general, the effect of access to the futures

market on the number of firms and production is ambiguous. How-

ever, when the values of the model parameters lead to partial hedging,

the effect is unambiguous. Under partial hedging, access to the futures

market induces more firms to enter the market and each one of them

to produce more.

Keywords: Cournot, Entry, Futures, Hedging, Imperfect Competi-

tion.

JEL Classifications: D21, D43, D80, G32, L13.
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1 Introduction

Recent financial literature on firms’ risk management of market risk has

focused on the determinants of hedging and the economic value of financial

coverage. The two main questions in this literature are: Why do firms hedge?

and Does hedging increase the economic value of the firms? Firms’ hedging is

explained by managerial risk aversion (Stulz, 1990; Tufano, 1996) or market

imperfections such as corporate income taxation (Smith and Stulz, 1985;

Graham and Smith, 1999; Graham and Rogers, 2002), financial distress costs

(Smith and Stulz, 1985), corporate governance (Dionne and Triki, 2013),

investment opportunity costs (Froot et al., 1993; Froot and Stein, 1998), and

information asymmetries (DeMarzo and Duffie, 1991). The empirical effect of

hedging on firm value is rather mixed (Hoyt and Liebenberg, 2011; Campello

et al., 2011).

Another strand of the literature analyzes the joint production and hedg-

ing decisions of the firm under output price uncertainty (Holthausen, 1979;

Feder et al., 1980). The main result from this literature is that optimal output

production is independent of the probability distribution of the output price

and the manager’s risk aversion. The distribution of the output price and

risk aversion affect only firms’ involvement in futures trading. Hence, with

access to the futures market, uncertainty does not introduce any efficiency in

production. The same separation result is obtained under perfect competi-

tion and input price uncertainty (Holthausen, 1979; Katz and Paroush, 1979;

Paroush and Wolf, 1992). Paroush and Wolf (1992) show, however, that the

separation result does not hold in the presence of basis risk, while Anderson

and Danthine (1981) obtain a similar negative result with production uncer-

tainty. Different extensions have been proposed by considering multiple risky

inputs, background risk, and joint output price and input price uncertainty.1

Although there are many contributions regarding firms’ hedging in both

literatures, to our knowledge there are few analyses of firms’ hedging behavior

under imperfect competition, and none that consider entry in the output

1See Viaene and Zilcha (1998) for instance. See also Alghalith (2008) for a review of
the literature with competitive markets.
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market.2 We propose to fill the gap by analyzing firms’ entry, production

and hedging decisions under imperfect competition. Specifically, we consider

an oligopoly industry producing a homogeneous output in which risk-averse

firms incur a sunk cost upon entering the output industry, and, then, compete

in Cournot with one another.3 Each firm faces uncertainty in the input cost

when choosing production, and has access to the futures market to hedge

its random cost. There is only one source of risk in our analysis. One

application of our model is the airline market, where it has been verified that

Cournot competition is present in empirical investigations of U.S. airline

industry (Brander and Zhang, 1990; Fisher and Kamerschen, 2003). In this

market, airline companies face future fuel price uncertainty when they make

their optimal routes decisions for the next few months, and purchase futures

contracts for jet fuel (Morrell and Swan, 2006).4 Here, entering or exiting

the output market is mainly interpreted as route decisions.

We provide two sets of results. First, under general assumptions about

risk preferences, demand, and uncertainty, we show that there exists a unique

equilibrium in which a finite number of firms enter the market as long as the

sunk cost is not too high (the standard case) or not too low. Indeed, if the

2There are three notable exceptions for imperfect competition. First, Eldor and Zilcha
(1990) study the hedging behavior of an oligopoly under uncertainty in the output sector.
However, while the spot price is endogenous (and the firms exercise market power under
uncertainty), the futures (or forward) price is exogenous and fixed. In other words, the
firms exercise market power in the spot output market, but behave perfectly competi-
tively for the futures market of the same good. In addition, Eldor and Zilcha (1990) do
not consider entry, which is our main focus in this paper. Second, in a very different
setting, Allaz and Villa (1993) isolate the strategic reasons for using futures contracts.
By selling futures contracts, Cournot firms attach a lower value to a high spot price and
commit to aggressive behavior on the spot price, which implies more production at a lower
price in equilibrium, and thus benefits consumers but not producers. Third, the effect of
strategic hedging on Cournot and Bertrand competition is studied in Léautier and Rochet
(2012). We compare Léautier and Rochet (2012) with our model and results later in the
introduction.

3In this study, we assume that the firms have a concave payoff due to managerial risk
aversion. Concavity can be explained by different market imperfections. See Froot et al.
(1993) for a discussion.

4Fuel cost represents about 15% of the airlines’ costs. Other costs are usually less
volatile so hedging fuel costs guarantees stable profits. Usually, airlines do not hedge
business cycle risk. Airline companies can also purchase other derivatives products such
as options and even collars. These options would introduce more flexibility for the firm
but would not affect the main results of the paper.
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cost of entry in the output industry is too low, an infinite number of firms may

enter the output industry and engage in speculation in the futures market,

which yields the competitive outcome in the real sector. That is, the price of

the output is equal to the marginal cost and the firms only make profits from

speculating on the input market. We also show that, in contrast to previous

results in the literature, production and output price depend on uncertainty

and risk preferences. In particular, production and output price depend on

the distribution of the spot price and risk aversion. The key element is that

the entry decision limits the ability of the firms to adjust their production

decisions, which implies that they are no longer independent from uncertainty

and risk aversion. One implication is that access to the futures market alters

the comparative analysis. If there no access to the futures market, either a

mean-preserving increase in risk or an increase in risk aversion induces firms

to produce less. If there is access to the futures market, such changes imply

an increase in production.5 In other words, financial access reverses the effect

of risk on per-firm production.

The second set of results concern the effect of access to the futures market

on entry, production, and prices. To study this effect, we restrict attention

to constant absolute risk aversion (CARA) preferences, a linear demand,

and a normal distribution for the spot input price. The effect of access to

the futures market on the number of firms is ambiguous depending on the

value of the futures price and the parameters of the model. Further, the

equilibrium number of firms is convex in the futures price when the firms

partially hedge. In particular, an increase in the futures price of the input

can yield an increase in the number of firms in the output sector. This is due

to the fact that an increase in the futures price induces firms to produce less,

which reduces the market externality in a Cournot game and induces more

firms to enter while hedging their cost. Finally, we show that hedging induces

the risk-averse firm to produce more, while speculating reduces production.

As noted, very few articles study the interaction of real and financial

5The result without financial access is consistent with classical results obtained in a
static environment (i.e., without entry decision) for perfect competition (Sandmo, 1971;
Batra and Ullah, 1974) and quantity-setting monopoly (Leland, 1972).
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activities when the firms exert some sort of market power. One exception

is a recent paper by Léautier and Rochet (2012) which studies the effect

of committing to a hedging strategy on production or pricing strategies.

Specifically, Léautier and Rochet (2012) considers a two-stage game in which

each firm commits to a hedging strategy in the first stage and then chooses

production or pricing strategies in the second stage. Like in our model, the

firms have market power in the output sector but are perfectly competitive

in the input market. There are however main differences in the setups as well

as in the issues studied. Regarding the model, Léautier and Rochet (2012)

considers a market with a fixed number of firms, each one committing to a

hedging strategy before production or pricing strategies. In our model, entry

is a decision variable in the first stage whereas hedging and production are

chosen simultaneously in the second stage.

Beyond the differences in modeling, we study different and complemen-

tary aspects of the link between real and financial activities when the firms

exert some sort of market power. Léautier and Rochet (2012) shows that

strategic hedging (when used as a strategic commitment device) has a pro-

found effect on the real decisions of the firms. Specifically, under actuarially

fair pricing, when the firm commits to a hedging strategy, hedging tough-

ens quantity competition, but softens price competition. We also consider

issues related to risk management and real activities but of different nature.

Specifically, we show that when the futures price is not actuarially fair, the

separation result does not hold in the long-run when market structure is en-

dogenized.6 We then show the effect of access to the futures market on entry

and production decisions.7

The paper is organized as follows. Section 2 presents the model and

defines the equilibrium. Section 3 states the equilibrium and presents results

related to the issue of separation between production (and output price) and

6As noted, separation means that production decisions are independent of uncertainty
and risk preferences, and depend only on the futures price (Danthine, 1973; Holthausen,
1979; Feder et al., 1980).

7In other words, we show how commitment in entry removes the separation result
obtained in the literature (i.e., production strategies depend on uncertainty and risk pref-
erences in the long run) whereas Léautier and Rochet (2012) shows that commitment in
hedging has a profound effect on Bertrand or Cournot competition.
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uncertainty and risk preferences. Section 4 discusses the effect of access to

futures market on entry, production, and output price. Section 5 concludes

the paper. Proofs and extensions are found in the Appendix.

2 Model

In this section, we present the model and define the free-entry equilibrium

with full access to the futures input market. In the next sections, we analyze

the equilibrium. Under a general characterization of the unique equilibrium,

we show that the entry decision links production and output price to uncer-

tainty and risk aversion.

2.1 Preliminaries

We embed access to the futures input market in a two-stage entry game. At

the first stage, all potential firms decide whether to enter an industry in the

output sector. Each entering firm pays an exogenous entry cost K > 0.8 At

the second stage, all firms that have entered make production and financial

decisions while competing in Cournot in the output sector. The firms face

uncertainty in the input price, and have access to perfectly competitive spot

and futures input markets. Figure 1 describes the timeline of the model.9

We now describe the second stage of the game in detail. In an industry

with J firms, firm j produces qj ≥ 0 units of output and faces the inverse

demand p = D
(∑J

k=1 qk

)
where p is the output price and qk is the output

sold by firm k. The technology to transform the input into the output is

assumed to be linear and deterministic. A unit of input can be purchased in

the spot market at price S̃, which is unknown at the time of setting output.10

8The case of no entry cost is excluded. In the data, industries with access to and
participation in the futures market generally comprise a small number of large firms. See
Campello et al. (2011). It is well documented in the literature that large firms hedge
(Stulz, 1996).

9We abstract from bankruptcy or solvency problems that could arise after the spot
input price is realized. Because we use futures contracts, there is no credit risk in the
financial market.

10A tilde sign distinguishes a random variable from its realization.
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Stage 2:
All entering
firms make
production
and financial
decisions.

All potentials firms observe the futures price
and the distribution of the spot price.

The spot price is realized and trading
occurs in the output and input markets.

Stage 1:
All potential
firms decide
entry. Entering
firms pay
setup cost.

Figure 1: Timeline

In addition to the spot market, there is a futures market for the input. A

futures contract can be purchased at known price F for delivery of one unit

of input.

The decisions of the firm can be summarized by two variables: one related

to production and another one related to financial activity. Specifically, firm

j sets output qj ≥ 0 and chooses the hedge coverage ωj ∈ R for the random

cost so that firm j purchases (1 − ωj)qj units of input in the spot market

at the random spot input price S̃, and buys futures contracts at the futures

input price F for the remaining ωjqj units of input.
11 Given production and

financial decisions, the random profit of firm j when there are J firms in the

industry is

π
(
J, qj , ωj,

∑J

k �=j
qk, S̃, F

)
= D

(
qj+
∑J

k �=j
qk

)
qj− S̃(1−ωj)qj−Fωjqj (1)

where the firms compete in Cournot in the output market, but are price-

takers in the (spot and futures) input markets.12 It is convenient to rewrite (1)

11In other words, firm j purchases xj ≡ (1−ωj)qj units of input in the spot market, and
the remaining yj ≡ ωjqj units are purchased in the futures market. Hence, qj = xj + yj
units of output are produced.

12This situation is representative of industries that participate in the futures input
markets. For instance, while airline companies have market power in providing their
services, they cannot have an effect on the financial prices of the futures contracts for fuel
because many other industries interact in these futures market.
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as

π
(
J, qj , ωj,

∑J

k �=j
qk, S̃, F

)
= D

(
qj+

∑J

k �=j
qk

)
qj −Fqj+(F − S̃)(1−ωj)qj .

