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Abstract  

We propose a method to consider business cycles in the computation of capital for 
operational risk. We examine whether the operational loss data of American banks 
contain a Hidden Markov Regime switching feature from 2001 to 2010. We assume 
asymmetric distribution of monthly losses. Statistical tests do not reject this 
assumption. A high level regime is marked by very high loss values during the 
recent financial crisis, confirming temporal heterogeneity in the data. If this 
heterogeneity is not considered in risk management models, capital estimations 
will be biased. Banks will hold too much capital during periods of low stress and 
not enough capital in periods of high stress. Additional capital reaches 30% during 
this period of analysis when regimes are not considered. 
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1 Introduction 
 

We propose a method to consider business cycles in the computation of capital for operational 

risk. The recent literature on credit risk management advocates extending the standard structural 

models to see how time-varying market conditions can improve credit risk predictions and solve 

the credit risk puzzle (Chen 2010; Bhamra et al. 2010). One interesting result recently tested by 

Maalaoui-Chun et al. (2014) is that credit spread levels exhibit persistence after recessions. This 

dynamic behavior must be taken into account when computing optimal capital for credit risk. To 

our knowledge, no such modeling exists in the operational risk literature. The only exception is 

the contribution of Allen and Bali (2007), which introduces cyclicality in operational risk 

measurement but does not estimate a dynamic model that endogenizes operational losses over 

business cycles. 

 

Since the inception of operational risk modeling, authors have argued that the amount of reserve 

capital calculated is very fragile, even unstable. Ames, Schuermann and Scott (2014) demonstrate 

this fragility with operational loss data, particularly since the recent financial crisis that began in 

2007. Neslehová, Embrechts, and Chavez-Demoulin (2006) had affirmed the risk of working with 

“extreme value” distributions when preliminary estimates tend to exhibit an infinite mean or 

variance for the data (see also Dahen et al, 2010a). These results suggest that more conventional 

base models should be considered to better estimate the loss distributions, particularly for 

computing capital with a confidence level of 99.9%. 

 

We use the operational loss data of American banks to examine whether the data contain a 

Hidden Markov Regime switching feature for the 2001-2010 period. We build on the scaling 

model of Dahen and Dionne (2010b) and show that the operational loss data of American banks 

are indeed characterized by a Hidden Markov Regime switching model. The distribution of 

monthly losses is asymmetric, with a normal component in the low regime and a skew t type 4 

component in the high regime. Statistical tests do not allow us to reject this asymmetry. We then 

introduce the regimes obtained in the estimation of operational losses and affirm that their 
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presence significantly affects the distribution of losses in general. We also analyze the scaling of 

the data to banks of different sizes and risk exposures, and present the results of backtesting of 

the model in two different banks. 

 

We mainly observe temporal heterogeneity in the data. If this heterogeneity is not considered in 

the risk management models, capital estimations will be biased. Levels of reserve capital will be 

overestimated in periods of normal losses corresponding to the low level of the regime, and 

underestimated in high regime periods. Banks tended to allot too much capital to operational 

risk when the regimes were not considered in our period of analysis. 

 

The research on scaling models started with the article of Shih et al. (2000), which showed that 

institution size is the main scaling factor. Hartung (2004) developed a normalization formula 

based on scaling factors such as firms’ revenues and quality of risk management. Na et al. (2006) 

proposed a model with common components and an idiosyncratic component. Dahen and 

Dionne (2010b) added scaling variables such as time, business line and risk type to this approach, 

as suggested by the Basel II regulation. They also extended the scaling methodology to the 

frequency of losses. In this article, we add business cycles to the model and analyze how this 

improvement affects the optimal regulatory capital. Other contributions on operational risk 

management are Cruz (2002), Lewis (2003), Wei (2007), Chapelle et al. (2008), Chernobai and 

Yildirim (2008), and Jarrow (2008). 

 

In Section 2, we present the database used. Section 3 discusses identification and estimation of 

models of regimes. Section 4 measures the effect of regimes detected on the estimation of the 

distribution of operational losses, and Section 5 proposes a backtest of estimated parameters 

and a robustness analysis of our models. A short conclusion ends the article. 
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2 Data 
 
We use the Algo OpData Quantitative Database for operational losses of $1 million and more 

sustained by US banks. The study period is from January 2001 to December 2010. We examine 

the operational losses of US Bank Holding Companies (BHC) valued at over $1 billion. The source 

of information on these banks is the Federal Reserve of Chicago. Statistics on the sample built 

from the two databases are summarized in tables 1 and 2. 

 
Table 1 presents the size distribution of banks with $1 billion or more in assets that were exposed 

to operational losses of $1 million or more during the study period. We note a major increase in 

the mean size of banks during this period; maximum size has also grown significantly. Table 2 

shows that the largest banks accumulated the largest losses. Table 3 presents the Event Types 

and Business Lines codes subject to operational losses, as defined by the Basel regulation.  

Table 1: Number of BHC banks per year and their assets 
Assets (in billions $) 

Year Median Mean Max Sd Number 
2001 2.1 19.7 944.3 82.3 356 
2002 2.1 19.5 1,097.2 84.8 378 
2003 2.0 20.3 1,264.0 93.0 408 
2004 2.0 25.4 1,484.1 122.1 421 
2005 2.0 24.4 1,547.8 121.9 445 
2006 2.1 26.0 1,884.3 140.5 461 
2007 2.1 28.9 2,358.3 168.1 460 
2008 2.0 28.5 2,251.5 182.5 470 
2009 2.1 33.8 2,323.4 190.6 472 
2010 2.1 34.7 2,370.6 198.3 458 

Note: Sd is standard deviation. 

Table 2: Operational losses of BHC banks with bank assets in deciles 

Asset deciles 
(in billions $) 

Loss (in millions $) 
Min Max Median Mean Sd Number 

2,022.7 to 2,370.6 1.0 8,045.3 26.3 265.9 1,129.5 51 
1,509.6 to 2,022.7 1.0 8,400.0 14.0 268.3 1,207.5 49 
1,228.3 to 1,509.6 1.0 2,580.0 7.5 94.5 357.8 53 
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799.3 to 1,228.3 1.0 3,782.3 24.0 199.8 610.7 48 
521.9 to 799.3 1.0 8,400.0 7.4 218.9 1,156.4 53 
1,247.1 to 521.9 1.1 210.2 7.2 17.0          31.1 50 
98.1 to 247.1 1.0 663.0 6.0 45.3 115.4 51 
33.7 to 98.1 1.0 775.0 10.2 55.2 152.8 51 
8.31 to 33.7 1.1 691.2 8.6 32.2          98.6 51 
0.96 to 8.31 1.0          65.0 4.3 9.9          14.5 51 
All 1.0 8,400.0 8.6 120.1 680.7 508 

Note: Sd is standard deviation. 
 

Table 3: Nomenclature of Event Types and Business Lines codes 

Variables Codes 
Event Types  
  Clients, Products and Business practices CliPBP 
  Business disruption and system failures BusDSF 
  Damage to physical assets DamPA 
  Employment practices and workplace safety EmpWS 
  External fraud EF 
  Internal fraud IF 
  Execution, Delivery and Process Management ExeDPM 
  

Business Lines  
  Retail brokerage RBr 
  Payment and settlement PayS 
  Trading and sales TraS 
  Commercial banking ComB 
  Retail banking RBn 
  Agency services AgnS 
  Corporate finance CorF 
  Asset management AssM 
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3 Identification of regimes 
 

We assume that there are regimes in operational loss data. Figures 1 and 2 support this 

assertion.2 The hatched area in figure 1 identifies the dot-com recession in 2001 and the recent 

recession corresponding to the financial crisis that began in 2007. The number of operational 

losses increased significantly during the last financial crisis, which did not occur during the 2001 

recession. We observe another spike in the number of losses in 2010, one year after the recession 

ended. The losses in 2010 may be explained by delays linked to lawsuits. Indeed, several banks 

were sued after the financial crisis. Figure 2 presents similar evolutions in loss volatility. 

