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Abstract 
 
We are proposing a parametric model to rate insurance for vehicles belonging to a fleet. The 

tables of premiums presented take into account past vehicle accidents, observable characteristics 

of the vehicles and fleets, and violations of the road-safety code committed by drivers and 

carriers. The premiums are also adjusted according to accidents accumulated by the fleets over 

time. The proposed model accounts directly for explicit changes in the various components of 

the probability of accidents. It represents an extension of bonus malus-type automobile insurance 

models for individual premiums (Lemaire, 1985; Dionne and Vanasse, 1989 and 1992; Pinquet, 

1997 and 1998; Frangos and Vrontos, 2001; Purcaru and Denuit, 2003). The extension adds a 

fleet effect to the vehicle effect so as to account for the impact that the unobservable 

characteristics or actions of carriers can have on truck accident rates. This form of rating makes 

it possible to visualize what impact the behaviors of owners and drivers can have on the 

predicted rate of accidents and, consequently, on premiums. The results are compared to those of 

the semiparametric approach. 
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1 INTRODUCTION 

 

Very few studies have analyzed systematically the risks of accidents for vehicle fleets. Marie-

Jeanne (1994) developed a rating model based on the size of the fleet and Teugels and Sundt 

(1991) proposed rating based on the aggregated loss of the fleet. Other researchers have confined 

themselves to studying the drivers of vehicles to obtain a portrait of the risks posed by a carrier 

(Dionne et al., 2001). This amounts to forgetting that firms’ owners or management can also 

affect the accident rates of their vehicles. Decisions regarding driving hours, spending on vehicle 

maintenance, and guidelines for loading or securing cargo in vehicles can have repercussions on 

road safety. Dionne, Desjardins, and Pinquet (1999 and 2001) developed bonus malus models 

that use a semiparametric approach to take into account the behaviors of both the drivers and 

owners of vehicles. In this article, we propose a parametric model. 

 

Measuring the risks associated with fleets of vehicles is difficult for a number of reasons. For 

one, the units composing the fleets must be defined. Should we do this by observing drivers or 

vehicles? We answered that question by opting for vehicles: with information readily available 

from insurers, the link between vehicles and carriers can be made continuously. Linking 

information on drivers to carriers is, in contrast, very costly, since the movements of drivers 

from one fleet to another are not systematically recorded, whereas licensing and insurance 

contracting keep track of vehicles as they move among fleets. The vehicles are taken to represent 

different individual risks. These risks are influenced by the observable and unobservable 

characteristics of the vehicles, the drivers using them, and the carriers who own or lease them. It 

is thus essential to use care in modeling these different sources of information. 
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Another difficulty is weighting the information obtained on individuals and fleets for insurance 

rating purposes. An adequate model for rating the risks of fleets must integrate the behaviors of 

drivers with those of owners so as to introduce incentives for safety tailored to the various levels 

of decisions to be made when facing hierarchical moral hazard (Moses and Savage, 1994, 1996; 

Fluet, 1999; Winter, 2000). 

 

We are proposing a new rating model for vehicles belonging to a fleet. The model is a parametric 

one which can account directly for both observable and unobservable characteristics of the 

vehicles, drivers, and owners associated with a particular vehicle fleet. The model proposed is a 

direct extension of bonus malus-type automobile insurance models (Lemaire 1985, 1995; Dionne 

and Vanasse 1989 and 1992; Pinquet 1997, 1998; Frangos and Vrontos 2001; Purcaru and 

Denuit 2003) to individual premiums (see Pinquet, 2000, for a review of the literature). The 

extension adds a random fleet effect to the vehicle effect in the model, in order to take into 

account the unobservable effects of carriers, vehicles, and their drivers on truck accident rates in 

the Bayesian or a posteriori calculation of premiums. Observable variables characterizing 

vehicles, fleets, and the road-safety behavior of both drivers and carriers are used in evaluating 

the a priori risks of different vehicles. 

 

In the following section, we develop statistical models to estimate accident probabilities for 

vehicles belonging to fleets of various sizes. Estimation results are also presented. Section 3 

proposes the optimal bonus malus system integrating both fleet and vehicle effects. Section 4 
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presents different premium tables and compares the results to those of the semiparametric 

approach. Section 5 discusses possible extensions of the model. 

 

2 STATISTICAL MODELS 

 

Our methodology is divided into two steps. In the first step, we use an econometric model to 

evaluate the accident probabilities for the vehicles of carriers. As a priori information, we shall 

use estimated parameters to calculate insurance premiums. These parameters take into account 

the information available on the observable characteristics of vehicles and fleets as well as that 

on traffic violations by drivers and carriers. In order to take unobservable characteristics and 

actions into account for purposes of rating, we shall use the residuals of the econometric 

estimations. One of the article’s contributions consists in proposing a new model for estimating 

accident probabilities, a model capable of explicitly isolating the fleet effect from the vehicle 

effect. In a second step, we propose a bonus malus system which can use both the a priori 

information obtained from the estimated parameters and the a posteriori information obtained 

from residuals of the estimations of vehicle accident distributions. In order to show what 

contribution the different effects make to insurance premiums, we shall distinguish between one-

vehicle and two-vehicle carriers and then generalize the model to carriers with more than two 

vehicles. 
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2.1 ECONOMETRIC MODEL FOR ESTIMATING DISTRIBUTIONS OF 
VEHICLE ACCIDENTS 

 

Most econometric models applied to discrete (or countable) variables are based on the Poisson 

distribution, where probability ( j j
fi fiP y )⏐λ  that a vehicle i belonging to fleet f will be involved in 

accidents at period j can be represented by the following expression: 

( ) ( )
( )

jj fifi
yj

fij j
fi fi j

fi

e
P y |

y 1

−λ λ
λ =

Γ +
. 

 

With the Poisson law, we obtain that the mathematical expectation of the number of accidents is 

equal to the variance  where  is the number of accidents for truck i 

belonging to fleet f at period j and  is the parameter of the Poisson distribution. This modeling 

implicitly supposes that the distribution of accidents can be entirely explained by observable 

heterogeneity, which cancels any need for a bonus malus system. 

( ) ( )j j
fi fi fiE Y Var Y= j= λ j

fiY

j
fiλ

 

Let us now suppose that an unobservable heterogeneity exists owing to certain characteristics or 

actions not observable by the insurer. Suppose that j j
fi fi f fiλ = γ α θ  with  where 

measures the number of days that vehicle i of fleet f is authorized to circulate during period j, 

divided by the number of total days in period j. This measures the exposure to the risk of 

accident in period j. Using the exponential function to define  allows us to ensure the non-

negativity of . The vector 

j
fiXj j

fi fid e βγ = j
fid  

j
fiγ

j
fiλ ( )j j j

fi fi1 fipX x , , x= "  contains the p characteristics of truck i in fleet f 

observed at period j; this vector contains specific information on the vehicle and on other 
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characteristics of the fleet. β  is a vector of parameters to be estimated. As usual, the parameters 

are neither functions of fleet f nor of period j, but the  are functions of f and j, so the  are 

adjusted when the values of f and j change. Parameter 

j
fiX j

fiγ

fα  is the random effect associated with 

fleet f, that is, the unobservable risk attributable to the fleet; whereas parameter  is the random 

effect of truck i in fleet f.  is the usual random firm-specific effect in econometric analysis. It 

captures unobservable factors of the fleet orthogonal to other observed fleet variables. We 

suppose that  where  is the total number of vehicles in fleet f. In other terms, 

fiθ

fα

fI

fi
i 1

1
=

θ =∑ fI fiθ  is 

the proportion of the risk for fleet f which can be attributed to vehicle i; the total unobservable 

risk for vehicle i of fleet f is defined by f fiα θ . It should be noted that when fleet f has only one 

vehicle such that ,  by definition. This means that the risk attributable to vehicle 

corresponds to that of the fleet, from which it follows that 

fI 1= f1 1θ =

j j
f 1 f1 fλ = γ α . 