(2)

From (2), the profit of a firm is the sum of the real profit under full hedging

and the financial payoff from not hedging a fraction 1− ωj of the input, i.e.,

the terms D(qj +
∑J

k �=j qk)qj − Fqj and (F − S̃)(1− ωj)qj , respectively.

Firms may engage in various types of financial activities. Specifically,

firm j may decide not to access the futures market, i.e., ωj = 0. It may

also partially hedge (ωj ∈ (0, 1)) or fully hedge (ωj = 1).13 It may finally

engage in two forms of speculation. First, when ωj < 0, firm j sells futures

contracts at price F which are deliverable by purchasing the input in the

spot market.14 Second, when ωj > 1, firm j fully hedges, and buys additional

units of input in the futures market for resale in the spot market.15 While

firms whose main activity is production rarely speculate (e.g., the board

often prevents the firm’s managing team from speculating), it occurs and

has occurred (Stulz, 1996). For our analysis, it turns out that allowing firms

to engage in speculation simplifies the characterization of the equilibrium

(i.e., no corner solution), and, more importantly, has no effect on most of our

results.16

2.2 Assumptions

Each firm is managed by a risk-averse officer (e.g., the CEO) whose objective

is to maximize the firm’s expected utility of profit over output and hedge

coverage. There always exists an output price high enough to cover the

input cost using both input markets so that trivial cases for which the output

13Full hedging means that the input is purchased only in the futures market, whereas,
under partial hedging, the input is purchased in both the spot and the futures markets.

14Consistent with footnote 11, ωj < 0 implies that xj > 0, yj < 0, so that production
is qj = xj + yj < xj because some of the input purchased in the spot market is used for
delivery via the futures market, while the remaining input is used for production.

15Consistent with Footnote 11, ωj > 1 implies that xj < 0, yj > 0.
16Assuming CARA preferences, a linear demand, and a normally distributed spot price,

Appendix E provides a full characterization of the equilibrium when the firms have partial
access to the futures market, i.e., the firms may hedge but cannot speculate.
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market does not exist are ignored. The next four assumptions hold for the

remainder of the paper.

Assumption 2.1. The utility function for profit π is u(π) such that u′ >

0, u′′ < 0.

Assumption 2.2. Inverse demand p = D(Q), Q ≡∑J
k=1 qk is twice contin-

uously differentiable such that

1. D(0) <∞,

2. D′(Q) < 0 in the interval for which p = D(Q) > 0, and

3. D′′(Q)qj +D′(Q) < 0 for all j.

Assumption 2.3. The p.d.f. of the random spot price S̃ is φ(S) for S ∈
(0, D(0)).

Assumption 2.4. F ∈ (0, D(0)).

We make two comments regarding our assumptions. First, Assump-

tions 2.1, 2.2, and 2.3 yield a unique number of firms entering the market

in the first stage of the game and ensures the existence of a unique Cournot

equilibrium in the second stage. In particular, Condition 3 in Assumption 2.2

ensures that a firm’s best reply function to the total output of the other firms

have a nonpositive slope greater than −1. Second, Assumption 2.4 implies

that no restriction is imposed on the futures price.17 Specifically, in addition

to having an actuarially fair futures price, i.e., F = ES̃ where E is the expec-

tation operator, the futures market may be either in normal backwardation

(i.e., F < ES̃) or in contango (i.e., F > ES̃).18

17To discard uninteresting cases in which the firms do not produce, the futures price is
restricted to be below the reservation price of the output.

18The futures markets for oil were in contango in 2011. This situation is gener-
ally explained by the recent political situation in Arab countries. Other futures mar-
kets (e.g., gold and silver) were in normal backwardation during the same period. See
http://www.zacks.com/stock/news/57493/Backwardation-and-Contango.
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2.3 Definition of Equilibrium

Definition 2.5 provides the free-entry equilibrium with full access to the fu-

tures market, i.e., ωj ∈ R. The term free entry means that there is no

institutional constraint on firms entering the market, i.e., firms may enter

the market in response to profit opportunities. The equilibrium consists

of the number of firms entering the industry, J∗; the Cournot strategies,

{q∗(J∗), ω∗(J∗)}; and the output price, p∗(J∗).19

Definition 2.5. The tuple {J∗, q∗(J∗), ω∗(J∗), p∗(J∗)} is an equilibrium if

1. For all j, given J∗ ≥ 1 and the strategies {q∗(J∗), ω∗(J∗)} of firm k �= j,

q∗(J∗) and ω∗(J∗) solve

max
qj≥0,ωj∈R

D(0)∫
0

u(π(J∗, qj, ωj, (J∗ − 1)q∗(J∗), S, F )) · φ(S)dS. (3)

2. Given J∗ ≥ 1 and q∗(J∗), p∗(J∗) = D(J∗q∗(J∗)).

3. Given the strategies {q∗(J∗), ω∗(J∗)}, J∗ ≥ 0 is an integer that satisfies

D(0)∫
0

u(π(J∗, q∗(J∗), ω∗(J∗), (J∗ − 1)q∗(J∗), S, F )) · φ(S)dS ≥ K (4)

for J∗ ≥ 1, and

D(0)∫
0

u(π(J∗+1, q∗(J∗+1), ω∗(J∗+1), J∗q∗(J∗+1), S, F )) ·φ(S)dS < K.

(5)

From Definition 2.5, Conditions 1 and 2 define the Cournot equilibrium

at stage 2 of the game. Condition 3 is related to the entry decision at stage

1. Specifically, the equilibrium number of firms in the industry is such that,

19Since the equilibrium is symmetric, the summation operator is no longer needed, i.e.,∑J∗

k �=j q
∗(J∗) = (J∗ − 1)q∗(J∗).
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from (4), each entering firm receives an expected utility weakly greater than

the entry cost, and, from (5), further entry yields an expected utility strictly

smaller than the entry cost.

In our model, the firms do not enter the product market in order to have

access to the financial market. Their main expertise is to offer goods and

services in the product market. In other words, if the firms do not produce,

they have no need or demand for futures contracts. The firms face a risk

emanating from the product market and, due to risk aversion, they develop

a demand for financial products. However, the firms are not on the supply

side of financial markets because they do not have any expertise to enter

into the financial market and to become an investment bank or an insurance

company. For example, they do not have the actuarial expertise to compute

insurance premiums for pure or accident risks or to underwrite debt contracts

or derivative products.20 Hence, these firms have no intention or ability to

trade financial assets if they do not enter the product market.

3 Equilibrium and Separation

In this section, we provide a general characterization of the free-entry equi-

librium with full access to the futures market. We also discuss the effect of

entry on the separation property as defined in the literature (Danthine, 1973;

Holthausen, 1979; Feder et al., 1980; Viaene and Zilcha, 1998).

Definition 3.1. There is separation when production and output price are

independent of uncertainty and risk preferences.

We show that, whenever the free-entry equilibrium exists and the futures

price is not actuarially fair, the entry decision links production and output

20According to Freixas and Rochet (2008), banks differ from other firms because they
have expertise for managing loans and deposits, for choosing their level of monitoring of
different clients and for choosing their level of investment in specific relationships with
their clients. These specificities are forms of entry barriers in the banking industry. They
also have expertise in risk management of large portfolios of derivatives with market,
liquidity, and default risks. For an empirical analysis on scale economies in the provision
of underwriting services by banks and related entry barriers in the banking industry,
see Santos and Tsatsarinis (2003).
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price to the distribution of the spot price as well as risk aversion. We proceed

in two steps. We first show that the separation property holds at the second

stage of the game, i.e., for a given number of firms. We then show that, once

the number of firms is endogenized, the separation property no longer holds

because both uncertainty and risk preferences alter market concentration,

which, in turn, affects both production and output price.

Proposition 3.2 provides the firm’s production and hedge coverage in the

Cournot equilibrium at the second stage of the game, i.e., for a given number

of firms. In equilibrium, the firms always produce regardless of the type of

financial activity, i.e., q∗(J) > 0.

Proposition 3.2. Suppose that there are J ≥ 1 firms in the industry at

the second stage of the game. Then, there exists a unique Cournot-Nash

equilibrium. In equilibrium, q∗(J) > 0 and ω∗(J) are defined by

D′(Jq∗(J))q∗(J) +D(Jq∗(J))− F = 0 (6)

and

D(0)∫
0

(F − S) · u′(Π∗(J) + (F − S)(1− ω∗(J))q∗(J)) · φ(S)dS = 0, (7)

Π∗ ≡ D(Jq∗(J))q∗(J)− Fq∗(J).

Proof. Letting xj ≡ (1 − ωj)qj be the units of output for which firm j does

not hedge and using (2), (3) is rewritten as

max
qj ,xj

D(0)∫
0

u(D(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS. (8)

where Q∗
−j ≡ (J − 1)q∗(J) is the total output of the other firms. Since the

Hessian matrix is negative definite,21 firm j’s best reply is defined by the

21See Appendix A.
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first-order conditions

qj :

D(0)∫
0

(D′(qj +Q∗
−j)qj +D(qj +Q∗

−j)− F )

× u′(D(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS = 0 (9)

and

xj :

D(0)∫
0

(F − S) · u′(D(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS = 0. (10)

First, consider expression (9). Since u′ > 0, it follows that

D(0)∫
0

u′(D(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS > 0. (11)

Hence, (9) holds if and only if

D′(qj +Q∗
−j)qj +D(qj + Q∗

−j)− F = 0 (12)

since (12) is not a function of S. From Assumption 2.2, firm j’s best response

function to the output of the other firms has a nonpositive slope larger than

−1, i.e., from (12) ∂qj/∂Q
∗
−j ∈ (−1, 0). Hence, q∗(J) is uniquely defined

by (12) evaluated at qj = q∗(J), which yields (6). Second, consider expres-

sion (10). Since u′′ < 0 and given that q∗(J) exists and is unique, x∗(J) exists

and is unique. Since x∗(J) = (1 − ω∗(J))q∗(J), it follows that ω∗(J) exists

and is uniquely defined by (7).

Using Proposition 3.2, Proposition 3.3 states the separation property at

the second stage of the game. That is, the distribution of the spot price and

risk preferences have no effect on production and output price. The futures

price is the sole driving force for production because, from (6), the marginal

revenue of output is equal to the futures price.22 The separation property

22Note that at stage 2 of the game, the separation property holds unconditionally be-
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is consistent with the case of perfect competition either when there is un-

certainty about the output price (Ethier, 1973; Danthine, 1973; Holthausen,

1979; Feder et al., 1980) or the input price (Holthausen, 1979; Katz and

Paroush, 1979; Paroush and Wolf, 1992) as long as there is no other source

of uncertainty (e.g., uncertainty in production or basis risk).

Proposition 3.3. From (6), at the second stage of the game, production and

output price are independent of uncertainty and risk aversion.

Having shown that separation occurs when there is no entry, we next

show that, when the firms make a decision on entry, the futures price is

no longer the driving force for the production decision. In fact, there is

always nonseparation because the distribution of the spot price and the utility

function have an effect on the production decision (and, thus, the output

price) through the number of firms entering the industry. We proceed as

follows. We first characterize the number of firms entering the market at the

first stage of the game. We then provide a comparative analysis of the effect

of changes in the distribution of the input spot price as well as changes in

risk preferences on production and output price.

Proposition 3.4 states that there exists a unique free-entry equilibrium

with full access to the futures market as long as the entry cost is not too

high to prevent at least one firm from entering the industry. The entry cost

must also be not too low to ensure a finite number of entering firms.

cause firms may either hedge or engage in speculation. Assuming CARA preferences, a
linear demand, and a normally distributed spot price, Appendix D shows that, if firms
can only hedge, (i.e., have partial access to the futures market), production and output
price are only conditionally independent of uncertainty and risk preferences. That is, con-
ditional on hedging, production and output price remains independent of uncertainty and
risk preferences. However, the upper bound of the range of futures input prices yielding
hedging is increasing in the mean and variance of the spot input price as well as risk
aversion.
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Proposition 3.4. Suppose that

lim
J→∞

D(0)∫
0

u(D(Jq∗(J))q∗(J)− Fq∗(J) + (F − S)(1− ω∗(J))q∗(J)) · φ(S)dS < K

≤
D(0)∫
0

u(D(q∗(1))q∗(1)− Fq∗(1) + (F − S)(1− ω∗(1))q∗(1)) · φ(S)dS. (13)

Then, there exists a unique equilibrium with 1 ≤ J∗ <∞ firms in the industry

such that J∗ = 	t∗
 where t∗ is implicitly defined by

D(0)∫
0

u(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)(1− ω∗(t))q∗(t)) · φ(S)dS = K (14)

evaluated at t = t∗.

