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Abstract

This article follows a previous study on insurance fraud in the Quebec automobile insurance industry
(Dionne and Belhadji, 1996).  Results from that research showed that 3 to 6.4% of all claim payments
(excluding those for "glass damage only") contained fraud, representing 28 to 61 million dollars in
1994-1995.  This evaluation was a minimum since it was limited to observed fraud only.  In this paper,
we apply a statistical method to estimate the total fraud level in the industry for the same period.  Our
results show a multiplicative factor of 3.4% of fraudulent files found in Dionne and Belhadji, which
means that total fraud payments ranged from 96.2 to 208.4 million dollars in 1994-1995.  Our Best
Guess Estimator yields roughly a 10% fraud rate or about 113.5 million dollars.  An interesting corollary
in this finding is that the claim adjusters who participated to the survey (representing 70% of the
market), observed only 1/3 of the potential frauds in the studied closed files.  One can interpret this
number as an index of efficiency for the entire verification process in the industry.  A natural question is:
Why is this index of efficiency so low?  (JEL : G14, G22, D82)

Keywords: Insurance fraud, Quebec automobile insurance industry, observed fraud, estimated fraud,
hidden phenomenon, claim adjusters, count data estimators, robustness.

Résumé

Cet article présente une extension d'une étude sur l'évaluation de la fraude à l'assurance dans
l'industrie de l'assurance automobile du Québec (Dionne et Belhadji, 1996).  Les résultats de cette
recherche indiquaient que 3 à 6,4 % des montants des réclamations payées (excluant ceux pour bris
de vitre seulement) étaient frauduleux, soit un total des réclamations variant entre 28 et 61 millions de
dollars en 1994-1995.  Cette évaluation était un plancher, car elle était limitée à la fraude observée
seulement.  Dans cette recherche, nous appliquons une méthode statistique qui permet d'évaluer la
fraude totale dans l'industrie pour la même période.  Nos résultats multiplient par 3,4 le pourcentage
de dossiers frauduleux obtenus dans Dionne et Belhadji, ce qui représente un total de réclamations
variant de 96,2 à 208,4 millions de dollars en 1994-1995.  Notre Meilleur Estimateur génère un taux de
fraude de 10 % ou 113,5 millions de dollars.  Un corollaire intéressant de ce résultat est que les
enquêteurs des entreprises qui ont participé à l'enquête (représentant 70 % du marché) ont observé
seulement 1/3 de la fraude potentielle dans les dossiers fermés étudiés.  Nous pouvons interpréter ce
ratio comme un indice d'efficacité du processus de vérification de l'industrie.  Une question naturelle
est: Pourquoi cet indice est-il si faible ?  (JEL : G14, G22, D82)

Mots clés:Fraude à l'assurance, industrie québécoise de l'assurance automobile, fraude observée,
fraude estimée, phénomène dissimulé, enquêteurs, estimateurs de données de
comptage, robustesse.



Introduction

This article follows a previous study on insurance fraud by Dionne and Belhadji (1996).  It uses the

same data bank.  Eighteen companies have contributed to the survey of this study, representing 70%

of the Quebec automobile insurance market in 1994.  Claim adjusters randomly reopened 2,509

closed files, or 2,772 coverages, to evaluate the significance of insurance fraud.

Results from this study showed that 3 to 6.4% of all claim payments contained fraud, representing

28 to 61 million dollars in 1994-1995. This evaluation was a minimum since it was limited to observed

fraud only.  Their definition of fraud included build-up, opportunistic fraud and planned fraud (see

Weisberg and Derrig (1993) for a detailed discussion of different fraud definitions; for recent studies on

insurance fraud, see the "References" section).

The objective of this paper is to apply a statistical method to estimate the total fraud level in the

industry. From the data, investigators found 19 established fraud cases out of the 2,772 coverages,

and 123 suspected cases with a degree ranging on a scale from 1 to 10, where 10 means that the

case was suspected of having a probability of being fraudulent close to one.