 
Figure 1: Changes in monthly mean operational losses 

                                                 
2 HMM does not yield distinct patterns of the level and volatility in the time series (see Maalaoui et al, 2014, for 
more details). Figures 1 and 2 illustrate too few differences to justify an approach that would separate mean regimes 
from volatility regimes. 
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Figure 2: Changes in monthly variance of operational losses 

 
 

3.1 Markov Switching Regimes 

3.1.1 Markov Switching Model 

 

We suppose that the data3 under study represent a system that possesses n possible distinct 

states. At any given moment, the system may be in either state. For a given state, the system can 

move to another state or remain in place. Given that states are not observable, the model is 

called a Hidden Markov Model, or HMM. For our data, the objective is to identify and characterize 

“high loss” periods (state 2, for example) and separate them from “normal loss” periods (state 1) 

endogenously. We inject information on loss severity and frequency that comes uniquely from 

the data, such that the model will show the unobservable underlying dynamics. We also analyze 

a three-state application in the robustness section of the paper. 

 

                                                 
3 Another possibility is to model the regime switching with individual severities instead of aggregate severities. In 
this paper, we estimate the HMM with industry data because we want to measure the effect of industry regimes on 
banks’ losses. 
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3.1.2 Estimation of the HMM with the Baum-Welch method 

 

To develop the estimation, we follow Zucchini and MacDonald (2009), Mitra and Date (2010), 

and Visser and Speekenbrink (2010). We now define the necessary notations. The variables are 

indexed by time { }∈ −1,2,..., 1,t T T . Observations are noted as tx . The sequence of observations 

from = = to t a t b  is noted as ( )+ −= =: 1 1, ,..., , , 1 to a b a a b bx x x x x a b T . The variable ts  represents 

the state where the system is situated at time { }∈, 1,...,tt s n . Suppose that n states exist. 

Similarly, + −=: 1 1, ,..., ,a b a a b bs s s s s  is the sequence of states of the system in the time interval a to 

b. The estimation will give a vector of the parameters θ . The model is supposed to depend on 

the covariates noted as tz . According to Mitra and Date (2010), an HMM is well defined when 

the parameters { }, ,A B π  are known: A is the transition matrix n n×  whose elements are written 

as ( )1ij t t ta Pr s j s i ,z ,θ+= = = , B is a diagonal matrix whose elements ( ) ( )i t t t tb x Pr x s ,z ,θ=  are 

written according to the densities that describe tx  when the system is in the state i = 1 to n, and 

π is a row vector ( )1 n×  of the probabilities related to each state at 1t = , ( )1i tPr s i z ,π θ= = , 

( )1 i n,..., ,...,π π π π= . To simplify the presentation, we examine the case of two states ( )2n = , 1f  

being the density function of a normal law for the low-loss regime (state 1), 2f  being the density 

function of the skew t-distribution type 4 representing the high-loss regime (state 2).4 The choice 

of this mixture of distributions will be justified later when we present the estimation results. For 

now, note that 
( )

( )
1

2

0
0

t
t

t

f x
B

f x
 

=  
 

 such that: 

 ( ) ( ) −=  
  

2
2 1

1 1 1 2
1 1

1
2 2

t
t

xf x exp,
µ

µ σ
σ π σ

 (3.1) 

where 1 0σ >  and 1µ ∈ . 

 

The skew t type 4 distribution, noted as ST4, is defined as in Rigby et al. (2014):  

                                                 
4 For the first application of the skew-t distribution for operational risk, see Allen and Bali (2007). 
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   ( ) ( )
( )

( ) ( )
( )

( )
− −+ +    − − = < + ≥+ +    

        

2 21 12 2
2 2

2 2 22 2 2 2
2 2 2

1 1t t
t t t

c x xf x I x I x, , ,
ν τ

µ µµ µµ σ ν τ
σ νσ τσ

 (3.2) 

where 

( ) ( )
11 2 1 2

2 20 2 1 2 2 1 2 2, , , ,c B , B ,σ ν τ µ ν ν τ τ
−

 > ∈ = +  . 

 

B is the beta function. ( ) ( ) ( ) ( )B a,b a b a b= Γ Γ Γ +  where Γ  is the gamma function. The ST4 

distribution is a shape-spliced distribution. It comprises two Student’s t-distributions with 

different shape parameters ν  and τ : the left part with ν  and the right part with τ , which lets 

us consider a longer tail, which is important for extreme operational losses. When =ν τ , the ST4 

distribution becomes the Student’s t-distribution. 

 

It is well known that operational losses are not normally distributed and are often skewed, with 

one heavy tail. Splicing of distributions is used to introduce skewness and kurtosis into a 

symmetric distribution family. The advantage of the skew t-distribution is its flexibility. It can 

approach normality in some circumstances and can depart from normality for data with long tails. 

The ST4 will be compared with the skew normal distribution, which is obtained by using different 

scale parameters. 

 

Concerning the matrix, 
( )
( )
− 

=  − 

1212

2222

1
1t

aa
A

aa
, the elements ija  will be modeled according to a 

constant and m  independent covariates { }∈ 1k
tz , k ,...,m . We denote the vector of covariates as

( )= 11, ,..., m
t t tz z z  and posit that: 

 ( )= T
ij ij ta logistic zη   (3.3) 

 

where ( )logistic


 is the logistic function 
( )
( )

( )0 01 ij , ij ,k ij ,mij ij ,

exp ,..., ...,, ,
exp

η η ηη η  = + 




 is a constant, 

ij ,kη  is the coefficient to estimate for the kth covariate k
tz  relative to the conditional probability 
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ija , and T
tz  denotes the transpose of tz . We will estimate the initial distribution π  as a vector of 

constants. We can separate the model parameter vector θ  into three independent parts. 

Accordingly, we rewrite ( )0 1 2, ,θ θ θ θ=  where 0 1,θ θ  and 2θ  are, respectively, the parameters to 

estimate for the initial distribution π , the parameters related to matrix A and those concerning 

matrix B representing conditional densities if . We now write the probability of jointly observing 

the sequence of observations 1:Tx  and that of the states of the system 1:Ts : 

 ( ) ( ) ( ) ( )1 1 1 1 1 0 2 1 1 1 1 2
T T

:T :T :t t t t t t t t tPr x ,s z , Pr s z , Pr s s ,z , Pr x s ,z ,θ θ θ θ= − − == ∏ ∏  (3.4) 

( ) ( ) ( ) ( )1
1 1 1 1 1 0 1 1 1 1 2

T T
:T :T :t t t t t t t t tlogPr x ,s z , logPr s z , logPr s s ,z , logPr x s ,z ,θ θ θ θ−

= + == + ∑ +∑ . (3.5) 

 

Given that equation 3.5 is formed of a sum of three independent quantities, the maximum 

probability can be estimated for each of the vectors of parameters 0 1,θ θ  and 2θ  separately. In 

addition, if we consider that the initial distribution is independent from 1z , we can estimate the 

n probabilities of the vector ( )1 n,...,π π π=  as constants ( )( )0 1 n,...,θ π π= . 

 

Note that the probability function to maximize depends on the sequence 1:Ts  which is not 

observable. Our objective is to extract it from the sequence 1:Tx . One technical solution is to use 

the EM (Expectation Maximization) concept, which is better known as the Baum-Welch 

algorithm. The method is presented in Dionne and Saissi (2016). 