Proof. We need to show that the left-hand side of (14) is strictly decreasing

in t.

1. The term D(tq∗(t))q∗(t)−Fq∗(t) in the left-hand side of (14) is strictly

decreasing in t, i.e.,

∂ (D(tq∗(t))q∗(t)− Fq∗(t))
∂t

< 0 (15)

since, from (6), ∂q∗(t)/∂t < 0 and ∂ (tq∗(t)) /∂t > 0.23

2. Plugging x∗(t) ≡ (1−ω∗(t))q∗(t) into the left-hand side of (14) and ap-

plying the envelope theorem, the derivative of the left-hand side of (14)

23Given Conditions 2 and 3 of Assumption 2.2 and q∗(t) > 0, differentiating (6) yields

∂q∗(t)
∂t

= − D′′(tq∗(t))q∗(t) +D′(tq∗(t))
D′′(tq∗(t))tq∗(t) + (t+ 1)D′(tq∗(t))

q∗(t) < 0. (16)

Hence,
∂ (tq∗(t))

∂t
=

D′(tq∗(t))
D′′(tq∗(t))Jq∗(t) + (t+ 1)D′(tq∗(t))

q∗(t) > 0. (17)
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with respect to t is

∂
D(0)∫
0

u(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · φ(S)dS
∂t

=
∂x∗(t)
∂t

D(0)∫
0

(F − S) · u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · φ(S)dS
︸ ︷︷ ︸

=0 from (7)

+

D(0)∫
0

∂ (D(tq∗(t))q∗(t)− Fq∗(t))
∂t

× u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · φ(S)dS. (18)

Using (15) and the fact that u′ > 0 implies that (18) is strictly negative.

Since (13) holds, and given (18), it follows that the left-hand side of (14)

crosses the K-line from above only once. Hence, t∗ (as defined by (14)) is

unique and so is J∗ = 	t∗
.

Propositions 3.5 and 3.6 state that, when the futures price is not actuari-

ally fair, market concentration depends on uncertainty and risk preferences.24

In particular, from Proposition 3.5, an increase in the mean of S̃ weakly de-

creases (weakly increases) the number of firms when the futures market is

contango (normal backwardation). Indeed, when the market is contango

(normal backwardation), the firms are net buyers (net sellers) on the spot

market for the input. Hence, an increase in the mean of the spot price for the

input decreases (increases) the expected utility in the second stage, which

induces less (more) firms to enter the industry.

A riskier spot input price weakly decreases the number of firms in the

industry.25 From Proposition 3.6, an increase in risk aversion also weakly

decreases the number of firms in the industry. The similar result comes from

24If F = ES̃, then market concentration is independent of the distribution of the spot
price and the utility function.

25We adopt the expression weakly decrease or weakly increase because J∗ is an integer.
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the fact that a mean-preserving increase in risk or an increase in risk aversion

both reduce the expected utility in the second stage, which induces less firms

to enter the industry.

We begin with the effect of uncertainty on market concentration. To

that end, suppose that φ(S) = ψ(S;m, r) where an increase in m implies an

increase in the mean of S̃ whereas an increase in r implies a mean-preserving

increase in the risk of S̃ in the sense of Rothschild and Stiglitz (1971).

Proposition 3.5. Suppose that φ(S) = ψ(S;m, r). Then, for F �= ES̃,

1. An increase in the mean of S̃ weakly decreases (weakly increases) J∗

when F > ES̃ (F < ES̃).

2. A mean-preserving increase in the risk of S̃ weakly decreases J∗.

Proof. Since J∗ = 	t∗
, we use (14) to derive the effect of an increase in m

and r on J∗. The proof has two steps. First, we establish the sign of x∗(t).

Second, we show the effects of an increase in m and an increase in r on the

left-hand side of (14), which depends on the sign of x∗(t).

1. We first sign x∗(t) ≡ (1− ω∗(t))q∗(t). Plugging x∗(t) ≡ (1− ω∗(t))q∗(t)

into expression (7) (evaluated at J = t) yields

cov[(F−S̃), u′(Π∗+(F−S̃)x∗(t))]+(F−ES̃)·Eu′(Π∗+(F−S̃)x∗(t)) = 0,

(19)

where E and cov are, respectively, the expectation operator and the

covariance operator. Here, Π∗ ≡ D(tq∗(t))q∗(t)− Fq∗(t), and Eu′(Π∗ +

(F − S̃)x∗(t)) > 0.

(a) Suppose first that F = ES̃. Then, from (19), it must be that

x∗(t) = 0 so that cov[(F − S̃), u′(Π∗ + (F − S̃)x∗(t))] = 0.

(b) Suppose next that F > ES̃. Then, from (19), it must be that

x∗(t) > 0 so that cov[(F − S̃), u′(Π∗ + (F − S̃)x∗(t))] < 0.

(c) Suppose that F < ES̃. Then, from (19), it must be that x∗(J) < 0

so that cov[(F − S̃), u′(Π∗ + (F − S̃)x∗(t))] > 0.
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2. Next, plugging x∗(t) ≡ (1−ω∗(t))q∗(t) and φ(S) = ψ(S;m, r) into (14)

yields

D(0)∫
0

u(D(tq∗(t))q∗(t)−Fq∗(t) + (F − S)x∗(t)) ·ψ(S;m, r)dS = K (20)

evaluated at t = t∗. Using the sign of x∗(t), the proof consists in

showing that an increase in m or an increase in r changes the left-hand

side of (20) thereby changing t∗, which in turn changes J∗ = 	t∗
. To

that end, let

Γ ≡
D(0)∫
0

u(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · ψ(S;m, r)dS (21)

be the left-hand side of (20).

(a) Consider first an increase in m. From (21),26

∂Γ

∂m
=
∂q∗(t)
∂m

(D′(tq∗(t))tq∗(t) +D(tq∗(t))− F )

×
D(0)∫
0

u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · ψ(S;m, r)dS

+
∂x∗(t)
∂m

D(0)∫
0

(F − S)u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · ψ(S;m, r)dS

−
D(0)∫
0

u(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · ∂ψ(S;m, r)
∂m

dS

(22)

where ∂q∗(t)
∂m

= 0 due to the separation property stated in Propo-

26Here, the notation ∂ψ(S;m,r)
∂m refers to the difference between two p.d.f.’s, i.e., for

m1 > m2, ψ(S;m1, r) − ψ(S;m2, r) as used in Laffont (1989).
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sition 3.3, and, from (7),

D(0)∫
0

(F−S)·u′(D(tq∗(t))q∗(t)−Fq∗(t)+(F−S)x∗(t))·ψ(S;m, r)dS = 0.

(23)

Hence, (22) simplifies to

∂Γ

∂m
=

D(0)∫
0

u(D(tq∗(t))q∗(t)−Fq∗(t)+(F−S)x∗(t))·∂ψ(S;m, r)
∂m

dS.

(24)

The sign of (24) is for the moment ambiguous because ∂ψ(S;m,r)
∂m

may be positive or negative depending on the value for S. Inte-

grating by parts (24) yields

∂Γ

∂m
= u(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t))

∂Ψ(S;m, r)

∂m

∣∣∣∣D(0)

0

+ x∗(t)

D(0)∫
0

u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t))
∂Ψ(S;m, r)

∂m
dS

(25)

where Ψ(S;m, r) is the c.d.f of S̃ and ∂Ψ(S;m,r)
∂m

refers to the differ-

ence between two c.d.f.’s. Since Ψ(0;m, r) = 0 and Ψ(D(0);m, r) =

1 for all m, the first term in (25) is equal to zero. Moreover, using

the definition of first-order stochastic dominance and the fact that

an increase in m induces an increase in the mean of S̃, it follows

that ∂Ψ(S;m,r)
∂m

< 0.

i. Suppose first that F = ES̃ so that x∗(t) = 0. Then, from (25),

∂Γ/∂m = 0, Hence, from (14), t∗ and thus J∗ = 	t∗
 remain

unchanged with a change in m.

ii. Suppose next that F > ES̃ (F < ES̃) so that x∗(t) > 0

(x∗(t) < 0). Then, from (25), ∂Γ/∂m < 0 (∂Γ/∂m > 0).

Hence, from (14), t∗ and thus J∗ = 	t∗
 are weakly decreasing
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(weakly increasing) along with an increase in m.

(b) Consider next an increase in r. From (21),

∂Γ

∂r
=
∂q∗(t)
∂r

(D′(tq∗(t))tq∗(t) +D(tq∗(t))− F )

×
D(0)∫
0

u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · ψ(S;m, r)dS

+
∂x∗(t)
∂r

D(0)∫
0

(F − S)u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · ψ(S;m, r)dS

−
D(0)∫
0

u(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t)) · ∂ψ(S;m, r)
∂r

dS

(26)

where ∂q∗(t)
∂r

= 0 due to the separation property stated in Propo-

sition 3.3, and, from (7),

D(0)∫
0

(F−S)·u′(D(tq∗(t))q∗(t)−Fq∗(t)+(F−S)x∗(t))·ψ(S;m, r)dS = 0.

(27)

Hence, (26) simplifies to

∂Γ

∂r
=

D(0)∫
0

u(D(tq∗(t))q∗(t)−Fq∗(t)+(F−S)x∗(t))· ∂ψ(S;m, r)
∂r

dS.

(28)

The sign of (28) is for the moment ambiguous because ∂ψ(S;m,r)
∂m

may be positive or negative depending on the value for S. Inte-
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grating by parts (28) yields

∂Γ

∂r
= u(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t))

∂Ψ(S;m, r)

∂r

∣∣∣∣D(0)

0

+ x∗(t)

D(0)∫
0

u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t))
∂Ψ(S;m, r)

∂r
dS.

(29)

As in (25), the first term in (29) is equal to zero. We cannot

sign directly (29) because, by the definition of a mean-preserving

spread, ∂Ψ(y;m,r)
∂r

may be positive or negative depending on the

value of S. Integrating by parts (29) a second time yields

∂Γ

∂r
= x∗(t) · u′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t))

(∫ S

0

∂Ψ(y;m, r)dy

∂r

)∣∣∣∣D(0)

0

+ (x∗(t))2 ·
∫ D(0)

0

u′′(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t))

×
(∫ S

0

∂Ψ(y;m, r)dy

∂r

)
dS. (30)

Since Ψ(0;m, r) = 0 and Ψ(D(0);m, r) = 1 for all r, the first

term in (30) is equal to zero. Moreover, using the definition of a

mean-preserving spread and the fact that an increase in r induces a

mean-preserving increase in the risk of S̃, it follows that ∂Ψ(S;m,r)
∂r

>

0 for all S < D(0).27 From (30), ∂Γ/∂r < 0 since x∗(t) �= 0 (from

F �= ES̃) and u′′ < 0. Hence, from (14), t∗ and thus J∗ = 	t∗
 are
weakly decreasing along with an increase in r.

Proposition 3.6 states the effect of increasing risk aversion on the number

27We recall the integral definition of a mean-preserving spread. Suppose that for x ∈
[a, b], G(x) is a mean-preserving spread ofH(x). Then,

∫ b
a (G(x)−H(x))dx = 0 to preserve

the same mean between the two distributions and, for all z ∈ [a, b),
∫ z
a
(G(x)−H(x))dx > 0

so that G(x) has more weight in the tails than H(x).
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of firms in the industry. Using the notation in Diamond and Stiglitz (1974),

suppose that u(π) = v(π; ρ) with v1 > 0, v11 < 0 and ∂ (−v11(π; ρ)/v1(π; ρ)) /∂ρ >
0. Hence, an increase in ρ implies an increase in risk aversion.