If one considers that only the coverages with established fraud are actually fraudulent, then one

obtains a 0.69% fraud level. One can also think that the established and the suspected cases are all

fraudulent with a probability equal to one. This observation yields a 5.1% fraud level for the 2,772

coverages or 5.4% for the 2,454 closed files with complete information. In both cases the assumptions

are extreme and are limited to observed fraud.

Another possibility is to start with the assumption that, when fraud is established, these coverages

are fraudulent with a probability equal to one. This yields a 0.69% lower bound for fraud. We can also

say that suspected coverages are "more likely" to represent fraud than the unsuspected ones. In other

words, we can assume that at least "some" of these other coverages contain some fraud.

But one may ask: To what extent does the observed fraud underestimate the real fraud? Are we

seeing the whole picture or just the tip of an iceberg? This paper proposes an answer.

In the following sections the methodology used for the estimation process is presented and major

problems encountered are discussed. A succeeding section presents some estimation results obtained

from the data in Dionne and Belhadji (1996), and the last section will wrap-up the results and interpret

them in terms of claim payments for the industry. The main results are interpreted in the concluding

section.

Problems and Method



In standard statistical evaluations of a ratio, both the numerator and the denominator are perfectly

observable. With some subset of the population one can get a robust estimator of the seeked

proportion.

The major problem when we have to evaluate the significance of fraud in a given market, is one of

estimation. We cannot find easily a proportion of fraud over all coverages because the numerator of

this proportion is hidden information. In other words, we do not know with certainty the value of this

numerator even in the sample. Consequently, we have to resort to a count data estimator of some

hidden phenomenon. The major statistical problem associated with these estimators is their lack of

robustness.

Figure I will help to illustrate the problem. Set F represents total fraud in the market while sets E

and S show respectively the established and suspected fraud. Clearly, for "fraud proportion" the

cardinal of set F is what we are looking for to be our numerator over total claims.

Figure I

 The result given in Dionne and Belhadji for observed fraud (19 fraud cases or 0.69%) is

represented here by the shaded set E. Since set E is the Established fraud set, then clearly, it is



completely contained in the total fraud set F. Set E is in fact a lower bound for set F. Established fraud

(set E) is known but it is only part of the total fraud (set F).

We also have a Suspected fraud set (S) with a degree of suspicion for each claim in that set. Some

of these suspected fraud cases are really fraudulent, hence they are part of set F, noted here as "S

and F". In Dionne and Belhadji (1996), we could see several assumptions on the size of "S and F"

ranging from 0 and yielding 0.69% fraud, to 100% of set S and yielding 5.1% fraud. Whatever the

assumption used, the total fraud set F was only composed of Established fraud E plus some part of

the Suspected fraud S, with the remainder of set F being empty. In other words, Dionne and Belhadji

(1996) assumed that claims that are neither established nor at least suspected fraudulent by claim

adjusters are never fraudulent.

In order to estimate the cardinal of set F we have to use a count data estimator. The origins of

count data estimators date back to Student with Poisson's law, which is well suited for rare

occurrences. The advance in genetic science led Fisher to consider the problem with the Negative

Binomial law. The Binomial law, for the purpose at hand, was first considered by Binet (1954) and had

two major properties.

The first property is that this law has an implicit lower bound, which is the observed number of

success in the data. For example, one cannot obtain "100" from a Binomial law with parameters 70

and p, Bin(70,p), no matter what "p" is. So, if the number of established fraud cases in some set is 15,

we cannot assume with the Binomial law to have, say, 10 fraudulent cases in this set.

The second property is one of intuition regarding the definition of "p". If we assume that the number

of detected fraud we find in any set follows a Bin(n, p), with "n" being the total number of fraud cases,

then, by definition, "p" will be the conditional probability of detecting a fraud, given that the claim is

fraudulent. So, if we can estimate this "index of efficiency" of claim adjustment staff, we can also find,

as a by-product, the total number of fraud, which is what we are mainly looking for.

For example, if we find that a claim adjuster will detect a fraud, given the claim is fraudulent with a

probability of 0.5, then according to the Binomial law, since E[X] = np, we should double our findings in

order to get "n", the total number of fraudulent cases: n = E(X)/0.5 where E(X) is the expected number

of fraud cases.