 

Concretely, we construct the sequence 1:Tx  from monthly mean losses (in log). We use a mixture 

where the first “normal” state will be modeled by a normal distribution and the second state of 

the high regime (HR) will be represented by a skew t-distribution type 4 (ST4). We want to capture 

the asymmetry and thickness of the distribution tail during this state. We also use the number of 

losses per quarter. To do so, we create a variable called =, 1,2,iL i  as a natural logarithm of the 

number of losses announced during the three previous months. The idea is to capture whether 

the number of losses announced affects the intensity of transitions of the regime from one level 

to the other. In short, we use four distributions as follows: 
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( )
( )

( )
( )

=

=

+=

+=





1 1

2 2

12 0 12 1 112

22 0 22 1 222

1

2 4
t t

t t

, ,

, ,

x s N ,

x s ST , , ,

La logistic

La logistic .

µ σ

µ σ ν τ

η η

η η

  (3.6) 

Lastly: 

( ) ( ) ( )12 0 12 1 22 0 22 10 11 1 1 2 2, , , , 2n , , ,,  and =,..., , , , , ,η η η ηθ θ θπ π µ σ µ σ ν τ= = . 

 

3.1.3 Results and discussion 

 

We estimated four models, each of which has a density in each state. Operational risk 

distributions can be heavy-tailed, particularly in the high regime. It is then important to find a 

distribution that does not underestimate the tail quantiles and the regulated capital. We used 

three criteria for selecting the final distribution: goodness of fit, analysis of pseudo-residuals and 

estimation of skewness and kurtosis. 

 

We first started with a four-parameter distribution in the high regime, the GB2 distribution often 

used in the literature. The GB2 includes, as particular cases, many distributions with heavy tailed 

distributions (Cummins et al. 1990; McDonald et al. 1995). Due to space limitations, the detailed 

estimation results are presented in Dionne and Saissi (2016). Since our data are in logarithms, 

the exponential GB2 (EGB2) was analyzed. The EGB2 has a very similar likelihood function and 

pseudo-residuals results to the selected distribution below but underestimates the kurtosis and 

skewness. As Carillo et al. (2012) note, in some circumstances it may be impossible to obtain the 

desired tail behavior with a single parametric function. Splicing two different parametric densities 

may yield better results for the tail estimation. 

 

In Table 4 we present two models with spliced distributions in the high regime to better fit the 

tail.  We begin with the parameters of the distributions that we use in each state. In Model 1, we 

assume a normal distribution in each state ( )+N N , where the two density functions are as in 

(3.1) but with different parameters µ  and σ  in each state. The results in Table 4 indicate that 
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they are indeed different. We observe a higher mean and a higher standard deviation in the high-

loss regime (high period). Model 1 does not let us consider asymmetry in the high-loss regime. 

 

In Model 2 ( )+N SN , we integrate such asymmetry by first considering the skew normal 

distribution (SN) in state 2 while keeping the normal distribution in state 1. A skew normal can 

be represented by the following density function (Fernandez et al., 1995): 

( ) ( ) ( )
    − −    = < + ≥− −                  

2 2
2 2 2

2 2 22 2 2
2 2

1 1 1exp exp, ,
2 2

t t
t t t

x xf x c I x I xµ µµ µµ σ γ γ
σ σ γ

 

where 
( )

= ∈ > >
+

2 22
2

2 , , 0, 0
1

c γπ µ σ γ
σ γ

 and I is an indicator variable. γ  is an 

asymmetry measure. When =1,γ the SN distribution becomes the normal distribution. 

 

As indicated in Model 2 of Table 4, the consideration of the SN distribution in state 2 does not 

improve the estimation according to the AIC criteria. Moreover, the log ( γ ) parameter is not 

significantly different from zero, meaning that =1γ , rejecting the asymmetry of the normal 

distribution in state 2. In state 1, the estimated parameters of the normal distribution are very 

similar to those obtained in Model 1. 

 

We now consider Model 3, which corresponds to the normal distribution in state 1 and the ST4 

distribution in state 2 (N+ST4). The normal distribution, which models phases of low losses, has 

a mean of 2.4172 and a standard deviation of 0.7653. The two corresponding parameters are 

very significant and are similar to those in Model 1 and Model 2. Regarding the skew-t type 4 

distribution, its mean is estimated at 3.7872, whereas its standard deviation can be fixed to 1 (its 

log can be considered statistically null because it is non-significant). In the high regime, we still 

have a significant and simultaneous increase in the mean and in the standard deviation compared 

with state 1. In addition, the asymmetry of the skew-t type 4 is confirmed by the ( )log ν  

coefficient, significant at 10%, whereas the ( )log τ  coefficient is non-significant. We will validate 

these distributions below by performing a robustness analysis of our statistical results. According 
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to the AIC and log likelihood criteria, Model 3 outperforms the two other models but is similar to 

the EGB2. 

 

Table 4: Estimation of the Hidden Markov Model 

 Model 1 
+N N   

Model 2 
+N SN   

Model 3 
+ 4N ST   

 Variable Coefficient Variable Coefficient Variable Coefficient 

Probability of transition to high regime 
 Intercept 0.2879 

(0.7392) 
Intercept 0.3318 

(0.7648) 
Intercept 0.9772 

(0.8161) 
 L1 -1.4853*** 

(0.2001) 
L1 -1.5468*** 

(0.2766) 
L1 -1.7371*** 

(0.2798) 
Probability of staying in high regime 
 Intercept -25.3101*** 

(4.6082) 
Intercept 

 
-28.1742*** 

(5.2129) 
Intercept -25.7285*** 

(4.5707) 
 L2 11.5681*** 

(2.5745) 
L2 12.9137*** 

(3.1253) 
L2 11.7434*** 

(2.4739) 
Response distributions 
Low regime Normal law  Normal law  Normal law  
 1µ  2.4277*** 

(0.4366) 
1µ  2.4570*** 

(0.4546) 
1µ  2.4172*** 

(0.5876) 
 1σ  0.7685*** 

(0.2214) 
1σ  0.7979*** 

(0.2494) 
1σ  0.7653*** 

(0.2006) 
High regime Normal law  SN  ST4  
 2µ  4.0294*** 

(6.5251) 
2µ  3.3991** 

(1.5123) 
2µ  3.7872*** 

(0.5449) 
 2σ  1.2968*** 

(0.1683) 
2σ  1.0207*** 

(0.2370) 
( )2log σ  -0.0415 

(0.2546) 
   ( )log γ   0.5401 

(0.7609) 
( )log ν  2.7734* 

(1.4299) 
     ( )log τ  0.9492 

(0.8007) 
Log likelihood -152.566 -151.863 -148.838 
AIC criteria 323.132 323.726 319.677 
Number of observations 120.000 120 120 

Notes: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. The log likelihood of the EGB2 
is -148.785 and the AIC criteria is 319.570. 
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The estimation of Table 4 gives a value of ( )= =16 0132 7734exp ..ν  and ( )= = 2 5840 9492exp . ,.τ  

which measures a very large thickness of ST4 distribution tails. Nonetheless, given that the 

estimation of ( )log τ  in Table 4 is non-significant, ( )log τ  can be considered null, therefore 1.=τ  

The right distribution tail would be thicker in this sense.  

 

We now discuss the stages of the transition probability in Table 4. The coefficient of the variable 

L1 is significantly negative in the three models. Note that the number of losses is historically 

limited to between 7 and 20 per quarter. In Table 5, we present the estimated skewness and 

kurtosis obtained from the results. We observe that the ST4 distribution provides the better 

estimation of both measures. Figure 3 shows that the tail of the ST4 remains higher than those 

of the other distributions to the right of the log (loss) equal to 8 on the X axis. 