 

We make the hypothesis that  follows a Dirichlet parametric distribution with parameters 

( ) and that  follows a gamma distribution with parameters ( . This 

parametrization makes it possible to obtain a mean fleet effect that increases with the number of 

vehicles in the fleet. 

fiθ

f1 2 I, , ,ν ν ν" fα )

)

f f fI ,τ τ

 

2.1.1 Size-1 carrier 

 

In this case,  and  follows a gamma distribution with parameters . For period j, 

the distribution of the number of accidents for a fleet with one vehicle is given by: 

fi 1θ = fα ( f f,τ τ
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( ) ( ) ( )
1

j j j j
f1 f1 f1 f f1 f f

0

P y | P y | , f dγ = α γ α α∫ , 

which, assuming that  follows a gamma distribution with density fα
( ) ( )

( )
f f f f1

f f

f

eτ τ − −α ττ α
Γ τ

, can 

be rewritten as follows: 

 ( ) ( )
( ) ( )

j
f f 1yj j

f f1j j f f1
f1 f1 jj

f f1 f f 1f1 f

y
P y |

y 1

τΓ τ + ⎛ ⎞ ⎛τ γ
γ = ⎜ ⎟ ⎜τ + γ τ + γΓ + Γ τ ⎝ ⎠ ⎝

j

⎞
⎟
⎠

)

. (1) 

 

This distribution is the standard negative binomial distribution that has been used fairly often in 

the literature (Lemaire, 1985; Dionne and Vanasse, 1989; Hausman et al., 1984; Gouriéroux et 

al., 1984; Gouriéroux, 1999). It is capable of modeling unobservable heterogeneity and of 

introducing a bonus malus system for individual observations. On the other hand, it is not 

directly applicable when estimating the probability of accidents for vehicles belonging to a fleet, 

as it cannot isolate the fleet effect from the vehicle effect. We now present our generalization of 

this basic model, starting with the simple case of a fleet composed of two vehicles. 

 

2.1.2 Carrier with 2 vehicles 

 

The joint probability of the number of accidents at period j for the two vehicles in fleet f is given 

by: 

 
, (2) ( ) (

1
j j j j j j j j
f1 f 2 f1 f 2 f1 f 2 f f1 f 2 f

0

P y , y | , P y , y | , , dγ γ = θ γ γ θ∫

where 
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f f1θ = θ  and f f1 2−θ = θ . 

 

Conditionally on , the joint probability of accident is equal to: fθ

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )( )2
j
fi

i 1

f y 1

j j j j
f 1 f 2 f 1 f 2 f j j

f f f ff 1 f 22

y y y y 2j j
1f1 f 2 f f fj j j j

f1 f 2 f f1 f 2 f fj j
0f1 f 2 f

1
P y , y | , , e d

y 1 y 1 2
=

−τ +
τ ∞

−α τ +θ γ + −θ γ∑
⎡ ⎤γ γ θ − θ τ⎢ ⎥θ γ γ = α α⎢ ⎥Γ + Γ + Γ τ
⎢ ⎥⎣ ⎦

∫  (3) 

 

where follows a gamma distribution with parameters fα ( )f f2 ,τ τ . So its density function is 

equal to: 

( ) ( )
( )

f f f f2 2 1
f f

f

e
2

τ τ − −α ττ α
Γ τ

. 

By integrating (3) with respect to  and substituting the value of fα ( )j j j j
f 1 f 2 f f1 f 2P y , y | , ,θ γ γ  in (2), 

we obtain: 

   

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( )2
j

f fi
i 1

j j j j
f 1 f 2 f 1 f 2 f

2 y

2
jy y y y 2j j f fi1

f1 f 2 f f f i 1j j j j
f1 f 2 f1 f 2 fj j

0 f1 f 2 f j j
f f f1 f f 2

2 y1
P y , y | , f d

y 1 y 1 2
1 =

τ +

τ
=

∑

⎛ ⎞Γ τ +⎜ ⎟γ γ θ −θ τ ⎝ ⎠γ γ = θ θ
Γ + Γ + Γ τ

τ +θ γ + −θ γ

∑
∫ f . (4) 

 

In order to estimate the probabilities of accident with a parametric approach, we must now make 

the distribution of  more explicit. Since fleets have two vehicles, we suppose that the vehicle 

effect follows a Dirichlet distribution, with two parameters. Note that the Dirichlet distribution 

with two parameters is the beta distribution. By replacing the density function 

fθ

( )ff θ  in equation 

(4) with the density of a Dirichlet with parameters ( )21,νν  or a standard beta distribution 
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( )
( )

( ) ( )1 2

2

i
1 1i 1

f f2

i
i 1

f 1 f
ν − ν=

=

⎛ ⎞
Γ ν⎜ ⎟
⎝ ⎠θ = θ −θ
Γ ν

∑

∏
− , 

we obtain: 

 

( )

( ) ( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )

( )( )
2

j
f fi

i 1

j j
f 1 f 2 f j j

1 2f 1 f 2

2 y

j j j j
f1 f 2 f1 f 2

2y y 2j j j
y 1 y 1f1 f 2 f f fi 1

i 1 1 2 f f
fj j

1 2 0f1 f 2 f j j
f f f1 f f 2

P y , y | ,

2 y
1

d .
y 1 y 1 2

1 =

τ +

τ
ν + − ν + −

=

∑

γ γ =

⎛ ⎞γ γ τ Γ τ +⎜ ⎟ ⎡ ⎤Γ ν + ν θ −θ⎝ ⎠ θ⎢ ⎥Γ ν Γ νΓ + Γ + Γ τ ⎣ ⎦ τ + θ γ + − θ γ

∑
∫

 (5) 

 

To compute the value of the joint probability in (5), we must evaluate the integral: 

( ) ( )

( )( )
2

j
f fi

i 1

2 y

j j
1 2f 1 f 2y 1 y 11

f f
f

j j0
f f f 1 f f 2

1
d

1 =

τ +

ν + − ν + −

∑

θ − θ
θ

τ + θ γ + − θ γ
∫ . 

 

To do so, let’s write the expression ( )j
f f f1 f f1τ + θ γ + −θ γ j

2  of the denominator as follows: 

( )
j j

j f 2 f1
f f 2 fj

f f 2

1
⎡ ⎤⎛ ⎞γ − γ

τ + γ − θ⎢ ⎥⎜ ⎟τ + γ⎝ ⎠⎣ ⎦
, 

which permits us to rewrite the integral in (5): 

( ) ( )

( ) ( )

( ) ( )
( )

j j
1 2f 1 f 2

2 2
j j

f ffi fi
i 1 i 1

y 1 y 1 j j1
1 f1 2 f 2f f

f j j
2 y 2 y0 1 2 f1 f 2jj j

f f 2j f 2 f1
f f 2 fj

f f 2

j
j j j j j f 2

2 1 1 f1 f f1 f 2 1 2 f1 f 2

y y1 1d
y y

1

F y ;2 y y ; y y ;

= =

ν + − ν + −

τ + τ +

⎡ ⎤Γ ν + Γ ν +θ −θ
⎢ ⎥θ =
Γ ν + ν + +⎢ ⎥∑ ∑ ⎣ ⎦⎛ ⎞ τ + γ⎡ ⎤⎛ ⎞γ − γ

τ + γ − θ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟τ + γ⎝ ⎠⎣ ⎦⎝ ⎠

γ − γ
× ν + τ + + ν + ν + +

∫

j
f1

j
f f 2

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟τ + γ⎝ ⎠⎝ ⎠

 

where × is the multiplicative operator.  is a hypergeometric function whose value is equal to: 2 1F
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( )[ ]
[ ]

( )
[ ]

j j2
j j f 2 f1

j1 f1 f fi
i 1 f f 2

21 j
i fi

i 1

y 2 y
1

!
y

∞
=

=

=

⎡ ⎤⎛ ⎞γ − γ⎛ ⎞⎢ ⎥ν + τ + ⎜ ⎟⎜ ⎟ τ + γ⎢ ⎥⎝ ⎠ ⎝+ ⎢ ⎥⎛ ⎞⎢ ⎥ν +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑
∑

∑

AA
A

A
A A

⎠ , 

with [ ] ( ) (h h h 1 h 1= + + +A " A ) , an increasing factorial function (Gradshteyn and Ryzhik, 1980, 

Section 9.1). The function is available in the GSL package. 