Model

Therefore, our assumption is that the detection process of fraud follows a Bin(n,p), with "n" and "p"

being the unknown parameters. A method to estimate these parameters is the Method of Moments.

Since there are two parameters in this estimation process, one then needs at least two moments,

E[X] and Var[X]. Since our objective is to compute a variance between each group; consequently we

need more than one group. For that reason, one has to use a stochastic process to put the data into a

number of sets S1, S2, ... , SK.

There is a trade-off in the choice of the number of sets (K). When K is large, the moments are

more stable and precise. But as K increases, it becomes more difficult to maintain the Binomial

assumption that each set has the same Bin(n,p). The "p" parameter does not change, but the more

groups we have, the less elements we have in each group and hence, the less we can say that there is

the same number "n" of total fraud cases in each group.

We therefore have to choose a K, or repeat the same experiment with different values of K, and

verify how large the variations are between the results for different K's. We will further comment on this

point in the next section.

Once we have chosen the number of groups, we can proceed with the estimation of the two

moments, and then find the estimation of the two parameters, "n" and "p", as follows.

Let us use the notation µ and σ2 for the mean and the variance, respectively:

µ  = E[X] =  np,

σ2 = V[X] =  np(1−p).

Then, we can easily find that n = µ2/(µ−σ2).

However, a major problem arises. As we can see, when µ → σ2 then n → ∞. This estimator is not

robust, which means that little variations in the data will lead to big changes in the estimation. For that

reason, we have to use a process to stabilize the estimation. The process used was found and

described by Olkin, Petkau and Zidek (1981). Their estimator from the method of moments solves:

Max{σ2ψ2/(ψ −1),Xmax}

where,

ψ = µ/σ2, when µ/σ2 ≥ 1 + 1/√2

= max{z/σ2,1+√2}, otherwise

and,

z = (Xmax−µ)/σ.



Results

We first present the results of one experiment done with six sets of 462 coverages. This experiment

represents the average of a thousand estimations with the method described above. Each estimation

is not stable, but when we take an average of a hundred or so, the results become much more reliable.

Occurrence Estimation

(n) (n/N)% (n) (n/N)% (p)

E 19 0.6852 10.9449 2.3690 0.2893

E+(S>9) 38 1.3704 22.1362 4.7914 0.2861

E+(S>8) 48 1.7310 27.7267 6.0015 0.2885

E+(S>7) 62 2.2358 35.449 7.6729 0.2915

E+(S>6) 71 2.5604 41.9 9.0693 0.2824

E+(S>5) 78 2.8128 43.7889 9.4781 0.2969

E+(S>4) 100 3.6062 56.4136 12.2107 0.2954

E+(S>3) 108 3.8947 59.4966 12.8781 0.3025

E+(S>0) 127 4.5799 69.5356 15.0510 0.3044

E+S 142 5.1208 76.3894 16.5345 0.3098

Table I: Results with Six Sets ( N = 462 )
The first column represents the detection assumption, which is: "What do we consider as detected

fraud?". In terms of figure I, "E" represents the entire set E or the Established fraud set. "S" stands for

the Suspected fraud set or that portion of the set which is calculated as fraud detection. Again, in terms

of Figure I, S gives the part of set S that is included in set F, or the proportion of set (S and F) over set

S. Therefore, the detected fraud set will be set E plus set (S and F).

For example, "E+(S>4)" means that set (S and F) is composed of all the suspected fraud cases

that have a suspicion degree higher than 4 in the data set of Dionne and Belhadji (1996). That degree

of suspicion was included in the data bank and was given by claim adjusters as a "probability of being

fraudulent". Hence, in this example, "E+(S>4)" means that for this detection assumption, we calculate

as detected fraud cases as follows: Set E, entirely, plus all suspected cases with a "probability of being

fraudulent" equal to 0.5 and higher.

The detection assumption ranges from "E", the more Optimistic one, found in the first row, where

only Established fraud cases are considered as Detected fraud cases, to "E+S", the more pessimistic

one, under which all cases of either Established or Suspected fraud are considered as Detected fraud

cases.