 
Table 5: Skewness and kurtosis analysis with different distributions in the high regime 

 Skewness Kurtosis 
Data (log) 1.192 5.974 
N 0.000 3.000 
SN 0.653 3.319 
ST4 1.119 6.127 
EGB2 1.008 5.093 

 

Figure 4 shows the Markov switching states detected with Model 3. Three facts emerge from the 

figure. First, there was almost no reaction to the recession of 2001 (2001-03 to 2001-11), and 

only a few fluctuations in probability transition around 2003-2005. In contrast, there is indeed a 

high regime detected during the recession starting in 2007 (2007-12 to 2009-06), with a first 

impetus lasting one month in December 2007, followed by two other variations. The first lasts 

five months, from July to November 2008 inclusively, and the second lasts six months, from 

August 2009 until January 2010 inclusively. The second impetus happens after the end of the 

recession. 
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Figure 3: Data histogram and right tail density of log of losses for different distributions 

 

 
Figure 4 Markov Regimes detected from January 2001 to December 2010 
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We now analyze precisely what happened for the two variations.5 To do so, we take the individual 

losses at the largest amounts, which represent at least 80% of the total lost during each period 

examined. We obtained information on the circumstances of these losses by gathering 

comments inserted in the loss database, which includes the Bloomberg and SEC (U.S. Securities 

and Exchange Commission) sites. 

 

As reported in Table 6, there were two losses of $8.4 billion each for the first variation. This 

amount is an all-time record for operational losses of BHC banks. The two losses represent over 

81% of the $20.6 billion lost during this first variation from July to November 2008. Both cases 

pertain to problems related to subprime loans. In addition, both banks agreed to settle the class-

action suits without waiting for a decision from the courts. There was thus no gap between the 

time the problems were observed and the date the losses were reported. This is not the case for 

most of the large losses in the period of the second variation, from August 2009 to January 2010. 

Table 7 shows six major losses for this period, which account for more than 80% of the total 

losses. These losses were subject to varying delays due to lawsuits. Consequently, the second 

peak fundamentally consists of a series of problems that arose during the financial crisis. The gap 

in time between the two variations seems to stem uniquely from legal procedures. 

 

Table 6: Summary of losses of BHC banks from July 2008 to November 2008  

 Bank Loss EventType BusLine Date % Loss 
1 Wachovia Bank 8.4 billion CliPBP RBn 2008-07-21 40.73 
2 CFC – Bank of America 8.4 billion CliPBP RBn 2008-10-06 40.73 
 Other (< 80%) 3.4 billion 30 losses    
 All 20.6 billion 32 losses    

 
 

                                                 
5 A more detailed discussion is presented in Dionne and Saissi (2016). 



17 
 

Table 7: Summary of losses of main BHC banks from August 2009 to February 2010 

 Bank Loss EventType BusLine Date % Loss 
1 Citibank N.A. 840 million ExeDPM TraS 2010-01-19 20.77 
2 Discover Financial Service 775 million CliPBP RBn 2010-02-12 19.16 
3 JP Morgan Securities Inc. 722 million CliPBP CorF 2009-11-04 17.85 
4 State Street Global Advis 663 million CliPBP AssM 2010-02-04 16.39 
5 Merrill Lynch and Company 150 million CliPBP CorF 2010-02-22 3.71 
6 Bank of America Corporation 142 million EF ComB 2009-09-21 3.51 
       

 Other (< 80%) 753 million 21 losses    
 All 4.05 billion 27 losses    

 

3.1.4 Specification Test of the Hidden Markov Model 

 

Below, we statistically test the validity of the HMM specification for our data, by following 

Zucchini and MacDonald (2009). In general, if a random variable y follows a law ℑ  whose 

cumulative function is F, the random variable defined by ( )u F y=  must follow a uniform law 

( )0 1U , . By noting as Φ  the cumulative function of the normal law, we should then have: 

( ) ( ) ( )( ) ( )10 1 0 1y u F U NFy y, ,−ℑ⇒ = ⇒Φ   . 

The variable obtained by ( )( )1z F y−= Φ  is called a pseudo-residual. If the specification ℑ  suits 

the data, the pseudo-residuals should follow a normal distribution. 

 
In our case, the vector of the pseudo-residuals of our Hidden Markov Model (Model 3) can be 

calculated with ( ) ( )−
− = Φ ≤ ⇒  t t t tz Pr y y y ,...,y z N .,1

1 1 0 1  

 
Figure 5 shows the following results. The distribution of the monthly losses (in log) is asymmetric 

(upper panel). The middle panel reproduces the monthly losses (in log) along with the estimated 

N + ST4 distribution where the normal component (N) is on the left-hand side. The skew t type 4 

(ST4) component is situated to the right of the mean to take this asymmetry into account. The 

distribution of pseudo-residuals looks quite close to normal (bottom panel). This is confirmed by 

the statistical tests in Table 8. We use three tests—Kolmogorov-Smirnov, Anderson-Darling and 
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Shapiro-Wilk, to ensure the normal distribution of the pseudo-residuals. For comparison 

purposes, Table 8 shows the result of the same tests done on the series of monthly mean losses 

(monthly losses, in log). Because of high asymmetry, the three tests reject normality at 5% for 

this series of losses, as expected.  

 
As for our model, the Anderson-Darling test gives a p-value of 0.0682 (Pseudo-residuals). This 

test does not reject normality even if the p-value is not far from 5%. Moreover, the Kolmogorov-

Smirnov and Shapiro-Wilk tests do not allow us to reject the normality of these pseudo-residuals, 

with p-values of 0.1540 and 0.1560 respectively. Therefore, despite a problem of a fat-tailed 

distribution demonstrated by the Anderson-Darling test, we can validate our Hidden Markov 

specification given the two other tests and especially the Shapiro-Wilk test, which measures the 

global probability relative to a normal distribution. Similar results were obtained with the EGB2. 

 
Table 8: Statistical tests  

 Test Monthly losses Pseudo-residuals 
       Statistic      p-value      Statistic      p-value 
1 Kolmogorov-Smirnov 0.1035 0.0039 0.0718 0.1540 
2 Anderson-Darling 0.3101 0.0020 0.6940 0.0682 
3 Shapiro-Wilk 0.9331 0.0000 0.9831 0.1560 
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Figure 5: Histograms of monthly losses and pseudo-residuals 

4 Effects of regimes detected  
 

We start with the loss estimation model of Dahen and Dionne (2010b): 

 ( ) ( )= + + + + +∑ ∑ ∑α β λ δ γ εit it j ijt k ikt t t it
j k t

log Loss log Assets BL ET T . (4.1) 

 

The dependent variable is log (Lossit) of bank i in period t. The independent variables are log 

(Assetsit), category variables Business Lines, BLijt, where j is for business line j, and category 

variables EventTypes, ETikt, where k is for event type k. The fixed time effects are dummy variables 

for years, Tt, and ε it  are independent error terms assumed normally distributed ( )σN 20, . 

 

We add the variable of the HMM regime in model (4.2) and its cross-loadings (interaction) with 

Business Lines and Event Types in (4.3). 
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 ( ) ( )= + + + + + +∑ ∑ ∑α β λ δ γ ξ εit it i ijt k ikt t t it
j k t

log Loss log Assets BL ET T RHMM 1 . (4.2) 

where RHMM is a dummy variable equal to one in the High HMM regime and equal to zero 

otherwise. 

 
( ) ( )= + + + + +

+ × + × +

∑ ∑ ∑

∑ ∑

α β λ δ γ ξ

λ δ ε

it it i ijt k ikt t t
j k t

j ijt k ikt ij
j k

log Loss log Assets BL ET T RHMM

BL RHMM ET RHMM .1 1 11
 (4.3) 

where λ j
1  and δk

1  are the coefficients for the interactions between explanatory variables and 

regimes in place. ε it
1  and ε it

11  are the normally distributed error terms. 

 

The regression results are presented in Table 9. Model 4.1 is the reference model. To simplify the 

presentation of the estimates, we do not report the coefficients of the year fixed effects 

coefficients (γ t ), because they are not pertinent to the discussion. “Yes” indicates their presence 

in the table. All standard deviations and p-values are robust to the presence of heteroskedasticity 

and clustering in the sense of White (1980). 