Proposition 3.6. Suppose that u(π) = v(π; ρ) such that v1 > 0, v11 < 0

and ∂ (−v11(π; ρ)/v1(π; ρ)) /∂ρ > 0. Then, for F �= μS, an increase in risk

aversion weakly decreases J∗.

Proof. Plugging x∗(t) ≡ (1− ω∗(t))q∗(t) and u(π) = v(π; ρ) into (14) yields

D(0)∫
0

v(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t); ρ) · φ(S)dS = K (31)

evaluated at t = t∗. Let

Γ ≡
D(0)∫
0

v(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t); ρ) · φ(S)dS (32)

be the left-hand side of (31). From (32),

∂Γ

∂ρ
=
∂q∗(t)
∂ρ

(D′(tq∗(t))tq∗(t) +D(tq∗(t))− F )

×
D(0)∫
0

v1(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t); ρ) · φ(S)dS

+
∂x∗(t)
∂ρ

D(0)∫
0

(F − S) · v1(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t); ρ) · φ(S)dS

+

∫
∂v(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t); ρ)

∂ρ
· φ(S)dS (33)

where ∂q∗(t)
∂ρ

= 0 due to the separation property stated in Proposition 3.3,

and, from (7),

D(0)∫
0

(F −S) · v1(D(tq∗(t))q∗(t)−Fq∗(t)+ (F −S)x∗(t); ρ) ·φ(S)dS = 0. (34)
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Hence, (22) simplifies to

∂Γ

∂ρ
=

∫
∂v(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t); ρ)

∂ρ
· φ(S)dS. (35)

Since an increase in ρ means an increase in risk aversion, it follows that for

F �= ES̃, (35) is negative for all t.28 Hence, from (14), t∗ and thus J∗ = 	t

are weakly decreasing in ρ because a more risk-averse firm requires a higher

risk premium to remain in the market.

Proposition 3.7 states that as long as the futures price is not actuarially

fair, the separation property does not hold when entry is considered. The

negative effect of mean (in a contango situation), riskiness, or risk aversion

on the number of firms implies that the remaining firms can exercise more

market power. Specifically, when there is access to the futures market, higher

riskiness induces each remaining firm to produce more. However, while per-

firm production increases along with more riskiness, the number of firms

decreases, which is the dominant effect, and the equilibrium output price

unambiguously increases along with an increase in the riskiness of the spot

input price. The result also holds for an increase in the mean of the spot

price in a contango situation or an increase in risk aversion.

Proposition 3.7. Suppose that the futures price is not actuarially fair, i.e.,

F �= ES̃. Then, when entry is endogenized, production and output price

depend on uncertainty and risk aversion. In particular,

1. An increase in the mean of S̃ weakly increases (weakly decreases) q∗(J∗)

and p∗(J∗) when F > ES̃ (F > ES̃).

28Since x∗(t) �= 0 when F �= ES̃, it follows that v is strictly concave in S. Hence, for
any ρ1, ρ2 : ρ2 > ρ1 and as long as x∗(t) �= 0,∫

v(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t); ρ2) · φ(S)dS

<

∫
v(D(tq∗(t))q∗(t)− Fq∗(t) + (F − S)x∗(t); ρ1) · φ(S)dS. (36)
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2. A mean-preserving increase in the risk of S̃ or an increase in risk aver-

sion weakly increases q∗(J∗) and p∗(J∗).

Proof. From (16) and (17), q∗(J∗) and p∗(J∗) = D(J∗q∗(J∗)) are both de-

creasing in J∗. Using Proposition 3.5 and 3.6 yields the results stated in

Proposition 3.7.

The result stated in Proposition 3.7 is in sharp contrast to the separation

result obtained in the literature in the absence of another source of uncer-

tainty (e.g., uncertainty in production, basis risk). In other words, once firms

are allowed to make entry decisions, the futures price is no longer the driv-

ing force for the production decision (even with one source of uncertainty).

Indeed, conditional on the number of firms, each firm is able to fully adjust

production in such a way that it is independent of uncertainty and risk pref-

erences. When firms also make entry decisions, production decisions becomes

less flexible. Hence, the endogenization of the number of firms in an industry

with sunk cost K > 0 yields nonseparation.29

4 The Effect of Access to Futures Market

In this section, we study the effect of access to the futures market first on

entry, then on production and output price. To simplify the discussion, we

make the following restrictions. Managers’ risk preferences on profit exhibit

constant absolute risk aversion. Output demand is linear and the firms’

beliefs about the spot input price are normally distributed. These restrictions

are consistent with Assumptions 2.1, 2.2, and 2.3 except for the fact that the

support of the input spot price is the real line. Although the input spot price

can be negative, the values of the parameters of the model can be restricted

to ensure that the probability of such events be arbitrarily close to zero.

Moreover, it turns out that, by assuming a positive mean of the spot input

29If entry were not costly, the number of firms would be infinity in our case. In the
limit, total production and output price would be independent of the distribution of the
spot price and risk aversion.
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price, equilibrium values for the number of firms, the production, and the

output price are always positive.

Formally, our restrictions are as follows. The coefficient of absolute risk

aversion is α > 0.30 Inverse demand is linear, i.e.,

D
(∑J

k=1
qk

)
= θ − γ

∑J

k=1
qk, (37)

where θ, γ > 0 are demand parameters. The input spot price is normally

distributed, i.e., S̃ ∼ N(μS, σ
2
S), μS ∈ (0, θ). Given our restrictions, the

certainty equivalent has a closed-form solution. Using (2), the certainty

equivalent of firm j is

CE
(
J, qj , ωj,

∑J

k �=j
qk

)
= D

(
qj +

∑J

k �=j
qk

)
qj − μS(1− ωj)qj

− Fωjqj − ασ2
S(1− ωj)

2q2j/2 (38)

as shown in Appendix B.

We also make two simplifications. First, we ignore the fact that J∗ = 	t∗

is an integer. Specifically, ∂J∗/∂ϕ for any parameter ϕ refers to the derivative

of t∗ with respect ϕ. This approximation has no bearing on our results since

the number of firms is not bounded between two integers. Hence, changes

in t∗ are informative about changes in J∗.31 Second, when determining the

number of firms at the first stage of the game, we compare the certainty

equivalent (instead of the utility of the certainty equivalent) with the cost of

entry. This has no bearing on the qualitative nature of our results.

We first characterize the equilibrium with and without access to the fu-

tures market. We then compare the equilibrium values under full access and

under no access to the futures market, first on entry, and then on production

and output price.

30In other words, the utility function for profit π is exponential: u(π) = −e−απ.
31Moreover, since the equilibrium is symmetric, the summation operator is not present

in the equilibrium values.
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4.1 Equilibrium Characterization

Access to Financial Market. Proposition 4.1 states the unique free-entry

equilibrium with full access to the futures market.

Proposition 4.1. For F ∈ (0, θ), there exists a unique equilibrium with

1 ≤ J∗ <∞ firms in the industry if and only if

(F − μS)
2

2ασ2
S

< K ≤ (θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

. (39)

In equilibrium,

J∗ =
θ − F√(

K − (F−μS)2
2ασ2S

)
γ

− 1 (40)

firms enter the industry. Each firm produces

q∗(J∗) =

√(
K − (F − μS)2

2ασ2
S

)
/γ (41)

at output price

p∗(J∗) =

√(
K − (F − μS)2

2ασ2
S

)
γ + F. (42)

Hedge coverage is

ω∗(J∗) = 1−
√
γ(F − μS)

ασ2
S

√
K − (F−μS)2

2ασ2S

. (43)

Proof. See Appendix C.

We now discuss several properties of the equilibrium. From condition (39)

in Proposition 4.1, there exists an equilibrium with full access to the futures

market as long as the entry cost is not too high to prevent at least one firm

from entering the industry. The entry cost must also be not too low to ensure

a finite number of entering firms.

Condition (39) is depicted in Figure 2, where F ∈ (0, θ) is on the x-
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Figure 2: Entry, Full Access to the Futures Market

axis, and K > 0 is on the y−axis.32 The two convex lines depict the lower

and upper bounds in (39). Hence, the darker shaded area between the two

curves encompasses the points {K,F} for which the equilibrium exists, and,

in particular, a finite number of firms enter the industry. Note that entry may

occur for all values of F , whether the futures market is normal backwardation

(F ∈ (0, μS)), actuarially fair (F = μS), or contango (F > μS). Note as well

that, while the upper and lower bounds of (13) depends on the mean and

variance of the spot price (and risk aversion), the darker shaded area between

the two curves,∫ θ

0

(
(θ − x)2

4γ
+

(x− μS)
2

2ασ2
S

− (x− μS)
2

2ασ2
S

)
dx =

θ3

12γ
(44)

32To generate Figure 2, we set {θ, γ} = {7, 1}, and {μS , σ2
S , α} = {2, 1, 1}. Although

Figure 2 is generated with specific values, the shapes of the curves hold in general. The
same comment applies to all figures.
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is unaffected by changes in the mean and variance of the spot price as well

as risk aversion. In other words an increase in any of these three parameters

does not reduce the possibility of entry. Below the lowest convex curve, there

is no equilibrium with a finite number of firms. In other words, all potential

entrants have an incentive to enter. Because unlimited entry (with K > 0) is

due to speculation motives, we delay our discussion about the limiting case

(i.e., J∗ → ∞).

Having discussed the condition for entry, we provide information about

the types of financial activities in which the firms engage in equilibrium.

Proposition 4.2 states that, whenever the equilibrium exists, the firms may

hedge or speculate (or both) depending on the structure of the futures market

and the value of the sunk cost.

Proposition 4.2. Suppose that (13) holds. Then, optimal hedging is

ω∗(J∗) = 1−
√
γ(F − μS)

ασ2
S

√
K − (F−μS)2

2ασ2S

. (45)

Further,

1. For F ∈ (0, μS), the firms fully hedge production and, at the same time,

speculate by buying in the futures market to sell in the spot market, i.e.,

ω∗(J∗) > 1.

2. For F = μS, the firms fully hedge production, i.e., ω∗(J∗) = 1.

3. For F ∈ (μS, θ), there are three exclusive outcomes.

(a) The firms partially hedge, i.e., ω∗(J∗) ∈ (0, 1).

(b) The firms do not access the futures markets, i.e., ω∗(J∗) = 0.

(c) The firms speculate by buying in the spot market to sell in the

futures market, i.e., ω∗(J∗) < 0.

Proof. See Appendix C.
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Figure 3: Financial Activity, Full Access to the Futures Market

Figure 3 illustrates Proposition 4.2 by providing information about the

firms’ financial activity when there is a finite and positive number of firms

in the industry.33 If the futures market is in normal backwardation (i.e.,

F < μS), then the firms fully hedge and speculate. That is, the input is

purchased only on the futures market, some of which is used for production

and the remaining is sold on the spot market. Whenever the futures price is

actuarially fair (i.e., F = μS), the firms fully hedge. See the dashed vertical

line in Figure 3 for which ω∗(J∗) = 1.

A contango futures market (i.e., F > μS) yields either partial hedg-

ing (with no speculation) or speculation (with no hedging) depending on

the value of the sunk cost and the futures price. The division between

these two outcomes is depicted by the dashed increasing convex line K =
(2γ+ασ2S )(F−μS )2

2α2σ4S
, intersecting with the minimum of the upper bound for K

33Figures 2 and 3 are generated using the same parameter values.
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Figure 4: Financial Activity, Hedging vs. Speculation

in (13), i.e., when F = F 1 ≡ 2γμS+ασ
2
Sθ

2γ+ασ2S
.34 From Figure 3, in a contango

situation, hedging is possible only for lower values of the futures input price,

while speculation (buying from the spot market to sell on the futures market)

can occur at any futures input price as long as the sunk cost is low enough.