The second and third columns present the results of the claim adjusters as taken directly from the

data bank, and the percentages of fraud proportion. These figures are the observed cardinals of set E

plus set (S and F).  For example, in the first detection assumption, only 19 cases in the data bank were

Established as fraudulent, which yields a 0.69% fraud proportion (19/2,772). These two columns show

the results presented in Dionne and Belhadji (1996).

The last three columns present the results from the estimation part of this study. The fourth one

gives the average "n" estimated over a thousand iterations of the process described earlier. In the fifth

column, we can read the fraud proportion obtained where N = 462. Finally, the last one presents the

estimated conditional probability of detecting fraud, given there is fraud. In other words, if we give a

fraudulent claim to a claim adjuster, then "p" represents the probability that he will detect it as being

fraudulent. This, of course, is dependent of the detection assumption.

One important thing to note here is that, as we become more pessimistic in our detection

assumption, "p" increases. This is coherent with the intuition that the more we include Suspected fraud

cases as Detected, the more we effectively detect fraud. So, as we increase the number of detected

fraud with the suspected frauds, the estimated fraud proportion increases, but not linearly so. The

relation is increasing but concave.

The percentage of fraud estimated ranges from 2.37% to 16.53% depending on the "optimism

degree" in the assumption. This is quite a large bracket but both assumptions are quite extreme. The

first one assumes that Suspected cases have no more chances of being fraudulent, and the latter

assumes that all Supected cases can be seen as cases where fraud is detected.

If we want a "realistic" fraud estimation, we may consider the Detection assumption to be halfway

between the two extremes, which is "E+(S>5)". Here we consider as Detected fraud cases , the

Established cases together with Suspected cases where the degree of suspicion, as recorded by the

claim adjusters, exceeds five. This gives an estimated "n" of 43.79 fraud cases per set, which yields to

an estimation of roughly 9.5% fraudulent claims. We name this assumption the "Best Guess

Assumption".

The conditional probability "p" of detecting fraud given there is fraud, under the Best Guess

Assumption, was estimated as 0.3. We can compound a multiplicative factor with these results. This

multiplicative factor is defined by the size of the estimation when compared to the observation. In

terms of Figure I the multiplicative factor is the number of times set E plus set (S and F) enters in the

total fraud set (F).



The corresponding multiplicative factor, for the Best Guess Assumption, is 3.4. This means that the

observed fraud rates, the fraud rates given in the study of Dionne and Belhadji (1996), are multiplied by

3.4 in this study in order to get the real estimated fraud rate in that market.

As we have said earlier, the number of sets (K) was chosen somewhat arbitrarily, with the

exception that one had to consider the trade-off in so choosing it. Hence, we only know that the

number of sets "K" cannot be close to the value of one or "too large". So we have repeated the same

experiment, with a thousand iterations, for different values of "K" (from 5 to 18). In table II we can see

some of the results for the estimated percentages.

Number of Sets (K)

Assump. 5 6 7 9 11 18

E 2.2860 2.3690 2.3858 2.5819 2.5501 2.7077

E+(S>9) 4.5631 4.7914 4.9345 5.1174 4.9756 5.2368

E+(S>8) 5.7705 6.0015 6.0668 6.4005 6.2785 6.6488

E+(S>7) 7.2835 7.6729 7.5528 8.0999 8.0044 8.5361

E+(S>6) 8.3811 9.0693 9.2734 9.1558 9.1621 9.7969

E+(S>5) 9.2065 9.4781 9.8199 9.9097 10.060 10.762

E+(S>4) 11.724 12.211 12.128 12.494 12.847 13.639

E+(S>3) 12.314 12.878 13.148 13.413 13.966 14.709

E+(S>0) 14.883 15.051 15.608 15.692 16.349 17.222

E+S 16.563 16.535 17.721 17.618 18.014 19.012

Table II: Results for (n/N) by Number of Sets

As we can see, for different numbers of sets, the estimated percentage of fraudulent claims is quite

stable. That is, the estimated number of fraudulent claims "n" decreases significantly when we increase

the number of sets, but this effect is offset by the decreasing number of claims in each set.