 
Table 9: Effect of regimes detected on log (Loss) 

Variable (4.1) 
Reference model 

(4.2) 
Adding HMM 

regime 

(4.3) 
Adding HMM 
regime and 
interaction 

Intercept -0.297 
(0.433) 

-0.260 
(0.446) 

-0.160 
(0.436) 

Log(Assets) 0.139*** 
(0.037) 

0.139*** 
(0.038) 

0.126*** 
(0.036) 

High HMM Regime  0.977*** 
(0.331) 

1.538* 
(0.791) 

Paymt and Settlmnt 1.261*** 
(0.438) 

1.199*** 
(0.438) 

1.196** 
(0.466) 

Trading and Sales 1.104*** 
(0.290) 

1.026*** 
(0.304) 

0.906** 
(0.372) 

Comm. Banking 1.182*** 
(0.167) 

1.117*** 
(0.164) 

1.159*** 
(0.172) 
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Retail Banking 0.930*** 
(0.207) 

0.867*** 
(0.207) 

0.827*** 
(0.171) 

Agency Services 1.223*** 
(0.413) 

1.161*** 
(0.435) 

1.532*** 
(0.443) 

Corp. Finance 2.056*** 
(0.237) 

2.063*** 
(0.250) 

1.999*** 
(0.294) 

Asset Mngmt 1.358*** 
(0.274) 

1.321*** 
(0.254) 

1.307*** 
(0.283) 

Bus.Disrup. syst.Fail. -1.080 
(0.687) 

-0.926 
(0.569) 

-0.878 
(0.630) 

Damage Phy.Assets -0.086 
(1.925) 

-0.044 
(1.923) 

0.047 
(1.953) 

Employ.Prac.Wrkplac.Saf. -0.676*** 
(0.252) 

-0.622** 
(0.254) 

-0.476** 
(0.224) 

External Fraud -0.502*** 
(0.157) 

-0.489*** 
(0.161) 

-0.433** 
(0.170) 

Internal Fraud -0.593*** 
(0.227) 

-0.524** 
(0.226) 

-0.304 
(0.211) 

Exer. Deliv. Proc. Mnmt -0.214 
(0.228) 

-0.217 
(0.230) 

-0.130 
(0.256) 

High Regime ×  
Employ.Prac.Wrkplac.Saf. 

  -2.321*** 
(0.513) 

High Regime ×  External Fraud   0.120 
(1.088) 

High Regime ×  Internal Fraud   -3.314*** 
(0.547) 

High Regime ×  Exec. Deliv. Proc. 
Mngmt 

  0.115 
(1.228) 

High Regime ×  Paymt and Settlmnt   -0.561 
(1.584) 

High Regime ×  Trading and Sales   0.317 
(1.248) 

High Regime ×  Comm. Banking   -1.511 
(1.266) 

High Regime ×  Retail Banking   0.401 
(1.075) 

High Regime ×  Agency Services   -4.491*** 
(1.114) 

High Regime ×  Corp. Finance   0.645 
(1.565) 

High Regime ×  Asset Mngmt   -0.249 
(0.963) 
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Year fixed effects yes yes yes 
Adj. R2 0.170 0.186 0.223 
AIC 1993.52 1985.23 1978.04 
Log Likelihood 
p-value Chi2 

-971.8 -966.6 
0.001 (4.2 vs 4.1) 

-952.0 
0.002 (4.3 vs 4.2) 

Num. obs. 508 508 508 
 

Note: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Clients, Products and Business 
Practices, Retail Brokerage, and Year 2001 are the omitted categories for Event Types, Business Lines, and 
Years respectively. 
 

The coefficient of the variable log (Assetsit) is very significant, which is consistent with this type 

of model, and confirms the results of Dahen and Dionne (2010b). The BL and ET coefficients tend 

to keep the same magnitude in all regressions. The coefficient of the high regime variable is very 

significant at 1% in model 4.2 but less significant in model 4.3, at 10%. In contrast, three 

interaction variables are significant at 1%. The presence of year fixed effects does not prevent 

the regimes from being significant. This suggests that the regimes detected cannot be explained 

by time. Comparison of the adjusted R2 of the models shows an advantage in injecting the high 

regime variable in 4.2 or interaction in 4.3. The AIC statistic and the Log Likelihood ratio test also 

confirm the superiority of model 4.3. That being said, we must perform backtesting on these 

models to evaluate their validity and calculate the reserve capital. Note that the loss database 

did not contain observations concerning BusDSF or DamPA where the Markov regime is high. This 

is why the coefficients corresponding to the cross-loadings are not presented in column 4.3. 

 

We must measure the effect of the regime levels on the loss frequencies to perform the backtest. 

We build the model around the zero-inflated negative binomial as in Dahen and Dionne (2010b). 

Let Y  be a random variable that follows a negative binomial law with average λ  and the 

dispersion parameterδ . If NBf  is the probability density function of this law, then the probability 

that Y  is equal to a value k is written as: 

 ( ) ( ) ( )
( )

Γ +    = = =    Γ + +   

δδ δλλ δ λ δ
δ δλ δλ

k

NB

k
Pr Y k f k

k

1
1 1

, , ,
! 1 1 1

 (4.4) 
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where ( )= Γ ⋅k 0,1,2,...,  and  designates the conventional gamma function. Note that > 0δ  

when there is overdispersion. Further, the negative binomial converges toward a Poisson law 

when → 0δ  (Dionne, 1992). When there are reasons to think that there are too many 0 values 

relative to a negative binomial, we should envision a model with a zero-inflated negative binomial 

law. Let Yij be a variable representing the number of losses sustained by bank i for the year j. If 

ijY  follows a zero-inflated negative binomial law, we can write: 

 ( ) ( ) ( )
( ) ( )
 −+ == =  − =

1 0, , 0
1 , , 1,2,...

ij ijij NB
ij

ij ijNB

qq f k
Y kPr

q kf k
λ δ

λ δ
  (4.5) 

where ijλ  is the mean and δ  is the dispersion parameter of the basic negative binomial law, and 

ijq  represents the proportion of zeros that would be too high relative to a negative binomial law. 

Conditionally on the explanatory variables chosen, ijλ  and ijq  are estimated using the two 

following equations: 

 
( ) ( )= + + +

+ +

λ ζ ζ ζ ζ

ζ ζ
ij ij j

ij ij

Assetslog log RHMM GDP

Bank-Cap Mean-Salary
0 1 2 3

4 5

 (4.6) 

 ( ) 
= + + + + − 
ξ ξ ξ ξ ξij

ij j ij
ij

q
Assetslog log RHMM GDP Mean-Salary

q 0 1 2 3 4 .
1

 (4.7) 

 
The last formula is equivalent to modeling ijq  using the logistic distribution. The variable log 

(Assetsit) is the total assets of banki (in log in period j) and the variable RHMM  is a dummy 

variable equal to one in the High HMM regime. Mean-Salaryij is the mean salary paid in the bank 

i in period j, Bank-Capij is the bank i capitalization in period j and GDPj is US Gross Domestic 

Product during the period j. 

 
The estimates are presented in Table 10. The dependent variable is the number of annual losses. 