 

The distribution of the number of accidents observed at period j for the two vehicles in fleet f is 

now given by: 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
2

j
f fi

i 1

2 y

j j
f 1 f 2 f

2y y 2j j j
f1 f 2 f f fi 1 2

i 1j j j j
f1 f 2 f1 f 2 j j

f1 f 2 f 1 2

j j j j
1 f1 2 f 2 j j j j j f 2 f1

2 1 1 f1 f f1 f 2 1 2 f1 f 2
f fj j j

f f 2 1 2 f1 f 2

2 y
P y , y | ,

y 1 y 1 2

y y
F y ;2 y y ; y y ;

y y=

τ +

τ

=

∑

⎛ ⎞γ γ τ Γ τ + Γ ν + ν⎜ ⎟
⎝ ⎠γ γ =

Γ + Γ + Γ τ Γ ν Γ ν

Γ ν + Γ ν + γ − γ
× ν + τ + + ν + ν +

τ + γ
τ + γ Γ ν + ν + +

∑

+ j
2

.
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

We now generalize the model to a fleet of  vehicles. fI

 

2.1.3 Carrier with more than 2 vehicles 

 

The joint distribution of the number of accidents at period j for the  vehicles in fleet f is given 

by: 

fI

( ) ( ) ( )Iff f f f f f1fii 1

j j j j j j j j
f1 fI f1 fI f1 fI f1 fI 1 f1 fI f1 fI f1 fI 1

...P y , , y | , , P y , , y | , , , , , f , , d d
θ =∑

=
f− −γ γ = θ θ γ γ θ θ θ θ∫ ∫" " " " " " "

 (6) 

where 
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f

f

I 1

fI fi
i 1

1
−

=

θ = − θ∑ . 

 

We can rewrite the conditional probability in (6) as: 

( ) ( ( )
f f f f f f

j j j j j j j j
f1 fI f1 fI 1 f1 fI f1 fI f f1 fI 1 f1 fI f f

0

P y , , y | , , , , , P y , , y | , , , , , , f d
∞

− −θ θ γ γ = α θ θ γ γ α α∫" " " " " " )  

and, by integrating with respect to , we obtain a Dirichlet compound multinomial distribution 

(Johnson and Kotz, 1969) whose joint conditional probability of accidents is equal to: 

fα

 ( ) ( ) ( )
( ) ( )

f
j j
fi fi

f f f

Iff f f j
f f fif i 1

I
jy yj f f fiI I

f1 fi i 1j j j j f
f1 fI f1 fI 1 f1 fI j

I yi 1 f ffi I
j

f fi fi
i 1

I y
P y , , y | , , , , ,

Iy 1
=

τ
=

−
τ +=

=

⎛ ⎞
Γ τ +⎡ ⎤ ⎜ ⎟γ θ τ ⎝⎢ ⎥θ θ γ γ = ⎢ ⎥ Γ τΓ +

⎠
∑⎢ ⎥ ⎛ ⎞⎣ ⎦ τ + θ γ⎜ ⎟

⎝ ⎠

∑
∏

∑

" " " . (7) 

 

Thus, by replacing  in equation (6) by its value given in 

(7) and by replacing the density function 

( f f

j j j j
f 1 fI f1 fI 1 f1 fIP y , , y | , , , , ,−θ θ γ γ" " " )f

( )ff 1 fIf , ,θ θ"  by the density of a parametric Dirichlet 

, we obtain the following expression: ( f1 2 I, , ,ν ν ν" )

 

( )

( )
( ) ( ) ( )

( )

f f

f f f j
j f f i fi
fi

f

I If f ff 1 jfii 1 f f fif i 1

j j j j
f1 fI f1 fI

I I I
I y 1jyj f f fi iI fi

fi i 1 i 1 i 1
f1 fI 1Ij

I yi 1 fi I
f f i j

i 1 f fi fi
i 1

P y , , y | , ,

I y
... d d

y 1 I
θ =∑

=
=

τ ν

= = =

+ −

−
τ +=

=
=

γ γ

⎛ ⎞ ⎛ ⎞
τ Γ τ + Γ ν θ⎡ ⎤ ⎜ ⎟ ⎜ ⎟γ ⎝ ⎠ ⎝ ⎠⎢ ⎥= θ⎢ ⎥Γ + ∑Γ τ Γ ν⎢ ⎥ ⎛ ⎞⎣ ⎦ τ + θ γ⎜ ⎟

⎝ ⎠

∑ ∑ ∏
∏ ∫ ∫

∏ ∑

" "

" θ . (8) 
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We must now estimate the multidimensional integral of equation (8) in order to estimate the 

model’s parameters. Three possibilities are now open. They are discussed in detail in Angers et 

al. (2004). Here we summarize the main results. 

 

 1. The first possibility, which greatly simplifies the calculations, is to suppose that all the 

 of the If vehicles are identical. j
fiγ

 

  This first scenario supposes implicitly that all the vehicles in the fleet represent 

identical a priori risks, which is probably a very strong hypothesis since, as we shall 

see, several variables distinguishing the vehicles and the behaviors of both the drivers 

and the fleet managers are significant in estimating the probabilities of accidents. 

Another possibility is to divide the vehicles into different risk groups, as is done by 

insurers when classifying risks. 

 

 2. Under the second possibility, we can separate the vehicles into two groups, for example, 

and define  as all the vehicles in the first group with 1G 1, ,g= "

g
j
fi

j i 1
fg1 g

=

γ
γ =

∑
 and 

 as all the vehicles in the second group with 2G g 1, , I= + " f

fI
j
fi

i g 1j
fg2

fI g
= +

γ
γ =

−

∑
. The integral 

in (8) can thus be approximated by: 
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( ) ( )

f
i i

If f1fi fi 1

Ig
c 1 c 1

fi fi
i 1 i g 1

f1 fI 1dIg
j j

f fg1 fi fg2 fi
i 1 i g 1

... d d
θ =∑

=

− −

= = +
−

= = +

⎡ ⎤
θ θ⎢ ⎥

⎣ ⎦ θ θ
⎛ ⎞
τ + γ θ + γ θ⎜ ⎟
⎝ ⎠

∏ ∏
∫ ∫

∑ ∑
"  (9) 

with 

j
i ic = ν + fiy   and  

fI
j

f f fi
i 1

d I y
=

= τ +∑ . 

 

Taking that 

fi
i g

fi
i 1

u i 1, ,g 1−

=

θ
= =

θ∑
"

g

fi
i 1

v
=

;  and fi
i fg

fi
i 1

w i g 1
1

=

, , Iθ
= = +

− θ∑
" , = θ∑

we can rewrite (9) and substitute the new expression in equation (8) to obtain an 

approximation for the distribution of the number of accidents at period j of the vehicles 

in fleet f: 

     

( )

( ) ( )
( ) ( )

( ) ( ) ( )

( )

If
j
fi

i 1

y

f f

f f
j
fi f f

f
f f

f

f

j j j j
f1 fI f1 fI

I I
jy Ij j f f fi iI

Ifi i fi i 1 i 1
f j Ij

i 1 jf f f fg2fi i
i fi

i 1

I
j j

2 1 i fi f f fi i
i 1

P y , , y | , ,

I yy 1
Iy 1 y

F y , I y ,

=

τ +

τ = =

=

=

=

∑

γ γ ≈

⎛ ⎞ ⎛
Γ τ + Γ ν⎛ ⎞ ⎜ ⎟ ⎜γ Γ ν + ⎛ ⎞⎝ ⎠ ⎝⎜ ⎟ τ ⎜ ⎟⎜ ⎟⎜ ⎟ Γ τ τ + γ ⎛ ⎞Γ + Γ ν⎜ ⎟ ⎝ ⎠ Γ ν +⎝ ⎠ ⎜ ⎟

⎝ ⎠

× ν + τ + ν +

∑ ∑
∏

∑

∑

" "

( )

⎞
⎟
⎠

f j jIg
fg2 fg1j

fi j
i 1 i 1 f fg2

y , ,
= =

⎛ ⎞γ − γ
⎜ ⎟⎜ ⎟τ + γ⎝ ⎠
∑ ∑

 (10) 

where  is a hypergeometric function as defined in section 2.1.2. This procedure in 

estimating the integral can be generalized to several homogeneous groups, but it is not 

obvious that more precision will be gained. In Appendix A, we present the details of the 

approximation error. The accuracy of the approximation can also be evaluated by 

comparing the estimation results with the Monte Carlo method of estimation. 