For the Best Guess Assumption "E+(S>5)", the variation in the estimated percentage ranges from

9.2% to 10.8%, which gives us a 10±0.8% interval where we can find the estimated fraud percentage

under this assumption.

New monetary estimates for Quebec automobile insurance industry

In this section, we first use the Pessimistic Assumption that sets the degree of suspected fraud at

100%, which means that the total claim payments by the industry for these suspected cases represent



detected fraud.  We also assume that the multiplicative factor (3.4), obtained from our Best Guess

Assumption for the 2,772 coverages, applies to the 2,454 claims for which information on claim

payments is available.

Under these assumptions, the total number of fraudulent claims represent 18.4% (5.4% × 3.4) of

total claims and 21.8% (6.4% × 3.4) of total claim payments, (which amounts to 957,902,484 million

dollars in 1994-1995 when excluding "glass damages only").  This yields 208.4 million dollars

compared to the 61.3 million obtained in Dionne and Belhadji (1996).

If we now apply the residual monetary amounts for fraud payments obtained from the questionnaire

(Realist Assumption #1 in Dionne and Belhadji's study), the residual fraud is equal to 96.2 million

instead of 28.3 million or 10% instead of 3% of total claim payments.

Finally, if we restrict the percentage of fraud cases to that of our Best Guess Assumption

(E + (S+5)) which means that the fraud rate is 10%, but apply the monetary amounts of the Pessimistic

Assumption, we obtain that fraud payments represent 11.85% of total claim payments or 113.5 million

dollars of 957,902,484 million dollars.

Conclusion

Our Best Guess Estimator roughly yields a 10% fraud rate, and this result is found to be quite

stable. However, the fraud rate is found to have a 16.5% upper bound.  The findings in Dionne-Belhadji

(1996) are multiplied by 3.4, which were given as a floor estimate, or observed fraud rates.  In

monetary values, this means that total fraud payments by the industry in 1994-1995, ranged from 96.2

to 208.4 million dollars instead of 28.4 to 61.3 million dollars.  In other words, our results indicate that

10 to 21.8% of all claim payments are fraudulent instead of 3 to 6.4%.

An interesting corollary of the present study is the finding that "p" is equal to roughly 1/3. Again "p"

is the conditional probability for claim adjustment staff to detect fraud, given the claim is fraudulent.

This can be seen as a significantly low index of efficiency for the entire verification process. An

important question therefore arises: Why is this index of efficiency so low?

There are countless answers to that question: 1. It can reflect the incompetence of claim

adjustment staff to efficiently identify fraud cases. They may not have the adequate experience or

training to detect fraud, which in fact is not necessarily their main preoccupation. 2. It can yield serious

doubts about the relevance of fraud indicators used to flag possible fraud cases. 3. It may be related to

the low quality or quantity of investigations. 4. The results can also reflect an induced laxity by insurers



because of the low anticipated benefits of fighting fraud. Choosing the right answer cannot be made

without a proper study of the real incentives of each participant in the market to fight against fraud.

In Dionne and Belhadji's study, they found that a large proportion of the fraud cases (93%) were not

prosecuted. The main reason for nonprosecution was found to be due to "insufficient proof" (59%).

This high percentage of unprosecuted claims for that particular reason naturally triggers a question.

Why was the investigation not pushed further?

A possible answer may reside in the fact that many of these claims represent low monetary values.

If the claim amount is too small to justify the costs of further investigations, then maybe higher

deductibles are in order. Higher deductibles would raise claim levels to the point where investigations

could be worth pursuing for the insurers. However, higher deductibles may also increase the benefits of

build-up by insureds.

Investigations and prosecutions have also been seen as bad publicity for the investigating and

prosecuting firms. The fraud problem is not only a problem of robbery but endangers the very principle

of insurance. The question remains with the industry. As researchers, we will focus our attention on

finding some statistical and management tools in order to isolate the main causes and improve the

claims-premiums ratio in that market.
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