In Model 1, we present the benchmark model to compare the effect of adding regimes. We used 

4,329 observations from January 2001 to December 2010, as documented in Table 1. We want 

to measure the effect of the HMM (high) regime in both the counting and zero parts. The idea is 

that during high regimes, we want to see whether inflated zeros are more numerous or not. 
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Model 2 adds this dimension in both parts. The High Regime coefficient is negative and significant 

at 10% in the count, and very significantly positive for zeros. Apparently, during high levels of the 

Markov regime, losses would be less numerous because the zeros come more from the inflation 

of the zeros (outside the negative binomial). The variable GDP is also very significant to explain 

excess zeros. To measure whether deflation of zeros provides statistical value, we compare this 

deflation model with the base Model 1. Given that the models are embedded, we performed the 

likelihood ratio test, whose results appear in the same table. The likelihood ratio test of Model 2 

versus 1 is conclusive, with a statistic of 46.53 and a p-value of almost 0. Model 2 using the 

Markov regime seems to provide more information than the reference Model 1 given the 

substantial decrease in the AIC criterion and the result of the likelihood ratio test. A final 

comment concerns the values of the log delta dispersion parameter of the negative binomial 

model. Starting with a value of 2.097 in Model 1, we reach 1.085 for Model 2, which is a clear 

improvement in the specification in the sense that there is less unobserved heterogeneity in 

Model 2. We can thus proceed to the backtesting of the model. 

 

Table 10: Effect of regimes on frequencies 

 Model 1 
Reference model 

Model 2 
Adding HMM regime 

Count model   
  Intercept -10.969*** 

(0.741) 
-11.370*** 

(0.424) 
  Log(Assets) 0.885*** 

(0.053) 
0.916*** 

(0.034) 
  High Regime  -0.531* 

(0.291) 
  GDP 0.018 

(0.034) 
0.011 

(0.039) 
  Bank-Cap 4.428*** 

(0.933) 
4.103*** 

(0.705) 
  Mean-Salary -0.751 

(0.913) 
-1.642* 
(0.841) 

  Log(δ ) 2.097*** 
(0.634) 

1.085*** 
(0.417) 

Zero-inflated model   
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  Intercept 1.176 
(1.681) 

-4.580* 
(2.712) 

  Log(Assets) -0.176 
(0.120) 

-0.149 
(0.202) 

  High Regime  7.888*** 
(2.502) 

  GDP 0.001 
(0.109) 

2.734*** 
(0.787) 

  Mean-Salary 1.466 
(2.569) 

-48.468** 
(23.625) 

AIC 1640.089 1597.558 
Log Likelihood -810.044 -786.779 
Log-Likelihood ratio test 
- Statistic 
- p.value 

  
46.530 

0.000 

Number of observations 4329 4329 
 

Note: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 

 

5 Backtesting and robustness analysis 

This section has a dual objective. First we want to construct a backtesting procedure for our 

model with regimes to determine its validity.6 We also want to measure the extent that ignoring 

the existence of additional regimes in our operational loss data biases calculation of reserve 

capital if this reality is not formally considered. 

 

5.1 Operational loss capital 

The period selected to calculate coverage is January 2010 to December 2010. This period will be 

denoted by C. The regime is high for the month of January and low for the 11 other months. We 

number our two models as follows: Model 1 base model and Model 2 Markov regime + 

interaction with Business Lines and Event Types. To extend Dahen and Dionne (2010b), we 

construct our backtesting by taking into account regimes detected. Out-of-Sample backtesting 

                                                 
6 We do not consider the model N+SN (Model 2) of Table 4 because it is inferior to N+ST4 and N+N. 
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does not include the period covered in the history, which lasts from January 2001 to December 

2009 (denoted by H). For each model, the data from the periods H and C are scaled according to 

the estimated coefficients in Table 9. For a given bank, scaling is based on the mean value of log 

(Assets) of the bank during period C. Once scaled for a given bank, the historical losses (H) can be 

considered to follow a lognormal distribution. If we consider the bank U.S. Bancorp, the 

Kolmogorov-Smirnov test gives a statistic of D = 0.1328 and p-value = 0.1979. Because the 

lognormal law is the null hypothesis, the test does not allow us to reject it. Given the linearity in 

log (Assets) of the two models, we can conclude that the lognormal is valid for all banks in our 

BHC sample. We estimate the frequency according to Table 10. 

 

We start with a random sample of 2,000 observations from the NB distribution. For each of the 

2,000 numbers or counts, we draw random observations obtained from the lognormal 

distribution to compute the convolutions. By repeating the experience 100 times, we generate 

200,000 observations for the backtest. This gives us a distribution for which we calculate the 

reserve capital (VaR) for four degrees of confidence: 95%, 99%, 99.5% and 99.9%. The 99.5% 

degree of confidence lets us evaluate the thickness of the distribution tail, and gives us an idea 

of what is happening when the VaR at 99.9% is not exceeded. Results are presented in tables 11 

and 12. 

 

Regarding statistical tests for the VaR, we performed the Kupiec (1995) test, which evaluates the 

number of values in excess of VaR, followed by the DQ test by Engle and Monganelli (2004) to 

measure the independence of these values. Lastly, the Christoffersen (1998) test helps us 

determine the conditional simultaneous coverage of frequency and independence of the values 

in excess of VaR. 

 

We have 445 losses recorded for the period H and 63 for the period C, which gives us 508 losses. 

We must calculate the probable losses that a given bank incurs during period C. Accordingly, the 

63 losses of C are scaled to the size of the bank, and each loss is multiplied 56 times by the scaling 

of the models to simulate all 8 BusinessLines and 7 possible EventTypes according to the Basel 
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nomenclature (see Table 3). This lets us manage operational risk in all possible cases. The 63 

losses therefore generate 3,528 possible losses, on which we perform statistical backtesting. The 

scaling covers all historical losses of H.  

 
We perform the calculations for two banks. The first, in Table 11, is U.S. Bancorp (as in Dahen 

and Dionne, 2010b). Results show that the DQ test rejects the VaR at 99.5% for base Model 1 (no 

regime). The VaR is not rejected for the other tests at all degrees of confidence of Model 1. The 

bank’s total assets are $290.6 billion, and reserve capital at 99.9% represents 1.02% of assets. 

Model 2 shows a small weakness in the frequency of values in excess of VaR at 99% but we do 

not reject the model at 1%. Regarding the estimated reserve of capital, it is lower in Model 2 than 

for the benchmark Model 1, $2,060.7 million for VaR at 99.9%. 

 
We conclude with two important remarks. The first is that both models are validated by 

backtesting. The second is that capital calculated with Model 2 is below that calculated for Model 

1. This affirms a temporal bias during the high-loss period. Using the calculation of Model 2, this 

bias for U.S. Bancorp is (2957.4-2060.7)/2957.4, which is very high, at 30.3%. 

 
As further proof, we do the same process for a second BHC bank: Fifth Third Bancorp (Table 12). 

Its size is $111.5 billion. We obtain largely the same pattern. Model 2 is still the least capital 

expensive. If we consider Model 2 valid, the savings in reserve capital at 99.9% would be (1722.6-

1291.5)/1722.6 = 25%. Further, the cross-loading of regimes with business lines and event types 

seems to capture the fact that these variables do not have the same effects during different 

phases of the regimes. 
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Table 11: Backtesting of U.S. Bancorp bank1 

 Backtesting Confidence 
level Frequency 

VaR2 
Kupiec test DQ of E-M Christoffersen 

 Theoretical Observed Stat. p.value Stat. p.value Stat. p.value 
Reference model 95% 0.050 0.043 269.7 1.760 0.1846 2.359 0.6701 2.550 0.2795 
(Model 1) 99% 0.010 0.012 842.3 0.479 0.4887 1.404 0.8434 0.479 0.7869 
 99.5% 0.005 0.008 1289.7 2.385 0.1225 14.792 0.0052 5.027 0.0810 
 99.9% 0.001 0.002 2957.4 1.991 0.1583 2.751 0.6003 1.991 0.3696 
HMM regimes and interactions         
(Model 2) 95% 0.050 0.043 209.0 1.760 0.1846 3.430 0.4886 1.844 0.3977 
 99% 0.010 0.016 619.3 5.730 0.0167 9.258 0.0550 5.730 0.0570 
 99.5% 0.005 0.004 913.6 0.116 0.7334 0.208 0.9949 0.116 0.9436 
 99.9% 0.001 0.002 2060.7 0.666 0.4145 0.826 0.9349 0.666 0.7169 
1 Value in bold means model rejected at 1%.  
2 In millions of US dollars. 
 