Remark 4.3. For F ∈ [F 1, θ
)
, hedging is no longer chosen regardless of the

value of the sunk cost

The entry cost influences the type of financial activity. In Figure 3,

consider a point {K,F} in the area for partial hedging (i.e., ω∗(J∗) ∈ (0, 1)).

A decrease in the sunk cost while keeping the futures input price constant

eventually leads to a switch from hedging to speculation. This is due to

the fact that a lower K yields more entry, which reduces profit from selling

34The points {K,F} on the dashed increasing line that intersects the upper bound
of (13) at its minimum refer to cases for which the firms do not access the futures market,
i.e., ω∗(J∗) = 0.
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the output, and, thus, raises the opportunity cost of hedging (instead of

speculating) under contango.

Remark 4.4. For F ∈ (μS, F 1], a lower sunk cost can induce the firms not

to hedge, but to engage in speculation instead.

Finally, hedging becomes more likely under contango along with an in-

crease in the variance of the spot input price or risk aversion. This is illus-

trated in Figure 4, which shows that an increase in the variance of the spot

input price moves F 1 ≡ 2γμS+ασ
2
Sθ

2γ+ασ2S
to the right, which increases the darker

shaded area (partial hedging) and reduces the lighter shaded area (specula-

tion).35

Remark 4.5. For F ∈ [μS, θ), an increase (decrease) in σ2
S or α makes it

more likely for hedging (speculation) to occur.

It remains to discuss the limiting case below the lowest convex curve in

Figure 2. Specifically, the lighter shaded area in Figure 2 combines the points

{K,F} for which entry is always beneficial regardless of the number of firms

active in the market. In other words, the stage-2 certainty equivalent is high

enough to cover the sunk cost for any number of firms, which yields the case of

perfect competition. Due to unlimited entry, the profit from the output sector

approaches zero (i.e., the perfect competition outcome drives the output

price to the marginal cost), while the firms engage in speculation to generate

revenue from the financial sector. Consistent with Figure 2, this is only

possible when the futures price is not actuarially fair. From Figure 2, there

are two outcomes under the limiting case of perfect competition (i.e., in the

lighter shaded area). The firms speculate by selling futures contracts under

contango (i.e., F > μS), while buying them under normal backwardation

(i.e., F < μS). Although K > 0, speculation on the futures market makes it

possible for the output market to approach perfect competition in the limit.

Proposition 4.6. For F ∈ (0, θ), F �= μS, and 0 < K ≤ (F−μS)2
2ασ2

, J∗ → ∞
yielding the perfectly competitive outcome in the output sector. Further, firms

always engage in speculation in the futures market.

35To generate Figure 4, we set {θ, γ} = {10, 1} and{μS, α} = {5, 1}.
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Proof. Suppose that F ∈ (0, θ), F �= μS and 0 < K ≤ (F−μS)2
2ασ2

. From (75) in

Appendix C, CE∗(J) = (θ−F )2

(1+J)2γ
+ (F−μS)2

2ασ2S
> K for any J . Hence, J∗ → ∞.

From (70) and (71) in Appendix C, limJ∗→∞ x∗(J∗) = F−μS
ασ2S

and limJ∗→∞ y∗(J∗) =

−F−μS
ασ2S

, while, from (72) and (74) in Appendix C, limJ∗→∞ q∗(J∗) = 0, and

limJ∗→∞ p∗(J∗) = F .36

No Access to Financial Market. Next, we turn to the characterization

and discussion of the benchmark equilibrium when the firms have no access

to the futures market. Proposition 4.7 characterizes the unique equilibrium.

To clarify the analysis, the hat sign is used on equilibrium values when there

is no access to the futures market.

Proposition 4.7. Suppose that no firm has access to the futures market, i.e.,

the constraint ωj = 0 holds for all j. Then, there exists a unique equilibrium

with 1 ≤ Ĵ∗ <∞ if and only if

0 < K ≤ (θ − μS)
2

2(2γ + ασ2
S)
. (46)

In equilibrium,

Ĵ∗ =
(θ − μS)

√
2γ + ασ2

S

γ
√
2K

− ασ2
S

γ
− 1 (47)

firms enter the industry. Each firm produces

q̂∗(Ĵ∗) =

√
2K√

2γ + ασ2
S

(48)

at output price

p̂∗(Ĵ∗) = μS +

√
2K(γ + ασ2

S)√
2γ + ασ2

S

. (49)

Proof. See Appendix C.

Two comments about Proposition 4.7 are warranted. First, there exists

an equilibrium as long as the entry cost is not too high to prevent at least

36Recall that q∗(J∗) = x∗(J∗) + y∗(J∗) where x∗(J∗) is the amount of input purchased
(or sold) in the spot market and y∗(J∗) is the amount of input purchased (or sold) in the
futures market.
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Figure 5: Entry, No Access to the Futures Market

one firm from entering the industry.37 Condition (46) is depicted in Figure 5,

where F ∈ (0, θ) is on the x-axis, and K > 0 is on the y−axis. Given that

the firms do not access the futures market, the condition is independent of

F and the firms enter as long as K ≤ K̂ ≡ (θ−μS )2
2(2γ+ασ2S )

.38

Second, access to the futures market alters the comparative analysis

on the effect of uncertainty and risk preferences stated in Propositions 3.5

and 3.6. Indeed, recall from Propositions 3.5 and 3.6 that a riskier input price

or an increase in risk aversion yields more production under access to the fu-

tures market. However, without financial access, an increase in risk or risk

37An equilibrium with a finite number of firms exists as long as the sunk cost is strictly
greater than zero, otherwise an infinite number of potential firms would enter the industry.

38Unlike the case of full access to the futures market, an increase in the mean or variance
of the spot input price, or an increase in risk aversion reduces the possibility of entry.
See (44) for the case of full access to the futures market. Indeed, from (46), ∂K̂/∂μS < 0,
∂K̂/∂σ2

S < 0, ∂K̂/∂α < 0.
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aversion induces the firms to produce less. That is, using (48), ∂q̂∗(Ĵ∗)
∂σ2S

< 0,

∂q̂∗(Ĵ∗)
∂α

< 0.39 In other words, financial access reverses the effect of riskiness

and risk aversion on per-firm production.

4.2 Entry

Using Section 4.1, we can now study the effect of access to the futures market

on entry. Combining the information of Figures 2 and 5 into Figure 6 shows

that (anticipated) access to the futures input market facilitates entry. In

particular, for futures prices F ∈ (μS, F 1], F 1 ≡ 2γμS+ασ
2
Sθ

2γ+ασ2S
, partial hedging

(without speculation) allows firms to enter for a sunk cost above K̂, which

would had been otherwise impossible without access to the futures input

market. See area A in Figure 6 such that F ∈ (μS, F 1). Moreover, for

futures prices F ∈ (0, μS) or F ∈ (F 1, θ), speculation induces firms to enter

for a sunk cost above K̂. See area A such that F ∈ (0, μS) and area B in

Figure 6.

Remark 4.8. Access to the futures market allows firms to bear a higher sunk

cost, i.e., entry of at least one firm is possible for K > K̂. In particular,

access to a futures market under partial hedging (and no speculation) can

generate higher expected profits, which compensates for a higher fixed cost of

entry.40

While the industry can bear a higher sunk cost, the effect of access to

the futures input market on the number of firms is ambiguous. That is, (40)

and (47) cannot in general be ordered. To see this, we begin by comparing the

number of firms under an actuarially fair futures input price with the number

of firms when there is no access to the futures market. Proposition 4.9 states

that the number of firms is greater with an actuarially fair futures input price

as long as the sunk cost is high enough.

39The result without financial access is consistent with classical results obtained in a
static environment (i.e., without entry decision) for perfect competition (Sandmo, 1971;
Batra and Ullah, 1974) and quantity-setting monopoly (Leland, 1972).

40This situation arises in area A in Figure 6 such that F ∈ (μS , F 1).
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Figure 6: Entry, Full Access vs. No Access to the Futures Market

Proposition 4.9. Suppose that 0 < K < K̂ ≡ (θ−μS)2
2(2γ+ασS )

. Then, J∗|F=μS >

Ĵ∗ if and only if

(θ − μS)
2

2(
√
2γ + ασ2

S +
√
2γ)2

< K ≤ (θ − μS)
2

2(2γ + ασ2
S)
. (50)

Proof. From (40) and (47), J∗|F=μS > Ĵ∗ if and only ifK >
(
√

2γ+ασ2S−
√
2γ)2(θ−μS )2

2α2σ4S
,

which is the same as the lower bound in (50). The inequality (θ−μS)2
2
(√

2γ+ασ2S+
√
2γ

)2 <

(θ−μS)2
2(2γ+ασS )

always holds.

In order to understand why J∗ and Ĵ∗ cannot be ordered in general, we

need to show how the ordering of (40) and (47) depends on the value of the

futures input price. To that end, we first illustrate the pattern graphically.

We then study in details the effect of F on J∗ and show that due to the
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Figure 7: Number of Firms

convex shape of J∗ as a function of F , J∗ can either below or above Ĵ∗.

Consider Figure 7, where F ∈ [μS, θ) is on the x-axis, while J∗ > 0 is on

the y-axis. The convex solid line plots J∗ as a function of F , which is the

general shape of (40). The straight dash-dot line is the number of firms under

no access to the futures market. From (47), Ĵ∗ is independent of F . When

the convex curve intersects the straight line from below at F = F ′′ in Figure

7a, the firms switch from hedging to speculation, i.e., from ω∗(J∗) ∈ (0, 1) to

ω∗(J∗) < 0.41

Consider first the case in which J∗|F=μS > Ĵ∗ as depicted in Figure 7a.

Here, the sunk cost is high in the sense thatK ∈ (K, K̂], K ≡ (θ−μS)2
2(
√

2γ+ασ2S+
√
2γ)2

,

as in (50). Note that, as long as the futures input price is close enough to

μS, hedging yields more firms in the industry. Consider next the case in

which J∗|F=μS < Ĵ∗ as depicted in Figure 7b. Here, the sunk cost is low,

i.e., K ∈ (0, K). Regardless of the futures input price, hedging always yields

fewer firms in the industry. While access to the futures market may increase

or decrease the number of firms when partial hedging occurs,42 it is clear from

Figures 7a and 7b that speculation in a contango situation always yields more

41Hence, F ′′ is the largest value of the futures price such that (40) and (47) are equal
and ∂J∗/∂F > 0. From (45), ω∗(J∗)|F=F ′′ = 0.

42Recall that ω∗(J∗) ∈ (0, 1) when F ∈ (μS , F
′′).
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firms.43

Having shown graphically that the ordering of J∗ and Ĵ∗ depend on F ,

we now provide the derivative of J∗ with respect to F in Proposition 4.10.

Consistent with Figure 7 J∗ first decreases, then increases. We then explain

why an increase in F can lead to a higher number of firms in the industry

even when the firms partially hedge (for F ∈ (μS, F
′′)).

Proposition 4.10. Suppose that firms have access to the futures market.

Then,

1. For F ∈ (0, μS),
∂J∗
∂F

< 0.

2. For F ∈ [μS, θ),
∂J∗
∂F

> 0 if and only if F > μS +
2ασ2S
θ−μS .

Proof. Differentiating (40) yields

∂J∗

∂F
=

−
√(

K − (F−μS)2
2ασ2S

)
γ + (F−μS)

2ασ2S
(θ − F )

(
K − (F−μS)2

2ασ2S

)− 1
2 √

γ(
K − (F−μS)2

2ασ2S

)
γ

, (51)

which yields the cases stated in Proposition 4.10.