2 1F

 13



 

3. We can also estimate the integral in (8) by the Monte Carlo method, using the function 

 (Lange, 1999) with , and such that: ( )h θ
� ff 1 fI, ,θ = θ θ"

�

 

( ) ( )
( ) ( ) ( ) ( ) ( )I I If f f

1 1 1fi fi fii 1 i 1 i 1

N

1

g 1... ... ...g d h d w h d w
h N

l

l
θ = θ = θ =∑ ∑ ∑

= = = =

θ
θ θ = θ θ = θ θ θ ≈ θ

θ ∑∫ ∫ ∫ ∫ ∫ ∫�
� � � � � � � �

�
 

 
with 

 ( ) ( )
( )

g
w .

h
θ

θ =
θ
�

�
�

 

 
Writing: 

 

 ( )
( )

( )

f

f j
i fi

f

I
j

i fi I
y 1i 1

fiI
i 1j

i fi
i 1

y
h ,

y

ν + −=

=

=

⎛ ⎞
Γ ν +⎜ ⎟
⎝ ⎠θ = θ
Γ ν +

∑
∏

∏�
 

 
we can rewrite the expression of the multivariate integral by multiplying its numerator 

and denominator by the ( )h θ
�

 function defined above. After some simplifications, the 

expression becomes: 

 

( )
( )

( )
( )

f

f j
i fi

If fff1fi Ifi 1 j
f f fif i 1

f

I
j

i fi I
y 1i 1

fi f1 fI 1II
i 1jj

I y i fii fiI
i 1i 1j

f fi fi I
i 1 j

i fi
i 1

y
1... d d

yy

y

θ =∑
=

=

ν + −=
−

=
τ +

==

=

=

⎛ ⎞
Γ ν +⎜ ⎟
⎝ ⎠ θ θ θ

⎛ ⎞
Γ ν +Γ ν +⎜ ⎟∑⎛ ⎞ ⎝ ⎠τ + γ θ⎜ ⎟

⎝ ⎠ Γ ν +

∑
∏∫ ∫

∏∑
∑

∏

"

 
 

which may be evaluated by: 
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( )

( )

f

Iff j
f f fif i 1

I
j

i fi N
i 1

I
I y1j I

i fi j
i 1 f fi fi

i 1

y
1 1 .
N

y =

=

τ +=

=
=

Γ ν +

⎛ ⎞ ∑Γ ν + ⎛ ⎞⎜ ⎟ τ + γ θ⎜ ⎟⎝ ⎠
⎝ ⎠

∏
∑

∑ ∑ A
l

 

 
In fact, we can generate random numbers  from the gamma density with parameters 

, for i = 1 ,…, If and  = 1 ,…, N where N is the number of iterations in the 

Monte Carlo estimation. So, writing 

fia A

( j
i fiy ,1ν + ) A

f

fi
fi I

fi
i 1

a

a
=

θ =

∑

A
A

A

, we obtain values of a Dirichlet 

( ). The accidents distribution observed at period j for the If vehicles of 
the fleet f is approximately equal to: 

f

j
1 f1 I fIy , , yν + ν +"

f

j

 

 

( )

( ) ( )
( ) ( ) ( )

( )

f f

f f
j f f
fi

f

Iff f j
f f fif i 1

j j j j
f1 fI f1 fI

I I
I jyj j f f f fi iI N

fi i fi i 1 i 1
I Ij

I y1i 1 jf ffi i I
i fi j

i 1 i 1 f fi fi
i 1

P y , , y | , ,

I yy 1 1 .
I Ny 1 y =

τ

= =

τ +==

= =
=

γ γ ≈

⎛ ⎞ ⎛ ⎞
τ Γ τ + Γ ν⎛ ⎞ ⎜ ⎟ ⎜ ⎟γ Γ ν + ⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟ Γ τ ⎛ ⎞Γ + Γ ν⎜ ⎟ ∑Γ ν + ⎛ ⎞⎝ ⎠ ⎜ ⎟ τ + γ θ⎜ ⎟⎝ ⎠
⎝ ⎠

∑ ∑
∑∏

∑ ∑ ∑
A

A

" "

 (11) 

 

2.2 ECONOMETRIC ESTIMATIONS 

2.2.1 Descriptive statistics 

 

The data come from the files of the Société d’assurance automobiles du Québec (henceforth 

referred to as the SAAQ), dating from 1997 to 1998 (for a detailed description of the data base 

see Dionne, Desjardins, and Pinquet, 1999, 2001). We had access to data on the two years from 

43,679 carriers of merchandise by truck. More than two thirds of the carriers have only one 

vehicle. At 31 December 1997 and 31 December 1998, these small carriers owned about 30% of 

the 103,848 heavy trucks with authorization to circulate at least one day, so the econometric 

estimation was made with 73,328 trucks from 13,159 carriers. We use the 1998 data for 
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information on accidents and characteristics of vehicles and fleets and the 1997 data for traffic 

violations of both the drivers (speeding, …) and the fleets (overload, …), so as to respect the 

SAAQ’s rating policy. Moreover, this approach reduces the problem of simultaneity between the 

“violations” and “accidents” variables. 

 

It should be mentioned that a vehicle was not necessarily authorized to circulate 365 days in 

1998. On average, a vehicle was authorized to circulate 88.5% of 1998. Depending on the size of 

the fleet, this average percentage will vary between 86.7% and 93.9%. To obtain an annual 

statistic, we calculated the number of trucks in trucks-year, by adding the number of days each 

truck was authorized to circulate and then dividing by 365 days. The average frequency of total 

accidents per truck-year is 0.1592. This average increases as the size of the fleet increases, but 

decreases when the fleet contains more than 150 trucks. 

 

2.2.2. Estimation of parameters 

 

We used the maximum likelihood method to estimate the unknown parameters, 

 where m is the number of observed characteristics of the truck and the fleet. 

We assume that each element of the vector 

(f 1, , , ,ν τ β = β β" )m

( )f1 2 I, , ,ν ν ν"  is equal to . For the different 

methods of estimation presented in this article, we used the nonlinear optimization subroutines 

available in the IML procedure in SAS. The initial estimates 

ν

0β  of ( 1 m, , )β = β β"  are the 

maximum likelihood estimates using the negative binomial model. Initial values of parameters 

 were set equal to one. f,ν τ
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To maximize the Log-likelihood function of the joint-accidents probability of equation (10), the 

Newton-Raphson method has been used. This method needs the gradient and the Hessian matrix 

and, therefore, it requires first- and second-order derivatives of the objective function (see 

Appendix B for details). To divide the trucks into two groups, we took the maximum likelihood 

estimates of the negative binomial model of ( )0 1 m, ,β = β β" to estimate  for all the 

vehicles. Then we calculated the mean, 

0X
0fi de βγ =

fIF

0fi
f 1 i 1

1
N = =

γ = γ∑∑ , where N is the total number of 

vehicles. The truck i is in group 1 if 0fiγ ≤ γ  or it is in group 2 if 0fiγ > γ . The variance-

covariance matrix of the asymptotic distribution is calculated from the Hessian matrix at 

. ( )f 1
ˆ ˆ ˆˆ ˆ, , , ,ν τ β = β β" m

m

 

To maximize the Log-likelihood function of equation (11), we used the Nelder-Mead simplex 

method. In order to determine the variance-covariance matrix of the asymptotic distribution, we 

used the subroutine NLPFDD of SAS/IML to compute finite difference approximations of first-

and second-order derivatives in order to obtain the Hessian matrix at ( )f 1
ˆ ˆ ˆˆ ˆ, , , ,ν τ β = β β" . 

 

There is quite a large volume of data; so to make a radical reduction in computation time, we 

calculated the Log-likelihood function, the gradient and the Hessian matrix with a homemade C 

program. We created an interface to communicate the data between the SAS program and the C 

program. We set up a method called “Named Pipe” for passing data to and from the SAS 

System. The execution speed in SAS/IML was very slow compared to the C program. We 
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obtained a speed of 20 to 30 times faster with the C program. In addition, we increased the 

execution speed by adding many machines in parallel since each machine can make the 

calculations independently. 

 

The results for all fleet sizes with 2 vehicles and more are presented in Table 1 for the two 

methods of estimation. We consider first the hypergeometric approximation. For fleets with 

more than two trucks, we divided the trucks into two groups, as explained above. For fleets with 

two vehicles, we estimated the exact model of Section 2.1.2. We used the 10% threshold (p-

value lower than or equal to 0.10) to consider a statistical coefficient different from zero. 