Table 12: Backtesting of Fifth Third Bancorp bank 

 Backtesting Confidence 
level Frequency 

VaR1 
Kupiec test DQ of E-M Christoffersen 

 Theoretical Observed Stat. p.value Stat. p.value Stat. p.value 
Reference model 95% 0.050 0.038 115.0 5.590 0.0181 7.547 0.1097 5.816 0.0546 
(Model 1) 99% 0.010 0.007 430.7 1.553 0.2127 1.614 0.8063 1.553 0.4600 
 99.5% 0.005 0.004 689.8 0.484 0.4867 0.511 0.9724 0.484 0.7851 
 99.9% 0.001 0.003 1722.6 3.822 0.0506 5.812 0.2137 3.822 0.1479 
HMM regimes and interactions          
(Model 2) 95% 0.050 0.042 94.4 2.783 0.0953 4.984 0.2889 2.804 0.2461 
 99% 0.010 0.013 338.1 1.829 0.1762 3.369 0.4980 1.829 0.4007 
 99.5% 0.005 0.007 522.6 1.570 0.2102 2.205 0.6981 1.570 0.4562 
 99.9% 0.001 0.003 1291.5 6.057 0.0138 10.012 0.0402 6.057 0.0484 
1 In millions of US dollars. 
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5.2 Number of states in HMM model 

 

To provide a robustness analysis of our research, we raise two questions. First, can we statistically 

justify that a combination of two normals, instead of one normal and an ST4, would have been 

insufficient? The second question is whether the regime should have three levels rather than 

two. A three-level regime would be a mixture of two normals plus an ST4 (skew-t type 4). To 

summarize, we compare our model N+ST4 with two other models: N+N and 2N+ST4. 7 We tested 

the normality of the pseudo-residuals of the three models as shown in Table 13. First, concerning 

the model N+N with two levels, all three p-values are below 10%. The data clearly show that this 

model is inadequate. Regarding the three-level model 2N+ST4, we have p-values of 0.0559, 

0.0678 and 0.1863 for Kolomogorov-Smirnov, Anderson-Darling and Shapiro-Wilk respectively. If 

we apply the tests at 10%, two tests reject the three-level model, whereas only Anderson-Darling 

indicates a problem for the two-level N+ST4. In addition, the value of the AIC criterion of the 

model 2N+ST4 is 325.59 versus 319.68 (Table 4) for our two-level model N+ST4, which implies 

deterioration in performance for the 2N+ST4 model. This deterioration is more evident when we 

use the BIC criterion, which becomes 380.66 for the three-level model, compared with 350.34 

for the model N+ST4. We therefore reject the three-level model 2N+ST4 at a level of confidence 

of 10%. Consequently, we retain the two-level specifications with a normal law in the low state 

and one skew t type 4 for our extreme observations. 

 
Table 13: Statistical tests on pseudo-residuals presuming the existence of a 3-level model 

 (1) 3-level model (2) 2-level model (3) 2-level model 

 2N+ST4 N+ST4 N+N 

1   Kolmogorov-Smirnov 0.0819 0.0559 0.0718 0.1540 0.0849 0.0408 
2   Anderson-Darling 0.6950 0.0678 0.6940 0.0682 0.7873 0.0400 

3   Shapiro-Wilk 0.9839 0.1863 0.9831 0.1650 0.9790 0.0678 
 

                                                 
7 The estimation results of the model 2N+ST4 are not presented here but are available from the authors. 
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Conclusion 
 

In this article, we demonstrated that considering business cycles can reduce capital (at 99.9%) 

for operational risk by redistributing it between high regime and low regime states. The variation 

of capital is estimated to be between 25% and 30% in our period of analysis. We also provide 

evidence that court settlements significantly affect the temporal distribution of losses. Several 

large losses were reported after the financial crisis of 2007-2009 owing to these delays. This 

phenomenon is not new; it has also been observed in the insurance industry.  

 

Several extensions of our study are possible. The most promising would be to test the stability of 

the results using different regime detection methods (Maalaoui, Chun et al., 2014). Specifically, 

an effective real-time regime detection approach should consider the asymmetry observed in 

this article. This approach would notably allow separate analysis of level and volatility regimes. 

 

Another possible extension is to use a different approach than the scaling of operational losses. 

Some banks use the Change of Measure Approach proposed by Dutta and Babbel (2013). It would 

be interesting to examine whether the results of this approach can remain stable by introducing 

cycles in the data.  
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Appendix 1: The Baum-Welch algorithm 
 

We start with a vector of initial arbitrary values ( )0θ . EM is an iterative process. Each iteration is 

made up of two steps, E and M. For each iteration ( )k , step E is to calculate a function Q defined 

as the mathematical expectation of the log probability, if we know the sequence 1:Tx  and using 

the value of the parameters ( )kθ  such that: 

 ( )( ) ( ) ( ) ( )
1 1 1 1k

kk
:T :T :T :TQ E logPr x ,s z , x ,, θ

θ θθ θ  =   . (A.1) 

 

Then, in step M, we look for the value of the vector θ  that maximizes ( )( )kQ ,θ θ . This gives us a 

new set of parameters to find, namely: 

 ( ) ( )( )1k kargmaxQ .,
θ

θ θ θ+ =   (A.2) 

( )1kθ +  will be compared with ( )kθ  to verify the convergence criteria. In the absence of 

convergence, ( )1kθ + will serve as an entry for the following iteration 1k + , and so on. The Baum-

Welch algorithm has been shown to always converge (Rabiner, 1989). 

 

Because it is a mathematical expectation, the quantity Q corresponds to computing a weighted 

sum of all of the possible probabilities for each of the three members to the right of equation 

(3.5) in the paper. This gives: 

 

( )( ) ( ) ( )
( ) ( )

( ) ( )

1 1 1 1 0

2 1 1 1 1 1

1 1 2

nk
j

T n n
t j k t t t t

T n
t j t t t t

Q logPr s j z ,j,

logPr s k s j ,z ,j ,k

logPr x s j ,z ,j

γ θθ θ

δ θ

γ θ

=

= = = − −

= =

= ∑ =

+∑ ∑ ∑ = = +

∑ ∑ =

 (A.3) 

where functions tδ  and tγ  represent the weights to calculate the mathematical expectation. 

Using the notation ( ){ }1
k

:TM z ,θ=  to simplify the expressions, these weights tδ  and tγ  are 

written as: 

 ( ) ( )1 1t t t :TPr s k ,s j x ,Mj ,kδ += = =  (A.4) 

 ( ) ( )1t t :TPr s j x ,Mjγ = =  (A.5) 
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To calculate the probabilities tδ  and tγ , let us define two probabilities tα  and tβ  such that for 

all 1i =  to n regimes: 

 ( ) ( )1t :t tPr x ,s ii Mα = =  (A.6) 

 ( ) ( )1t t :T tPr x s i ,Miβ += = . (A.7) 

 
In the literature, tα  is called a forward probability because of the relationship of recurrence 

( ) ( ) ( )1i t ijt j ta f x .j iαα −∑=     Similarly, tβ  is called a backward probability because of the 

relationship: 

( ) ( ) ( )1 1j t ijt j ta f xji ββ + +∑=     with ( ) 1T iiβ = ∀ . 

 
The derivation of these relationships with vector notation is almost immediate, as in Zucchini and 

MacDonald (2009), by writing the probability function: 

 ( ) 1 2 21 1T t t T T:TL Pr B A B ...A B ...A B 'x M π= = . (A.8) 

 
By cutting the cross-product of equation (A.8) at time t, we have 1 2 2t t tB A B ...A Bα π=  and 

1 1 1t t t T TA B ...A B 'β + +=  (with 1'
T 'β = ). Hence 1t t t tA Bα α −= ×  and 1 1 1t t t tA Bβ β+ + += × , which is the 

equivalent, in matrix notation, of the preceding forward and backward recurrence relationships. 