Before proceeding with a detailed explanation of this result, note that

the positive relationship between the futures price and the number of firms

entering the industry may occur not only when firms speculate, but also

when firms partially hedge in a contango futures market. See conditions (78)

and (80) in Appendix C.44

43Recall that ω∗(J∗) < 0 when F ∈ (F ′′, θ).
44To obtain ∂J∗

∂F > 0 when the firms hedge, the following must hold

(F − μS)(θ − μS)

2ασ2
S

>
(2γ + ασ2

S)(F − μS)
2

2α2σ4
S

. (52)

Rearranging (52) yields

F <
2γμS + ασ2

Sθ

2γ + ασ2
S

≡ F 1, (53)

which, from Remark 4.3, is a necessary condition on the value of the futures price for
hedging to occur. See also Figure 3.
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We now provide an explanation for the positive relationship between

the futures price and the number of firms entering the industry. Due to

strategic interactions, an increase in F might increase payoffs for given J ,

which enables more firms to cover the sunk cost, and, thus, enter the in-

dustry.45 To show this, we study the effect of F on the equilibrium cer-

tainty equivalent for a given number of firms in the industry CE∗(J) ≡
CE(J, q∗(J), ω∗(J), (J − 1)q∗(J)). Indeed, if F increases CE∗(J), then J∗

implicitly defined by CE∗(J∗) = K increases as well. From (75) in Ap-

pendix C, the certainty equivalent (with financial access) is

CE∗(J) =
(θ − F )2

(1 + J)2γ
+

(F − μS)
2

2ασ2
S

. (54)

Proposition 4.11 states that the firms might not necessarily benefit from

a lower futures input price due to a more competitive futures market.46 In

other words, the firms’ payoffs are not necessarily decreasing in the futures

input price. In fact, CE∗(J) is convex in F , so that a lower futures input

price may lead to a lower certainty equivalent. This effect occurs sometimes

when firms partially hedge, and always when firms speculate. Further, it can

only occur in a contango situation. In other words, CE∗(J) is decreasing in

F under normal backwardation and actuarially fair pricing.

Proposition 4.11. Suppose that firms have access to the futures market.

Then, CE∗(J) is strictly increasing in F if and only if

(1 + J)2γμS + 2ασ2
Sθ

(1 + J)2γ + 2ασ2
S

< F < θ, (55)

Proof. Differentiating (54) with respect to F yields (55).

The positive relationship between payoff and F when the firms partially

hedge is due to the fact that an increase in the cost of hedging induces firms

to decrease output, which can mitigate the effect of increasing output due to

45Here, the term payoff refers to the equilibrium certainty equivalent.
46A more competitive futures market might arise in the presence of risk-neutral specu-

lators.
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ĈE
∗

ĈE
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the strategic interaction of the firms.47 Specifically, the effect of an increase in

the futures input price on the firms’ payoffs is two-fold. First, an increase in

F directly decreases the payoffs. Second, there is an indirect effect through

the behavior of the firms, i.e., an increase in F induces firms to decrease

production. This, in turn, mitigates the externality that the firms have on

one another, which may increase their payoffs. Both effects pull in opposite

directions and the overall effect is ambiguous. See Appendix F for a formal

exposition.

Figure 8 depicts the effect of the futures input price on the equilibrium

certainty equivalent resulting from the strategic interaction of the firms in a

non-cooperative game. Specifically, Figures 8a and 8b depict the equilibrium

certainty equivalent of a firm with contango for an industry with J = 3

firms and J = 4 firms, respectively.48 For low futures input prices, the

firm hedges. For prices greater than F J ≡ (1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
, the firm produces

without hedging its random cost, but speculates.

For the case in which there is no speculation in equilibrium (i.e., F ∈
[μS, F J ]), we make an additional comment. In Figure 8a, with J = 3, each

47The firms partially hedge when F is such that
(1+J)2γμS+2ασ2

Sθ

(1+J)2γ+2ασ2
S

< F <
(1+J)γμS+ασ2

Sθ

(1+J)γ+ασ2
S

.
48The values of the remaining parameters of the model are θ = 10, γ = μS = σ2

S = α = 1.
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firm attains its highest payoffs in a Cournot equilibrium when the price of

hedge coverage is actuarially fair, F = μS. Here, hedging results in higher

payoffs as long as μS ≤ F ≤ F ′. However, in Figure 8b, with J = 4,

CE∗|F=μS is not the highest value. The ambiguous effect of the cost of

hedging on the firms’ payoffs implies that a more competitive futures market

due in part to risk-neutral speculators might actually have a detrimental

effect on payoffs.

4.3 Production and Output Price

We next turn to the effect of access to the futures market on production and

output price. Proposition 4.12 states that if firms hedge, then access to the

futures input market leads to an increase in production. However, if firms

only speculate, then production decreases with access to the futures input

market. Hence, access to the futures market dampens the effect of uncer-

tainty on production when the firms hedge, but exacerbates the effect of un-

certainty when firms speculate. In addition, when the firms hedge, the result

for Cournot markets stated in Proposition 4.12 is consistent with Holthausen

(1979) and Feder et al. (1980) for competitive markets.

Proposition 4.12. Suppose that firms have full access to the futures market.

In equilibrium, if firms hedge (i.e., ω∗(J∗) > 0),49 then q̂∗(Ĵ∗) < q∗(J∗) while

if firms only speculate (i.e., ω∗(J∗) < 0), then q̂∗(Ĵ∗) > q∗(J∗).

Proof. The proof is immediate from comparing (41) with (48).

An important implication from Remark 4.4 and Proposition 4.12 is that

a decrease in the sunk cost makes it more likely that the dampening effect

does not occur.

Remark 4.13. Suppose that firms have full access to the futures market.

In equilibrium, in a contango futures market, a decrease in the sunk cost

can induce firms to speculate, which exacerbates the effect of uncertainty on

production.

49The result holds whether the firms partial hedge (i.e., ω∗(J∗) ∈ (0, 1)), fully hedge
(i.e., ω∗(J∗) = 1), or fully hedge and speculate simultaneously (i.e., ω∗(J∗) > 1).
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While Proposition 4.12 states that hedging always increases output, the

effect of access to the futures market on output price is more complicated

because the number of firms entering the industry also depends on whether

the firms have access to the futures market. In particular, while hedging

increases output, it may also decrease the number of firms. The overall

effect on total output, and, thus, output price is then ambiguous. However,

Proposition 4.14 states that when the futures price is actuarially fair, access

to the futures market reduces the output price.

Proposition 4.14. Suppose that firms have full access to the futures market.

If the futures price is actuarially fair, then p̂∗(Ĵ∗) > p∗(J∗).

Proof. Evaluating (42) and (49) at F = μS yields p̂∗(Ĵ∗) > p∗(J∗).

We conclude the analysis by studying the effect of F on production and

output price. Proposition 4.15 states that, depending on the structure of

the futures market, per-firm production decreases or increases with a higher

futures price.

Proposition 4.15. Suppose that firms have full access to the futures market.

Then,

1. For F ∈ (0, μS),
∂q∗(J∗)
∂F

> 0.

2. For F = μS,
∂q∗(J∗)
∂F

= 0.

3. For F ∈ (μS, θ),
∂q∗(J∗)
∂F

< 0.

Proof. Differentiating (41) yields

∂q∗(J∗)
∂F

= −(F − μS)

2ασ2
S

√
γ

(
K − (F − μS)

2

2ασ2
S

)− 1
2

. (56)

Given (13), the sign of (56) depends on F ∈ (0, θ).

Finally, if firms have full access to the futures market, the overall effect

of the futures price on the output price is ambiguous as well. On the one

hand, an increase in F might decrease per-firm production, which increases
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the output price. On the other hand, an increase in F might increase the

number of firms, which decreases the output price. Proposition 4.16 states

that an increase in F might result in a lower output price only when the

firms engage in speculation.

Proposition 4.16. Suppose that firms have access to the futures market.

Then ∂p∗(J∗)
∂F

< 0 if and only if ω∗(J∗) < 0.

Proof. From (42),

∂p∗(J∗)
∂F

= −
(
K − (F − μS)

2

2ασ2
S

)− 1
2 (F − μS)

2ασ2
S

√
γ︸ ︷︷ ︸

Negative Effect through Entry

+ 1. (57)

From (57), ∂p
∗(J∗)
∂F

< 0 if and only if

K <
(F − μS)

2(2ασ2
S + γ)

4α2σ4
S

, (58)

which implies, from (78) in Appendix C, that ∂p∗(J∗)
∂F

< 0 if and only if

ω∗(J∗) < 0.

5 Final Remarks

This paper provides an analysis of the firms’ production and hedging de-

cisions under imperfect competition with potential entry. Entry is shown

to remove the separation result, i.e., although the firms have access to the

futures market, their production decisions depend on uncertainty and risk

preferences through the determination of the number of firms in the indus-

try. We also show that the use of futures contracts have an ambiguous effect

on the market structure of the industry. For instance, when the futures input

price is actuarially fair, access to the futures market increases or decreases

the number of entering firms depending on the value of the sunk cost.

To study the interaction between entry and the futures market, we have

abstracted from two important aspects. First, we have assumed that the spot
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and futures prices were exogenous. However, these prices are determined by

markets as well, which, in turn, affects resources allocation, production deci-

sions, and risk-taking. Extending the model to include suppliers of the input

along with speculators is an avenue for future research. While the deter-

mination of spot and futures prices has already been studied by Turnovsky

(1983), the output producers are assumed to be passive, i.e., their demand for

the input is given. In fact, output producers are active and forward-looking

and, as shown in this paper, their output and input decisions are entwined.

Second, we have ignored the role of financial decisions in deterring entry. It

would also be interesting to study how strategic hedging from an incumbent

firm may alter the decision entry of a potential entrant. For instance, Maskin

(1999) considers a model in which capacity installation by an incumbent firm

serves to deter others from entering the industry. Uncertainty about demand

or costs forces the incumbent to choose a higher capacity level than it would

under certainty. This higher requirement for capacity diminishes the at-

tractiveness of deterrence. It would be interesting to study the incumbent’s

incentive to deter entry when it has access to futures markets.

Finally, an empirical extension would be to test the model in the airline

industry or any industry with similar characteristics facing Cournot competi-

tion. Recent empirical tests on hedging were limited to the effect of different

determinants such as CEO risk aversion, convexity of tax function, corporate

governance, distress costs, information asymmetry, and the effect of hedging

on firm value. To our knowledge, no study has analyzed the effect of hedging

on entry. The main empirical question would be: Do airline companies that

hedge (or speculate) enter different routes more aggressively? Our theoreti-

cal results are ambiguous on this question and an empirical prediction from

the model is that airline companies produces less in different routes when

futures prices are high, which induces more firms to enter and hedge their

fuel cost.
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A Hessian Matrix

The Hessian matrix evaluated at qj = q∗(J) and xj = x∗(J) is

H =

[
H11 H12

H21 H22

]
(59)

where, given Assumption 2.1 and 2.2 (i.e., u′(π) > 0, u′′(π) < 0, D′(Q) < 0,

and D′′(Q)qj +D′(Q) < 0),

H11 =
(
D′′(qj + Q∗

−j)qj + 2D′(qj +Q∗
−j)
) D(0)∫

0

u′(D(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS

+
(
D′(qj +Q∗

−j)qj +D(qj +Q∗
−j)− F

)2︸ ︷︷ ︸
=0

×
D(0)∫
0

u′′(D(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS < 0, (60)

H22 =

D(0)∫
0

(F −S)2 ·u′′(D(qj+Q
∗
−j)qj−Fqj+(F −S)xj) ·φ(S)dS < 0, (61)

and, using (9) or (12),

H12 = H21 =
(
D′(qj +Q∗

−j)qj +D(qj +Q∗
−j)− F

)
×

D(0)∫
0

(F − S) · u′′(D(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS = 0.

(62)

B The Certainty Equivalent

The certainty equivalent is implicitly defined by

Eu(π(J, qj , ωj,
∑J

k �=j
qk, S̃, F )) = u(CE(J, qj , ωj,

∑J

k �=j
qk)), (63)
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so that, given (2), (37), u(π) = −e−απ and S̃ ∼ N(μS, σ
2
S)

CE(J, qj , ωj,
∑J

k �=j
qk) = Eπ(J, qj , ωj,

∑J

k �=j
qk, S̃, F )

− αVπ(J, qj, ωj,
∑J

k �=j
qk, S̃, F )/2, (64)

which yields (38). Here, E is the expectation operator and V is the variance

operator over S̃.

C Proofs

Proof of Proposition 4.1. We first solve the Cournot equilibrium at stage

2 for a given number of firms J . We then determine the number of firms

entering the industry. We finally derive the condition for existence.