 

(Table 1 here) 

 

We note in Table 1 that the vehicles with more experience (number of years as carrier) have 

fewer accidents. The results also indicate that the factors explaining accidents include: the 

carrier’s size and sector of activity; the type of use to which the vehicle was put; the type of fuel; 

the number of cylinders; and the number of axles. Vehicles with fleet violations (violations of 

trucking standards) in 1997 are more at risk for accidents in 1998 than those without these types 

of offenses. Moreover, vehicles whose drivers have accumulated demerit points for violations in 

1997 represent higher risks for accidents in 1998 than those without such points. 

 

Table 1 also reports the results on the parameters for random effects distributions. Regression 

indicates that the seven  parameters are significant, which means that we can reject the 

Poisson distribution and apply a bonus malus insurance rating model to these fleets. It is 

fτ
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important to mention that we estimated seven parameters because these parameters are affected 

by fleet size. The ν parameter is also significant at p < 0.0001. This coefficient is not affected by 

fleet size. These results signal that both vehicle and fleet effects can be used in calculating 

premiums. 

 

The Monte-Carlo-method results are very similar to those of the hypergeometric method, with 

few exceptions. The last column of the table indicates the t-statistic for the parametric difference 

between the two models. The only difference in the parameters concerns the  coefficient for 

fleets with more than 50 vehicles, but this difference is not statistically significant. The values of 

the Log-likelihood are also very similar. 

1
f
−τ

 

The β coefficients will be very useful in estimating a priori risks when calculating insurance 

premiums, whereas coefficients  and fτ ν will be useful in adjusting premiums to fit the past 

accident records of vehicles and fleets in the bonus malus model. 

 

An important research step consists in verifying the effectiveness of the proposed method in 

comparison with other models in the literature. Table 2 presents different statistics for four 

models: the Poisson model, the negative binomial model, the hypergeometric method, and the 

Monte Carlo method. The first two models (Poisson and negative binomial) do not have fleet 

effects, while both the hypergeometric method and the Monte Carlo method contain a fleet 

effect. The results clearly show that the hypergeometric method performs very well. All the 

statistics are very close to those of the Monte Carlo method. We now compare these two models 

with the two models containing no fleet effect. The first five statistics are for residuals. All the 
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statistics related to the residuals go in the right direction. The three other statistics are for 

goodness-of-fit. Again, the hypergeometric model performs very well. It should be mentioned 

that the computation time of the hypergeometric approximation can be reduced significantly by 

using more CPU. We present the results with 1 CPU to compare them with the Poisson and the 

negative binomial models. With 4 CPU, the estimation time with the hypergeometric method is 

82 seconds. 

Table 2 
Descriptive Statistics from Four Estimated Models 

Statistics Poisson Negative 
binomial 

Hypergeometric 
method 

Monte Carlo 
method 

Residuals 
MEDIAN -0.1154 -0.1163 -0.0889 -0.0889 
IQR 0.1316 0.1343 0.1040 0.1040 
MAD 0.0659 0.0671 0.0515 0.0517 
MAE 0.2399 0.2415 0.2046 0.2050 
STD 0.4083 0.4102 0.3523 0.3508 
Goodness-of-fit 
Log L -31,547 -31,217 -30,497 -30,500 
BIC 63,497 62,849 61,487 61,493 
AIC 63,166 62,508 61,082 61,088 
Number of 
parameters (k) 36 37 44 44 

Computation time 35 seconds 
(1 CPU) 

55 seconds 
(1 CPU) 

15 minutes 
(1 CPU) 

1 month 
(35 CPUs) 

Bayesian Information Criterion (BIC) 2 ln L k ln(N)= − + ;  ( )Akaikes Information Criterion AIC 2ln L 2k= − +  

where k and N are the number of parameters and observations respectively. 
Q1: 25th percentile;   Q2 (or median): 50th percentile;    Q3: 75th percentile. 
IQR: Interquartile range: Q3 − Q1. 

MAD: Median Absolute Deviation: { }1 i n i 2MAD MEDIAN e Q≤ ≤= − ( )f

j j j j
i fi fi f1 fIE y y= − γ " where e y . 

MAE: Mean Absolute Error: . 
 

n
1

i
i 1

MAE n e−

=

= ∑
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2.2.3. Predictive probability 

 

One interesting feature of the Bayesian parametric model is it allows us to compute directly the 

predictive probabilities of accidents. We propose an example for a fleet of two vehicles. 

 

Let   be the number of accidents of truck 1 of fleet f at time t+1, t 1
f 1y +

t 1
f 2y +  be the number of accidents of truck 2 of fleet f at time t+1, 
t
f 1y  be the number of accidents of truck 1 of fleet f at time t, 

and  be the number of accidents of truck 2 of fleet f at time t. t
f 2y

 
Given the previous data, it can be shown that the predictive probability of ( )t 1 t 1

f1 f 2y , y+ +  can be 
written as: 

 ( ) ( )
( )

t t t 1 t 1 t t
f1 f 2 f1 f 2 f1 f 2t 1 t 1 t t t t

f1 f 2 f1 f 2 f1 f 2 t t t t
f1 f 2 f1 f 2

P y , y , y , y | ,
P y , y | y , y , ,

P y , y | ,

+ +
+ +

γ γ
γ γ =

γ γ
, (12) 

 
where 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
2 2

t t 1
f fi fi

i 1 i 1

t t 1 t t 1 t t 1t t 1f 1 f 1 f 2 f 2 f 2 f 2f 1 f 1 f

f

t t
f f f 1 f f 2

2 y y 1

y y y y y yy yt t 2
f1 f 2 f ft t t 1 t 1 t t f

f1 f 2 f1 f 2 f1 f 2 t t t 1 t 1
f1 f 2 f1 f 2 f

i
2 2 1 i 1

1
P y , y , y , y | ,

y 1 y 1 y 1 y 1 2

e
+

= =

+ + ++

τ + −

+ + ++ τ
+ +

+ + τ

+ ⎡ ⎤−α τ + θ γ + −θ γ =⎣ ⎦
∑ ∑

γ γ θ −θ τ
γ γ =

Γ + Γ + Γ + Γ + Γ τ

Γ ν
×α

∫ ∫

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
2 2

t t 1
f fi fi

i 1 i 1

2 y y

1 2

t t 1 t t 1
f 1 f 1 f 2 f 2

f

f

2

f f f
1 2

2
y y y yt t i2

f1 f 2 i 1f
t t t 1 t 1

1 2f1 f 2 f1 f 2 f

2 2
t t 1

tf fi fi
1 f1 fi 1 i 1

t
f f 2

1 d d

y 1 y 1 y 1 y 1 2

2 y y y y

2
+

= =

τ + +

ν

+ +

ν

+ +
τ

=
+ + τ

+

= =

∑ ∑

⎛ ⎞
⎜ ⎟
⎝ ⎠ θ −θ α θ

Γ ν Γ ν

⎛ ⎞Γ ν⎜ ⎟γ γ τ ⎝ ⎠=
Γ ν Γ νΓ + Γ + Γ + Γ + Γ τ

⎛ ⎞Γ τ + +⎜ ⎟ Γ ν + +⎝ ⎠×
τ + γ

∑

∑

∑ ∑ ( ) ( )t 1 t t 1
1 2 f 2 f 2

2 2 2
t t 1

i fi fi
i 1 i 1 i 1

t t2 2 2 2 2
t t 1 t t 1 t t 1 f 2 f 1

2 1 1 f1 f1 f fi fi i fi fi t
i 1 i 1 i 1 i 1 i 1 f f 2

y y

y y

F y y ;2 y y ; y y ;2 .
2

+ +

+

= = =

+ + +

= = = = =

Γ ν + +

⎛ ⎞Γ ν + +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞γ − γ
× ν + + τ + + ν + +⎜ ⎟⎜ ⎟⎜ ⎟τ + γ⎝ ⎠⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
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Hence substituting the above value in (12), the predictive probability is given by 
 

( ) ( ) ( )
( ) ( )

( )
( )

( )