Now that our vectors tα  and tβ  have been calculated, we can calculate the weight tδ  given that 

( ) ( ) ( ) ( )1 1 1t t k t t jk Tf x a 'j ,k j kδ α β α+ += × × ×  as derived here: 

( )t j ,kδ  ( )1 1t t :TPr s k ,s j x ,M+= = =  

 ( ) ( )1 1 1t t :T :TPr s k ,s j ,x Pr xM M+= = =  (A.9) 

 ( )1 1 2 1 1:t t t :T t t :T TPr x ,x ,x ,s k ,s j ,x LM+ + += = =  (A.10) 

 ( ) ( )1 1 2 1 1:t t t t :T t :t t TPr x ,s j Pr x ,x ,s k x ,s j ,M LM + + += = = =  (A.11) 

 ( )1:t tPr x ,s j M= =  (A.12) 

 ( )1 2 1 1t t :T t :t tPr x x ,s k ,x ,s j ,M+ + +× = =  (A.13) 

 ( )2 1 1t :T t :t tPr x s k ,x ,s j ,M+ +× = =  (A.14) 
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 ( )1 1t :t t TPr s k x ,s j ,M L+× = =  (A.15) 

 ( ) ( ) ( )1 1 1t k t t jk Tf x a 'j kα β α+ += × × ×  (A.16) 

 
Equation (A.9) is obtained by simple application of Bayes’ theorem. In (A.10) the sequence 1:Tx  is 

cut into three pieces: from 1 1 1:t t :tx ,x + +  and 2t :Tx +  using ( )1T :TL Pr x M=  defined in (A.8). Equation 

(A.11) and equations (A.12) to (A.15) also use the Bayes model. Equation (A.12) is the direct 

expression of ( )t jα . Equation (A.13) is simplified to ( )1 1t tPr x s+ +  because 1 1t tx s+ +  is known 

independently from 2t :Tx +  and from ts  (by the very construction of the HMM). In equation (A.14), 

the sequence 2 1t :T tx s+ +  is independent from 1:tx  and from ts . Lastly, on line (A.15), because 

1t ts s+  do not depend on 1:tx  , the expression is reduced to ( )1t tPr s k s j ,M+ = =  which is equal 

to jka  in (A.16). It now remains to be shown that ( ) 1T j T TL ' .jα α= ∑ =  Based on definition (A.6) 

applied to ( ) ( )1T :T Tt T , Pr x ,s ii Mα= = = , the sum of ( )T iα  on all i possible states must give the 

probability ( )1:TPr x M , because the system is necessarily and exclusively in one or the other of 

the i states. The same reasoning permits us to find ( )t jγ  in function of tδ  noticing that  

( ) ( )11 1t k t t:T :TPr s j Pr s k ,s jx ,M x ,M+= = ∑ = = . 

Hence, 

 ( ) ( )t t
k

j j ,kγ δ= ∑ .  (A.17) 

 

To summarize the construction of probabilities  and , we first calculate tδ  which in turn 

yields tγ . From this point, we can calculate the function ( )( )kQ ,θ θ  to find ( )kθ θ=  which 

maximizes Q. This advances the EM process until convergence to obtain the vector θ  of the final 

application parameters of the HMM. For our estimation, we have used the functions available in 

the package depmixS4 (Visser and Speekenbrink, 2010) with the skew t type 4 function of the 

gamlss package (Rigby et al, 2014), in R language by r-project.org. 

 

tα tβ
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Appendix 2: Tables and figures for HMM: N+EGB2 
 

We also considered the GB2 distribution for the high regime while continuing with the Normal 

distribution for the low regime. The GB2 distribution is very general, having as particular cases 

many well-known distributions such as the Generalized Gamma, log t-student, Burr-3, Burr-12, 

Weibull and many others (Cummins et al., 1990; McDonald and Xu, 1995). This is a four-

parameter distribution, well accepted for estimating the asymmetry of a distribution and the 

fatness of the tail. 

 

Because our data are in logarithms, we must consider the exponential GB2 (EGB2). For 

( )∈ −∞ +∞,y , the density of the EGB2 is equal to: 

( ) +=
× × +

| , , ,
| | ( , ) (1 )

pz

z p q

ef y a b p q
b Beta p q e

 

where −
=

y az
b

, a and b ∈ , p and q > 0, | |b  is the absolute value of b and Beta is the Beta 

function. The EGB2 is positive asymmetric when p > q and negative asymmetric when p < q. The 

estimation results of the EGB2 parameters are presented in Table A1. According to the log 

Likelihood and AIC criteria, the EGB2 is equivalent to the N + ST4 distribution. 
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Table A1: Parameters estimations of HMM with N +EGB2 

 Model 3 
+ 4N ST  

Model 4 
𝑁𝑁 + 𝐸𝐸𝐸𝐸𝐸𝐸2 

 Variable Coefficient Variable Coefficient 

 Intercept 0.9772 
(0.8161) 

Intercept 0.7468 
(0.7982) 

 L1 -1.7371*** 
(0.2798) 

L1 -1.6572*** 
(0.3088) 

 Intercept -25.7285*** 
(4.5707) 

Intercept 
 

-26.2582*** 
(4.9796) 

 L2 11.7434*** 
(2.4739) 

L2 12.0088*** 
(2.5634) 

Low regime Normal law  Normal law  
 𝜇𝜇1 2.4172*** 

(0.5876) 
𝜇𝜇1 2.4197*** 

(0.6840) 
 𝜎𝜎1 0.7653*** 

(0.2006) 
𝜎𝜎1 0.7682*** 

(0.2075) 
High regime ST4  EGB2  
 𝜇𝜇2 3.7872*** 

(0.5449) 
𝑎𝑎 0.8725** 

(0.4161) 
 log (𝜎𝜎2) -0.0415 

(0.2546) 
𝑏𝑏 1.0359*** 

(0.2494) 
 log (𝜈𝜈) 2.7734* 

  (1.4299) 
log (𝑝𝑝) 2.6096*** 

(0.4235) 
 log (𝜏𝜏) 0.9492 

  (0.8007) 
log (𝑞𝑞) 0.0927 

(0.2427) 
Log likelihood -148.838    -148.785 
AIC criteria 319.677 319.570 
Number of observations 120.000 120 

Note: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 
 

Figure A1 shows that the tail of the ST4 remains higher than those of the other distributions to 

the right of the log (loss) equal to 8 on the x axis. 
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Figure A1: Data histogram and density of log of losses from different distributions 

 

Another criterion used to retain the ST4 is related to the normality of the pseudo-residuals, as 

shown in Table 8 of the paper. Table A2 presents the results of the three tests for the EGB2. 

 
 
Table A2: Normality tests of pseudo-residuals of HMM using N+EGB2 

 Test Pseudo-residuals 
       Statistic      p-value 
1 Kolmogorov-Smirnov 0.0818 0.1206 
2 Anderson-Darling 0.7937 0.0391 
3 Shapiro-Wilk 0.9904 0.1133 

 
 

Here again, the results are very similar to the ST4, although the Anderson-Darling test rejects 

normality even if the p-value is not far from 5%. The ST4 was not rejected at 5% with the three 

tests. Finally, we have estimated the skewness and the kurtosis obtained from different 

distributions. Results in Table A3 show that the ST4 provides the best results. 
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Table A3: Skewness and kurtosis analysis with different distributions in the high regime 

 Skewness Kurtosis 
Data (log) 1.192 5.974 
N 0.000 3.000 
SN 0.653 3.319 
ST4 1.119 6.127 
EGB2 1.008 5.093 

 

 

 