1. Cournot equilibrium at stage 2.

We perform a change of variables. Let xj+yj ≡ qj , where xj ≡ (1−ωj)qj
is the units of output for which firm j does not hedge, and yj ≡ ωjqj is

the units of output for which firm j hedges (or speculates). Hence, (38)

is rewritten as

CE
(
J, qj , ωj,

∑J

k �=j
qk

)
=
(
θ − γ

∑J

k=1
(xk + yk)

)
(xj + yj)

− μS(xj + yj)− (F − μS)yj − ασ2
Sx

2
j/2.

(65)

Using (65) and given that the optimal policies of firm k �= j are q∗(J)

and ω∗(J), the maximization problem of firm j is50

max
xj ,yj≥0

(θ − γ(J − 1)(x∗(J) + y∗(J))− γ(xj + yj))(xj + yj)

− μS(xj + yj)− (F − μS)yj − ασ2
Sx

2
j/2. (66)

50Uniqueness is immediate from the assumption of linear demand and convex cost.
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From (66), the first-order conditions are

∂

∂xj
: θ − γ(J − 1)(x∗(J) + y∗(J))− 2γ(xj + yj)− μS − ασ2

Sxj = 0,

(67)

∂

∂yj
: θ − γ(J − 1)(x∗(J) + y∗(J))− 2γ(xj + yj)− μS − F + μS = 0,

(68)

evaluated at xj = x∗(J) and yj = y∗(J).51 Solving (67) and (68) for

x∗(J) and y∗(J) yields

x∗(J) =
F − μS
ασ2

S

, (70)

y∗(J) =
θ − F

(1 + J)γ
− F − μS

ασ2
S

. (71)

Hence, from (70) and (71), q∗(J) = x∗(J)+y∗(J) and ω∗(J) = y∗(J)/q∗(J),

i.e.,

q∗(J) =
θ − F

(1 + J)γ
> 0, (72)

ω∗(J) = 1− (1 + J)γ(F − μS)

ασ2
S(θ − F )

. (73)

Plugging (72) into (37) yields

p∗(J) =
θ + JF

1 + J
. (74)

Finally, plugging (72) and (73) into (38) yields the certainty equivalent

CE∗(J) ≡ CE (J, q∗(J), ω∗(J), (J − 1)q∗(J)),

CE∗(J) =
(θ − F )2

(1 + J)2γ
+

(F − μS)
2

2ασ2
S

. (75)

51The Hessian matrix

H =

[ −2γ − ασ2
S −2γ

−2γ −2γ

]
(69)

satisfies the second-order conditions.
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2. Entry decision at stage 1: Setting (75) equal to K and solving for

J = J∗ yields (40). Plugging (40) into (72), (73), and (74) yields (41),

(43), and (42), respectively.

3. Derivation of expression (39). From (40), J∗ ≥ 1 implies that

K ≤ (θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

, (76)

while, from (75), J∗ <∞ as long as CE∗(J) > K does not hold for all

J ≥ 1, i.e.,

K > lim
J→∞

CE∗(J) =
(F − μS)

2

2ασ2
S

. (77)

Combining (76) and (77) yields (39).

Proof of Proposition 4.2. Suppose that (39) holds. Using (39) and (43)

we obtain:

1. If F ∈ (0, μS), then ω
∗(J∗) > 1.

2. If F = μS, then ω
∗(J∗) = 1.

3. If F > μS and

(2γ + ασ2
S)(F − μS)

2

2α2σ4
S

≤ K ≤ (θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

, (78)

then ω∗(J∗) ∈ (0, 1).

4. If F ∈ (μS, F 1), F 1 ≡ 2γμS+ασ
2
Sθ

2γ+ασ2S
and

K =
(2γ + ασ2

S)(F − μS)
2

2α2σ4
S

, (79)

then ω∗(J∗) = 0.

5. If F ∈ (μS, θ) and

(F − μS)
2

2ασ2
S

< K < min

{
(2γ + ασ2

S)(F − μS)
2

2α2σ4
S

,
(θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

}
,

(80)
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then ω∗(J∗) < 0.

Proof of Proposition 4.7. Suppose that ωj = 0 holds for all j, Then,

from (66) evaluated at y∗(J) = yj = 0, the first-order condition is

∂

∂xj
: θ − γ(J − 1)x̂∗(J))− 2γxj − μS − ασ2

Sxj = 0. (81)

Solving (81) for x̂∗(J) = q̂∗(J) yields

q̂∗(J) =
θ − μS

(1 + J)γ + ασ2
S

. (82)

Plugging (82) into (37) yields

p̂∗(J) =
(γ + ασ2

S)θ + JγμS
(1 + J)γ + ασ2

S

. (83)

Finally, plugging (82) into (38) yields the certainty equivalent ĈE
∗
(J) ≡

ĈE (J, q̂∗(J), 0, (J − 1)q̂∗(J)),

ĈE
∗
(J) =

(2γ + ασ2
S)(θ − μS)

2

2((1 + J)γ + ασ2
S)

2
. (84)

Setting (84) equal to K and solving for J = Ĵ∗ yields (47). Plugging (47)

into (82) and (83) yields (48) and (49), respectively. Finally, we derive the

existence condition defined by (46). From (47), Ĵ∗ ≥ 1 implies that

K ≤ (θ − μS)
2

2(2γ + ασ2
S)

(85)

as in (46).
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D Partial Access to the Futures Market, Sec-

ond Stage

In this appendix, we show that, at the second stage of the game, if firms

have partial access to the futures market, i.e., hedging but no speculation,

then production and output price are only conditionally independent of un-

certainty and risk preferences.

Consider the case in which firms have partial access to the futures market,

i.e., the constraint ωj ∈ [0, 1] holds for all j. The subscript H stands for

hedging, and no speculation.

Proposition D.1. Suppose that J firms have access to the futures market,

but cannot speculate, i.e., the constraint ωj ∈ [0, 1] holds for all j. Then, in

equilibrium, each firm supplies

q∗H(J) =

⎧⎨⎩
θ−F

(1+J)γ
, 0 < F <

(1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
θ−μS

(1+J)γ+ασ2S
,

(1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
≤ F < θ

, (86)

and hedges a fraction

ω∗
H(J) =

⎧⎪⎪⎨⎪⎪⎩
1, 0 < F ≤ μS

1− (1+J)γ(F−μS)
ασ2S(θ−F )

, μS < F <
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S

0,
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
≤ F < θ

(87)

of its random cost. The equilibrium output price is

p∗H(J) =

⎧⎨⎩
θ+JF
1+J

, 0 < F <
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
(γ+ασ2S )θ+JγμS
(1+J)γ+ασ2S

,
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
≤ F < θ

. (88)

Proof. Financial participation: ωj ∈ (0, 1]. From (66), the first-order condi-
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tions are

∂

∂xj
: θ − γ(J − 1)(x∗H(J) + y∗H(J))− 2γ(xj + yj)− μS − ασ2

Sxj = 0, (89)

∂

∂yj
: θ − γ(J − 1)(x∗H(J) + y∗H(J))− 2γ(xj + yj)− μS − F + μS = 0, (90)

evaluated at xj = x∗H(J) and yj = y∗H(J) �= 0.52 Solving (89) and (90) for

x∗H(J) and y
∗
H(J) yields

x∗H(J) =
F − μS
ασ2

S

, (92)

y∗H(J) =
θ − F

(1 + J)γ
− F − μS

ασ2
S

�= 0, . (93)

if and only if 0 < F <
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
< θ when speculation is not allowed.

Hence, from (92) and (93), q∗H(J) = x∗H(J)+ y∗H(J) as in (86) when 0 ≤ F <
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
. Moreover, as in (87) ω∗

H(J) = y∗H(J)/q
∗
H(J) for μS < F <

(1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
and ω∗

H(J) = 1 for 0 < F ≤ μS.

No Financial Participation: ωj = 0. We next consider corner solutions,

i.e., ω∗
H(J) = 0. From (93), y∗H(J) = 0 if and only if

(1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
≤ F < θ.

Hence, from (66), the first-order condition for xj is

∂

∂xj
: θ − γ(J − 1)(x∗H(J) + y∗H(J))− 2γ(xj + yj)− μS − ασ2

Sxj = 0, (94)

evaluated at xj = x∗H(J) and yj = y∗H(J) = 0, so that, for
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
≤

F < θ, q∗H(J) = x∗(J) and ω∗
H(J) = 0 as in (86) and (87).

In view of Proposition D.1, we now provide two results regarding separa-

tion. First, when speculation is excluded, we obtain a conditional separation

result. That is, Proposition D.2 states that, conditional on hedging (i.e.,

the futures input price is not too high), production and output price are

52The Hessian matrix

H =

[ −2γ − ασ2
S −2γ

−2γ −2γ

]
(91)

satisfies the second-order condition.
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independent of risk and risk aversion.

Proposition D.2. From (86) and (88), q∗H(J) and p
∗
H(J) are conditionally

independent of uncertainty and risk preferences. That is, conditional on hedg-

ing, i.e., 0 < F <
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
, ∂q∗H(J)/∂μS , ∂q

∗
H(J)/∂σ

2
S , ∂q

∗
H(J)/∂α = 0

and ∂p∗H(J)/∂μS, ∂p
∗
H(J)/∂σ

2
S , ∂p

∗
H(J)/∂α = 0.

Second, Proposition D.3 states that there is no unconditional separation.

Indeed, production depends indirectly on α and σ2
S via the range of futures

input prices that induce access to the futures market for hedging. Specifically,

from Proposition D.1, the upper bound of the range of futures input prices

yielding hedging is increasing in the variance of the spot input price and

risk aversion. This, in turn, increases the likelihood of hedging, and thus

dampens the effect of uncertainty on production.

Proposition D.3. From (86) and (88), q∗H(J) and p
∗
H(J) are uncondition-

ally dependent of the distribution of the spot price and risk preferences.

E Partial Access to the Futures Market, En-

try

In this appendix, we consider an intermediate benchmark model in which

access to the futures input market is restricted to hedging, i.e., no speculation.

As in Appendix D, we use the subscript H to indicate that firms may hedge,

but cannot speculate. Proposition E.1 states that an equilibrium exists as

long as the entry cost is not too high to prevent at least one firm from entering

the industry.

Proposition E.1. Suppose that firms have access to the futures market, but

cannot speculate, i.e., the constraint ωj ∈ [0, 1] holds for all j. There exists

a unique equilibrium with 1 ≤ J∗
H <∞ firms in the industry if and only if

0 < K ≤ max

{
(θ − F )2

4γ
,
(θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

,
(θ − μS)

2

2(2γ + ασ2
S)

}
. (95)
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Further, the firms hedge, i.e., ω∗
H(J

∗
H) ∈ (0, 1] when F ∈ [0, F 1], F 1 ≡

2γμS+ασ
2
Sθ

2γ+ασ2S
and

0 < K ≤ (θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

, (96)

and do not hedge, i.e., ω∗
H(J

∗
H) = 0, when

0 < K ≤ min

{
(2γ + ασ2

S)(F − μS)
2

2α2σ4
S

,
(θ − μS)

2

2(2γ + ασ2
S)

}
. (97)

Proposition E.2 characterizes the equilibrium under partial access to the

futures market. Note that the equilibrium when the firms may only hedge is

a hybrid between no access to the futures input market and full access to the

futures input market. For instance, (99) combines both (41) and (48). Hence,

all results under hedging (i.e., ω∗
H(J

∗
H), ω

∗(J∗) ∈ (0, 1)) hold regardless of the

possibility of speculating.