2
t

f fi

i 1

2 2
t t 1

f fi fi

i 1 i 1

2 y

2 y y

t 1 t 1
f 1 f 2

2 2
t t 1y yt t tf fi fi

f1 f 2 f f 2i 1 i 1t 1 t 1 t t t t
f1 f 2 f1 f 2 f1 f 2 2t 1 t 1

t tf1 f 2
f fi f f 2

i 1

t t 1
1 f1 f1 2 f 2

2 y y
P y , y | y , y ,

y 1 y 1 2 y 2

y y y

=

+

= =

τ +

τ + +

+ + +

= =+ +
+ +

=

+

∑

∑ ∑

⎛ ⎞
Γ τ + +⎜ ⎟γ γ τ + γ⎝ ⎠γ γ =

⎛ ⎞Γ + Γ + Γ τ + τ + γ⎜ ⎟
⎝ ⎠

Γ ν + + Γ ν +
×

∑ ∑

∑

( )
( ) ( )

2 2
t

t t 1 i fi
f 2 i 1 i 1

2 2 2t t
t t 11 f1 2 f 2

i fi fi
i 1 i 1 i 1

t t2 2 2 2 2
t t 1 t t 1 t t 1 f 2 f1

2 1 1 f 1 f1 f fi fi i fi fi t
i 1 i 1 i 1 i 1 i 1 f f 2

t
2 1 1 f1

yy

y y y y

F y y ;2 y y ; y y ;2
2

F y ;

+
= =

+

= = =

+ + +

= = = = =

⎛ ⎞Γ ν +⎜ ⎟+ ⎝ ⎠
⎛ ⎞Γ ν + Γ ν + Γ ν + +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞γ − γ
ν + + τ + + ν + +⎜ ⎟⎜ ⎟τ + γ⎝ ⎠⎝ ⎠×

ν +

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
t t2 2 2

t t f 2 f1
f fi i fi t

i 1 i 1 i 1 f f 2

.
2 y ; y ;

= = =

⎛ ⎞⎛ ⎞γ − γ
τ + ν +⎜ ⎟⎜ ⎟τ + γ⎝ ⎠⎝ ⎠

∑ ∑ ∑
 

Table 2a presents examples of predictive probabilities for a fleet of two vehicles. For example, if 

the fleet had no accident during the previous year (t), its probability of having one accident in the 

current year (t+1) is 9.81% with the second truck and 6.44% with the first one. If the second truck 

had an accident during the previous year, the corresponding probabilities increase to 16.98% and 

7.78% respectively. As we shall see in the next section, these probabilities can be used to obtain 

the equivalent of a Bonus Malus Factor (BMF) for small fleets. However, the method with 

predictive probabilities would rapidly become very complex with large fleets. 

 

We now present our extended bonus malus system which includes information on non-

observable heterogeneity. 

 

Table 2a 
Predictive Probabilities for Fleets of Two Trucks 

( )t 1 t 1 t t t t

f 1 f 2 1 2 f 1 f 2P y , y | y , y ,,+ + γ γ  with f ˆ0.6404; 2.2056ˆ = ν =τ  and  t t

f 1 f 20.114; 0.185γ = γ =t 1

f 1y +

 

t 1

f 2y +

 
t t

f 1 f 2y 0; y 0= = t t

f 1 f 2y 1; y 0= = t t

f 1 f 2y 0; y 1= = t t

f 1 f 2y 2; y 0= = t t

f 1 f 2y 1; y 1= = t t

f 1 f 2y 0; y 2= =
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0 0 0.8017 0.6838 0.6663 0.5866 0.5683 0.5508 
0 1 0.0981 0.1215 0.1698 0.1263 0.1761 0.2218 
0 2 0.0125 0.0188 0.0342 0.0221 0.0401 0.0621 
1 0 0.0644 0.1176 0.0778 0.1621 0.1185 0.0782 
1 1 0.0115 0.0253 0.0241 0.0393 0.0414 0.0356 
1 2 0.0018 0.0044 0.0055 0.0075 0.0103 0.0109 
2 0 0.0055 0.0163 0.0081 0.0315 0.0184 0.0092 
2 1 0.0012 0.0039 0.0028 0.0083 0.0070 0.0046 
2 2 0.0002 0.0007 0.0007 0.0017 0.0018 0.0015 

 
 
 
3. BONUS MALUS 

3.1 OPTIMAL BONUS MALUS SYSTEM 

 

To construct an optimal bonus malus system (Lemaire, 1985; Dionne and Vanasse, 1989, 1992) 

based on the number of past accidents recorded for a truck as well as those observed for its fleet, 

we must calculate the premium for a truck of a given fleet at period t+1 using the following 

mathematical expectation relation: 

( )
( )

fi f f ft 1
fi

fi f

E | y , X
,

E
+
⎛ ⎞θ α
⎜ ⎟γ
⎜ ⎟θ α⎝ ⎠  

where yf and Xf measure past accidents of vehicles in fleet f up to period t and past and current 

characteristics of all the trucks in fleet f up to t+1. It is important to observe that  is only a 

function of the observable characteristics in period t+1, while yf and Xf take into account the all 

past and current information available (Dionne and Vanasse, 1989). 

t 1
fi
+γ

 

The term  corresponds to the part of the mathematical expectation obtained from the 

econometric regressions. It is equal to 

t 1
fi
+γ

t 1
fi

fid eXt 1 + β+  where t 1
fid +  is the number of days that vehicle i of 
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fleet f is authorized to circulate in period t+1 divided by the total number of days in period t+1. 

As already indicated, this variable measures exposure to risk. The regression component 

corresponds to  where the vector of coefficients t 1
fiX + β ( )β  is estimated by means of econometric 

models and  represents the observable m characteristics of truck i in fleet f 

at the beginning of period t+1. 

(t 1 t 1 t 1
fi fi1 fimX x , , x+ + += " )

( )f

1 1 t 1 t 1
f f1 fI f1 fIX X , , X , , X , , X+= " " "

f

+  gives the m characteristics of 

all the trucks in fleet f up to the t+1 period. The vector ( )f f

1 1 t t
f f1 fI f1 fIy y , , y , , y , , y= " " "  

represents the accidents of vehicles in fleet f up to period t and ( )fi f f fE | y ,Xθ α  designates the 

mathematical expectation of the fleet and vehicle effects attributable to vehicle i, based on past 

experience as measured by accidents accumulated over the preceding t periods and 

characteristics over the t + 1 periods. As we shall see, the modeling proposed will take into 

account both the accidents of vehicle i and those of its fleet f. These effects account for the 

unobservable factors which can affect the accidents of trucks and fleets:  is the effect 

associated with fleet f and  is the weight truck i in fleet f actually exerts on this fleet effect. 

Finally, 

fα

fiθ

( )fi fE θ α  gives the mathematical expectation of the two effects attributable to truck i not 

conditional on past experience. The last term is used to normalize the BMF at 1 when the insurer 

has no experience with a particular vehicle. 

 

The preceding equation comes from a Bayesian analysis of the evolution of accidents over time. 

We are now going to show its explicit form under the hypotheses of statistical distribution for 

the two random effects. We know that the true mathematical expectation of the number of 

accidents for truck i of fleet f at period t+1 is equal to t 1
fi
+λ . It is a function of the vector for the 
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observable characteristics of the vehicle up to period j and of the random factors for fleet fα  and 

vehicle , which are supposed to be independent of time. fiθ

 

Given the observations obtained up to period t+1, the optimal estimator of this true mathematical 

expectation at period t+1, ( )t 1
fi f f

ˆ y ,X+λ  can be calculated as follows: 

( ) ( )
( ) ( )

( )( )
( ) ( )

ffi f f1 fI f f f ff fi f ft 1 t 1 t 1
fi f f fi fi

f fi f fi

E E | , , , y , X | y , XE | y , Xˆ y ,X
E E E E

+ + +
⎛ ⎞⎛ ⎞ θ α θ θα θ ⎜ ⎟⎜ ⎟λ = γ = γ
⎜ ⎟⎜ ⎟α θ α θ⎝ ⎠ ⎝ ⎠

" . 

 

We know that: 

( )( ) ( ) ( )Iff f f1fii 1

fi f f1 fI f f f f fi f f1 fI f f f1 fI f f f1 fI 1
...E E | , , , y ,X | y ,X E | , , , y ,X f , , | y ,X d d
θ =∑

=
f −

θ α θ θ = θ α θ θ θ θ θ θ∫ ∫" " " "  

with: 

( ) ( ) ( )
( ) ( )

f f

f
If f f1fii 1

f f1 fI f f1 fI
f1 fI f f

f f1 fI f f1 fI f1 fI 1

P y | , , ,X f
f , , | y ,X ... P y | , , ,X f d d

θ =∑
=

−

θ θ θ θ
θ θ =

θ θ θ θ θ θ∫ ∫
" "

"
" " "

f

f

. 

 

Similarly, we can calculate: 

( ) ( )f ff f 1 fI f f f f f f f1 fI
0

E | , , , y , X f | y , X , , , d
∞

α θ θ = α α θ θ α∫" "  

with: 

( ) ( ) ( )

( ) ( )
f

f

f

f f f1 fI f f
f f1 fI f f

f f f1 fI f f f
0

P y | , , , , X f
f | , , , y ,X

P y | , , , ,X f d
∞

α θ θ α
α θ θ =

α θ θ α α∫

"
"

"
. 
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Now let’s see how we can apply this Bayesian rating formula to carriers of different sizes. 

 

3.1.1 Size-1 carrier 

 

In this situation, the conditional accident probability for the fleet is given by: 

 ( ) ( )
( )

( )
( ) ( )

j j ttj j jf 1 f 1 yff 1 f 1 f f 1j 1
j 1

y yj jt t
f1 f f1

f f f fj j
j 1 j 1f1 f1

e
P y | , X e

y 1 y 1

∑
=

=

⎛ ⎞
−γ α ⎜ ⎟− α γ

⎜ ⎟
⎝ ⎠

= =

⎡ ⎤ ⎡ ⎤ ∑γ α γ⎢ ⎥ ⎢ ⎥α = = α⎢ ⎥ ⎢ ⎥Γ + Γ +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∏ ∏  

where yf measures the accidents of fleet f up to t. It is implicitly assumed that the  are 

conditionally independent, which can be considered as a restrictive assumption, particularly for 

small fleets whose trucks are often driven by the same drivers. Given past accidents observed up 

to period t, the mathematical expectation estimator of the number of accidents for the truck in a 

size-one fleet at period t+1 is equal to: 

j
fiy

 ( )
( )

t
j

f f
j 1f f ft 1 t 1

f1 f1 t
jf

f f
j 1

y
E | y , X

E
=+ +

=

1

1

⎡ ⎤
τ +⎢ ⎥α ⎢ ⎥γ = γ

α ⎢ ⎥τ + γ⎢ ⎥
⎣ ⎦

∑

∑
. (12) 

 

This is the posterior gamma, a formula often used in the literature (Lemaire, 1985; Dionne and 

Vanasse, 1989, 1992) for individual vehicles. It does not have to account for the vehicle effect 

since the vehicle is the fleet. 
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3.1.2. Carrier with 2 vehicles 

 

In this situation, the conditional accident probability for the fleet is given by: 

 ( ) ( )
( ) ( ) ( ) ( )

( )
j t t

j jfi It t tf f f ff 1 f 2f j j j
j 1 j 1f 1 f 2 fi

j 1 j 1 i 1 j 1
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⎜ ⎟−α θ γ + −θ γ
⎜
⎝
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⎡ ⎤ ∑ ∑γ ⎡ ⎤∑ ∑ ∑∑⎢ ⎥θ α = θ −θ α⎢ ⎥⎢ ⎥Γ + ⎣ ⎦⎢ ⎥⎣ ⎦
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⎟
⎠

j
f 2

t
j
2∑

 (13) 

where yf measures the accidents of vehicles in fleet f up to t. 

 

We know that, given the past accidents observed up to period t and due to the values assigned to 

the random effects of the 2 trucks in fleet f, the a posteriori density function for  corresponds 

to a gamma density with parameters: 

fα

( )
2 t t t

j j
f fi f f f1 f

i 1 j 1 j 1 j 1
2 y , 1

= = = =

⎛ ⎞
τ + τ + θ γ + −θ γ⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑  

where  and  take into account the accumulated experience at t. 
2 t

j
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i 1 j 1

y
= =
∑∑ ( )

t
j

f f1 f f
j 1 j 1

1
= =

θ γ + −θ γ∑

So: 
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( )

( )
( )

f

f

2 t
j
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i 1 j 1
t t2 t j j j2 y 1fi f f f ff 1 f 2i 1 j 1

j 1 j 1

2 y
t t

j j
f f f1 f f 2 1

j 1 j 1
f f f f f2 t

j
f fi

i 1 j 1

1
f | y ,X , e

2 y

= =

τ + −∑ ∑
= =

= =

τ +

⎛ ⎞
⎜ ⎟−α τ +θ γ + −θ γ
⎜ ⎟= = ⎝ ⎠

= =

∑∑⎛ ⎞
τ + θ γ + −θ γ ⎡ ⎤⎜ ⎟ ∑ ∑⎝ ⎠ ⎢ ⎥α θ = α ⎢ ⎥⎛ ⎞

⎢ ⎥Γ τ +⎜ ⎟ ⎣ ⎦
⎝ ⎠

∑ ∑

∑∑
. 

 

Given the past accidents observed up to period t and due to the values assigned to the random 

effects of the 2 trucks in fleet f, the mathematical expectation of fα  is equal to: 
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Given the past accidents observed up to period t for the two trucks of fleet f, the density function 

of  is equal to: fθ
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( ) ( )
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1 2f 1 f 2
j 1 j 1

2 t
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 (15) 

where 
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j
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i 1 j 1
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j j j

i fi f 2 f1t 2 t 2 2 t
j 1i 1 j 1 j 11 j j j

2 1 1 f1 f fi i fi t
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∑ ∑∑ ∑

y ; .

 

Given the past accidents observed up to period t for the two trucks of fleet f, the mathematical 

expectation estimator of the number of accidents for truck i in fleet f  at period t+1 is thus equal 

to: 

( )
( )

2 t
t 1 t 1 j fi
fi f fi f f fi f fi f ft t

j ji 1 j 1
f f f1 f f 2

j 1 j 1

E | y , X 2 y E | y , X
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∑ ∑

 

with  fi f fif i 1 and 1 if i 2.θ = θ = −θ =

It remains to calculate the expression: 
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By replacing ( )f f ff | y , Xθ  with its value given in (15), we obtain that: 
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Calculating the integral, we obtain: 
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∑ ∑∑ ∑ ∑∑ ∑ ∑∑

∑  (16) 

with 2iif1and1iif fffi =θ−=θ=θ  and the indicative function I = 1 if i = 1 and I = 0 if 

i = 2. 

 

Thus, the optimal estimator of vehicle i is equal to: 
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∑ ∑

X , (17) 

where the value of E (⋅) is given in (16). 

 

We note that for each vehicle i, the optimal estimator for accidents at period t+1 is a function of 

the following factors: the parameters observable when the insurance policy is being renewed at 

period t+1; the accidents accumulated by vehicle i over the preceding t periods; the total 

accidents of the fleet over the same periods; the observable characteristics of the two vehicles 

over the preceding t periods; and the gamma and Dirichlet parameters. To sum up, the term 

2 t j1 2
f fi

i 1 j 1i
2 y

2 = =

⎛ ⎞ν + ν
τ + ∑ ∑⎜ ⎟ν ⎝ ⎠

 

measures the fleet contribution, while the term ( )E i  measures the truck contribution to the 

fleet. 

 

We shall apply this formula to our data in Section 4. But let’s now see how it is possible to 

generalize this insurance rating formula to a fleet of If vehicles. 

 

3.1.3. Carrier with more than 2 vehicles 

 

This section is divided into three subsections corresponding to the three approximation 

hypotheses for the multiple integral discussed in section 2.1.3. 
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 All the  for the If vehicles are identical j
fiγ

 

In this situation, the conditional accident probability for the fleet is given by: 
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 (17) 

 

The optimal estimator  is thus equal to: t 1
fi

ˆ +λ
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. (18) 

 

This formula compares rather well with the one presented in equation (12) for a carrier with a 

single vehicle. Here, as all the vehicles are identical in terms of the observable variables, 

differentiation of the two formulas will be principally the work of the experience variables. On 

the one hand, all the accidents of the fleet come into play and, on the other hand, the weight of 

past accidents takes into account the parameters of the Dirichlet distribution, on an individual 

basis  for each vehicle and on an aggregated basis iν
fI

i
i 1=

ν∑  for all the vehicles. 

 

 Divide the vehicles into 2 groups 

 

 31



If we now have different vehicles, we can form groups with homogeneous characteristics or 

risks to obtain an explicit formula. In fact, insurers form more or less homogeneous risk classes 

by using different classification variables such as the type of car, the territory… Past experience 

serves to pinpoint the differences which are not observable a priori. If we limit ourselves to two 

groups, the conditional accident probability for the fleet is given by: 
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for the two groups respectively. 