Proposition E.2. Suppose that firms have access to the futures market, but

cannot speculate, i.e., the constraint ωj ∈ [0, 1] holds for all j. In equilibrium,

J∗
H =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ−F√
Kγ

− 1, F ∈ (0, μS), 0 < K ≤ (θ−F )2

4γ

θ−F√(
K− (F−μS)2

2ασ2
S

)
γ

− 1, F ∈ [μS, F 1],
(2γ+ασ2S )(F−μS)2

2α2σ4S
< K ≤ (θ−F )2

4γ
+ (F−μS)2

2ασ2S

(θ−μS)
√

2γ+ασ2S
γ
√
2K

− ασ2S
γ

− 1, 0 < K ≤ min
{

(2γ+ασ2S )(F−μS)2
2α2σ4S

, (θ−μS)2
2(2γ+ασ2S )

}
(98)

firms enter the industry. Each firm supplies

q∗H(J
∗
H) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
K/γ, F ∈ (0, μS), 0 < K ≤ (θ−F )2

4γ√(
K − (F−μS)2

2ασ2S

)
/γ, F ∈ [μS, F 1],

(2γ+ασ2S )(F−μS)2
2α2σ4S

< K ≤ (θ−F )2

4γ
+ (F−μS)2

2ασ2S√
2K√

2γ+ασ2S
, 0 < K ≤ min

{
(2γ+ασ2S )(F−μS )2

2α2σ4S
, (θ−μS)2
2(2γ+ασ2S )

} ,

(99)
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and hedges a fraction

ω∗
H(J

∗
H) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, F ∈ (0, μS), 0 < K ≤ (θ−F )2

4γ

1−
√
γ(F−μS)

ασ2S

√(
K− (F−μS)2

2ασ2
S

) , F ∈ [μS, F 1],
(2γ+ασ2S )(F−μS)2

2α2σ4S
< K ≤ (θ−F )2

4γ
+ (F−μS)2

2ασ2S

0, 0 < K ≤ min
{

(2γ+ασ2S )(F−μS )2
2α2σ4S

, (θ−μS)2
2(2γ+ασ2S )

}
(100)

of its random cost. The equilibrium output price is

p∗H(J
∗
H) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
Kγ + F, F ∈ (0, μS), 0 < K ≤ (θ−F )2

4γ√(
K − (F−μS)2

2ασ2S

)
γ + F, F ∈ [μS, F 1],

(2γ+ασ2S )(F−μS)2
2α2σ4S

< K ≤ (θ−F )2

4γ
+ (F−μS)2

2ασ2S√
2γK(ασ2S+γ)√

2γ+ασ2S
+ μS, 0 < K ≤ min

{
(2γ+ασ2S )(F−μS )2

2α2σ4S
, (θ−μS)2
2(2γ+ασ2S )

} .

(101)

We now provide a detailed proof of Propositions E.1 and E.2.

Proof. Interior Solutions. We first consider interior solutions to (66), i.e.,

x∗H(J), y
∗
H(J) > 0 or ω∗

H(J) ∈ (0, 1). From (66), the first-order conditions

are

∂

∂xj
: θ − γ(J − 1)(x∗H(J) + y∗H(J))− 2γ(xj + yj)− μS − ασ2

Sxj = 0,

(102)

∂

∂yj
: θ − γ(J − 1)(x∗H(J) + y∗H(J))− 2γ(xj + yj)− μS − F + μS = 0,

(103)

evaluated at xj = x∗H(J) and yj = y∗H(J).
53 Solving (102) and (103) for

53The Hessian matrix

H =

[ −2γ − ασ2
S −2γ

−2γ −2γ

]
(104)

satisfies the second-order condition.
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x∗H(J) and y
∗
H(J) yields

x∗H(J) =
F − μS
ασ2

S

, (105)

y∗H(J) =
θ − F

(1 + J)γ
− F − μS

ασ2
S

> 0, . (106)

if and only if μS ≤ F <
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
< θ when speculation is not al-

lowed. Hence, from (105) and (106), q∗H(J) = x∗H(J) + y∗H(J) and ω
∗
H(J) =

y∗H(J)/q
∗
H(J) as in (86) and (87) when μS ≤ F <

(1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
.

Corner Solutions. We next consider corner solutions, i.e., ω∗
H(J) = 0 and

ω∗
H(J) = 1. We consider the case ω∗

H(J) = 0 first. From (93), y∗H(J) = 0 if

and only if
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
≤ F < θ. Hence, from (66), the first-order condition

for xj is

∂

∂xj
: θ − γ(J − 1)(x∗H(J) + y∗H(J))− 2γ(xj + yj)− μS − ασ2

Sxj = 0, (107)

evaluated at xj = x∗H(J) and yj = y∗H(J) = 0, so that, for
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
≤

F < θ, q∗H(J) = x∗H(J) and ω∗
H(J) = 0 as in (86) and (87). Plugging (86)

into (37) yields

p∗H(J) =
θ + JF

1 + J
. (108)

Next, we consider the case ω∗
H(J) = 1. Following appendix D, ω∗

H(J) = 1

if and only if 0 < F ≤ μS when speculation is not allowed. From (66), the

first-order condition for yj is

∂

∂yj
: θ − γ(J − 1)(x∗H(J) + y∗H(J))− 2γ(xj + yj)− μS − F + μS = 0 (109)

evaluated at xj = x∗H(J) = 0 and yj = y∗H(J), so that for 0 < F < μS,

q∗H(J) = y∗H(J) and ω
∗
H(J) = 1. Solving (109) for y∗H(J) yields

y∗H(J) =
θ − F

(1 + J)γ
. (110)

Plugging (110) into (37) yields the same equilibrium price as in (108).
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Plugging (86) and (87) into (38) yields the certainty equivalent CE∗
H(J) ≡

CE (J, q∗H(J), ω
∗
H(J), (J − 1)q∗H(J)),

CE∗
H(J) =

⎧⎪⎪⎨⎪⎪⎩
(θ−F )2

(1+J)2γ
, 0 < F < μS

(θ−F )2

(1+J)2γ
+ (F−μS)2

2ασ2S
, μS ≤ F <

(1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
(2γ+ασ2S )(θ−μS )2
2((1+J)γ+ασ2S )

2 ,
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
≤ F < θ

, (111)

Setting (111) equal to K and solving for J = J∗
H yields (98). Plugging (98)

into (86), (87), and (88) yields (99), (100), and (101), respectively.

Next, we derive the inequalities in Proposition E.1. First, note, from

Proposition D.1, that partial hedging, i.e. ω∗
H(J) ∈ (0, 1), occurs when μS ≤

F <
(1+J)γμS+ασ

2
Sθ

(1+J)γ+ασ2S
. From (98), plugging J∗

H = θ−F√(
K− (F−μS)2

2ασ2
S

)
γ

− 1 into F <

(1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
and rearranging yields

K >
(2γ + ασ2

S)(F − μS)
2

2α2σ4
S

. (112)

In addition, when there is partial hedging, from (98), J∗
H ≥ 1 implies that

K ≤ (θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

. (113)

Hence, from (112) and (113), there exists an equilibrium with entry and

partial hedging when

(2γ + ασ2
S)(F − μS)

2

2α2σ4
S

< K ≤ (θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

, (114)

as stated in Proposition E.2.54

Second, from Proposition D.1, there is full hedging, i.e., ω∗
H(J) = 1, when

54The set of K satisfying (114) is nonempty. Indeed, hedging occurs when F <
(1+J)γμS+ασ2

Sθ

(1+J)γ+ασ2
S

<
2γμS+ασ2

Sθ

2γ+ασ2
S

, which implies that

(2γ + ασ2
S)(F − μS)

2

2α2σ4
S

<
(θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

. (115)
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0 < F ≤ μS. Furthermore, with full hedging, from (98), J∗
H ≥ 1 implies that

K ≤ (θ − F )2

4γ
. (116)

Hence, from (116), there exists an equilibrium with entry and full hedging

when

0 < K ≤ (θ − F )2

4γ
. (117)

Third, from Proposition D.1, there is no hedging when F ≥ (1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
.

From (98), plugging J∗
H =

(θ−μS)
√

2γ+ασ2S
γ
√
2K

− ασ2S
γ

− 1 into F ≥ (1+J)γμS+ασ
2
Sθ

(1+J)γ+ασ2S
,

and rearranging yields

K ≤ (2γ + ασ2
S)(F − μS)

2

2α2σ4
S

. (118)

In addition, when there is no hedging, from (98), J∗
H ≥ 1 implies that

K ≤ (θ − μS)
2

2(2γ + ασ2
S)
. (119)

Hence, from (118) and (119), there exists an equilibrium with entry and no

hedging when

0 < K ≤ min

{
(2γ + ασ2

S)(F − μS)
2

2α2σ4
S

,
(θ − μS)

2

2(2γ + ασ2
S)

}
, (120)

as stated in Proposition E.1.

Finally, there exists a Cournot equilibrium with J∗
H ≥ 1 as long as (113),
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(117) or (119) hold, i.e.,55

K ≤ max

{
(θ − F )2

4γ
,
(θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

,
(θ − μS)

2

2(2γ + ασ2
S)

}
, (122)

=
(θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

, (123)

as stated in Proposition E.1.56

F The Effect of Futures Price on Certainty

Equivalent

In this appendix, we study the ambiguous effect of F on CE∗(J) in a contango

structure (i.e., F > μS). Recall that, for F < μS, ∂CE
∗(J)/∂F < 0. To that

end, rewrite (54) as revenue minus cost, i.e.,

CE∗(J) = R∗(J)−Ψ∗(J), (124)

where

R∗(J) = p∗(J)q∗(J), (125)

=
θ + JF

1 + J

θ − F

γ(1 + J)
(126)

55Note that
(θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

>
(θ − μS)

2

2 (2γ + ασ2
S)
, (121)

simplifies to
(
ασ2

Sθ − (2γ + ασ2
S)F + 2γμS

)2
> 0, which is always true.

56Uniqueness is immediate from the assumption of linear demand and convex cost.
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is the revenue and

Ψ∗(J) = μSq
∗(J) + (F − μS)ω

∗(J)q∗(J) + ασ2(1− ω∗(J))2q∗2/2, (127)

= μS
θ − F

γ(1 + J)︸ ︷︷ ︸
cost of production

+ (F − μS)

(
θ − F

(1 + J)γ
− F − μS

ασ2
S

)
︸ ︷︷ ︸

cost of hedging

+
(F − μS)

2

2ασ2
S︸ ︷︷ ︸

risk premium

(128)

is the equilibrium cost. Therefore,

∂CE∗(J)
∂F

=
∂R∗(J)
∂F

− ∂Ψ∗(J)
∂F

, (129)

where
∂R∗(J)
∂F

=
(J − 1)θ − 2JF

γ(1 + J)2
(130)

and

∂Ψ∗(J)
∂F

= − μS
γ(1 + J)︸ ︷︷ ︸

cost of production

+
θ + μS − 2F

(1 + J)γ
− 2(F − μS)

ασ2
S︸ ︷︷ ︸

cost of hedging

+
(F − μS)

ασ2
S︸ ︷︷ ︸

risk premium

. (131)

Consider first the effect of F on revenue R∗(J). A higher cost of hedging

induces the firms to reduce production, which, in turn, reduces the market

externality due to the strategic interaction of the firms. In other words,
∂p∗(J)
∂F

q∗(J) + p∗(J)∂q
∗(J)
∂F

> 0, or the percentage increase in the equilibrium

output price is greater than the percentage decrease in the output. This has

the effect of increasing revenue. Formally, from (130), ∂R
∗(J)
∂F

> 0 if and only

if (J − 1)θ > 2JF .

Consider next the effect of F on cost Ψ∗(J). The cost may decrease with

a higher cost of hedging. Specifically, from (131), the cost of production

unambiguously decreases in F because the firm reduces production. See

the fist term in (131). The total cost of hedge coverage decreases in F

if and only if (θ − 2F + μS)ασ
2
S < 2(1 + J)γ(F − μS). See the second

term in (131). Finally, the cost of bearing risk (through the risk premium

in (131)) unambiguously increases in F . In general, the cost decreases in
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F when (θ − 2F )ασ2
S < (1 + J)γ(F − μS). The overall effect is stated in

Proposition 4.11.

As noted, if J = 1, then condition (55) is not satisfied. Indeed, the

positive relation between the certainty equivalent and the futures input price

is only possible when the firms exercise a negative externality on one another.
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