 

The optimal estimator  is thus equal to: t 1
fi

ˆ +λ
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(19) 

where the indicative variable: 

    I  =   
⎩⎨
⎧

2. group  tobelongs truck  theif  0
1 group  tobelongs truck  theif   1

 

This formula is very difficult to generalize to more than two groups. If the fleet has several more 

or less homogeneous groups of vehicles, it may be more advantageous to rely on a Monte Carlo 

simulation approach. 

 

 Monte Carlo method 

 

In the general case, we must evaluate the following density function: 
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We can estimate the multiple integral at the denominator of equation (20) with the Monte Carlo 

method by using the importance (weighting) function (Lange, 1999) as shown in Section 2.1.3.  

 

By taking: 
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the optimal estimator  can be approximated by: t 1
fi

ˆ +λ
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with 
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where the  are values from the gamma density with parameters  for i 

= 1, … , If and  = 1 ,…, N. 

fiaA
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i fi
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4. APPLICATION OF THE BONUS MALUS SYSTEM 

 

In this section, we propose premium tables over several years, representing extensions of those 

proposed in the literature on automobile insurance for individual vehicles. Given that we did not 

model the conditional distribution for the cost of claims, we suppose that the average cost of 

claims is $10,000, seemingly a reasonable value for accidents involving trucks in North America 

(Dionne, Laberge-Nadeau et al., 1999). 

 

 35



4.1 FLEET OF 2 TRUCKS 

 

Table 3a presents an example of premiums calculated for a truck belonging to a fleet of two 

trucks. The first line of the table (Fleet accidents) gives the sum of the accidents for the fleet 

over t years. The maximum indicated is 2 accidents but it could be higher. The second line 

(Truck accidents) gives the sum of accidents for the truck in question. For example, in the third 

column where the fleet accumulates two accidents, the truck concerned may have had 0, 1 or 2 

accidents. Thus each corresponding scenario of premiums depends on the truck’s and the fleet’s 

own experience. In this section, we apply the formula in (18) along with the result of Table 1 

showing that . This formula measures the product of the BMF with the a priori value 

. 

1 2ν = ν = ν

t 1
fi
+γ

 

The estimated values of the parameters are equal to  and 1
fˆ 1.5615−τ = ˆ 2.2056ν =  (Table 1). Let’s 

take the column “No accident” in Table 3a for the fleet and the trucks. We note that the premium 

for the trucks decreases over time. The following column gives the variations in the premiums if 

the fleet does have an accident and depending on whether or not the truck has an accident. We 

note that the premium for the truck increases in comparison to the first column even if the truck 

did not have an accident, for it is penalized by the fleet effect. But the increase is less than the 

one corresponding to the case where it did incur an accident. For example, if the fleet has one 

accident with truck 2, the BMF of the first truck will go from 0.827 to 1.2, while that of the 

second truck will go from 0.796 to 1.666. 
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Table 3a 
Table of Insurance Premiums for Vehicles Belonging to a Size-2 Fleet 

Fleet 
accidents 

2 t
j
fi

i 1 j 1
y 0

= =

=∑∑  
2 t

j
fi

i 1 j 1
y 1

= =

=∑∑  
2 t

j
fi

i 1 j 1
y 2

= =

=∑∑  

Truck 
accidents 

t j
fij 1

0y
=

=∑  
t j

fij 1
0y

=
=∑  

t j
fij 1

1y
=

=∑  
t j

fij 1
0y

=
=∑  

t j
fij 1

1y
=

=∑  
t j

fij 1
2y

=
=∑  

t t 1
fi
+γ  BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
Truck 1             
0 0.114 1.000 $1,140           
1 0.114 0.827 $943 1.200 $1,368 1.759 $2,005 1.459 $1,663 2.133 $2,432  2.816 $3,210 
2 0.114 0.705 $804 1.024 $1,167 1.509 $1,720 1.245 $1,420 1.829 $2,085  2.424 $2,763 
3 0.114 0.615 $701 0.893 $1,018 1.322 $1,507 1.086 $1,239 1.601 $1,825  2.128 $2,426 
4 0.114 0.545 $622 0.792 $902 1.176 $1,340 0.964 $1,099 1.423 $1,623  1.897 $2,163 
Truck 2          
0 0.185 1.000 $1,850        
1 0.185 0.796 $1,473 1.156 $2,138 1.666 $3,083 1.401 $2,593 2.025 $3 747  2.641 $4,887 
2 0.185 0.662 $1,224 0.960 $1,777 1.377 $2,548 1.164 $2,153 1.675 $3,100  2.177 $4,027 
3 0.185 0.566 $1,047 0.822 $1,520 1.174 $2,172 0.995 $1,842 1.429 $2,644  1.852 $3,426 
4 0.185 0.495 $915 0.718 $1,329 1.024 $1,894 0.870 $1,609 1.246 $2,305  1.611 $2 981 
 
 
A direct link can be made between the BMF and the predictive probabilities computed in Section 

2.2.3. In fact, the BMF can be written as 

t 1 t t
fi f1 f 2

t
i

E Y Y Y
BMF

E Y

+⎡ ⎤
⎣ ⎦=

⎡ ⎤
⎣ ⎦

. 

 

Using the numbers in Table 2a for truck 1 with no accident at t for the fleet, we obtain: 

0.0942558BMF 0.827
0.114

= = , 

which is exactly the corresponding BMF in Table 3a. 

 

Table 3b compares the results with the semiparametric method for t = 1. The two semiparametric 

models come from Dionne et al. (2001). In the model of Section 3.3 in Dionne et al. (2001), the 

credibility related to the history of a vehicle is computed at the fleet level, while, in the model of 
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Section 3.5, it is computed for each vehicle. We observe that the variations of the BMF differ. 

The variations of the BMF conditional on past experience are wider in the parametric model than 

in the semiparametric ones. Since the residuals are smaller in absolute value (Median and IQR in 

Table 2) in the parametric model than in the Poisson model (44 estimated parameters instead of 

36), the dispersion of the premiums adjustments increases or introduces more incentives for road 

safety. We make other comparisons between the two approaches with data from a larger fleet in 

the last section of the paper. 

 
Table 3b 

Comparison with Semiparametric Model 
2

i
i 1

y 1
=

=∑  
2

i
i 1

y 2
=

=∑  
Bonus malus coefficient 

2

i
i 1

y 0
=

=∑  

iy 0=  iy 1=  iy 0=  iy 1=  iy 2=  
See Tableau 2 (truck 1) 0.827 1.200 1.759 1.459 2.133 2.816 
Section 3.5 Dionne et al., 
2001 

0.876 1.247 1.594 1.619 1.966 2.312 

Section 3.3 Dionne et al., 
2001 

0.876 1.421 1.421 1.966 1.966 1.966 

 
 
4.2 FLEET OF SEVERAL TRUCKS 

4.2.1. All vehicles in fleet have the same risk characteristics 

 

In this situation, the insurance premium estimated for truck i belonging to carrier f is given by 

(18) with . 
fI

i f
i 1

ˆI
=

ν = ν∑

 

Table 4 presents this example for a fleet of 10 identical trucks with ν̂  = 2.2056 and  = 6.4867 

(see Table 1). Suppose that the carrier accumulates 2 accidents over the next period, with 6 

1
f
−τ
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trucks incurring no accident nor speeding violation; 2 trucks incurring no accident but one 

speeding violation; 1 truck incurring an accident but no speeding violation; and 1 truck incurring 

an accident as well as a speeding violation. Still supposing that the average cost of claims is 

$10,000, the a priori insurance premium for a vehicle when no account is taken of past 

experience is established at $1,850 (0. 185 × 1 × $10,000). Since all the vehicles of the fleet are 

identical in terms of observable risk, they all have the same  and a BMF equal to 1 at 

the start of the insurance contract. The total premium for the fleet is established at $18,500 

(10×$1,850). In the following period (t+1), the insurance premiums for each of the records of the 

vehicles in the fleet are given in Table 4. 

t
fi 0.185γ =

 

Table 4 
Table of Insurance Premiums for Vehicles Belonging to a Size-10 Fleet 

when the Fleet Accumulates 2 Accidents a Year 

t
fiγ  Accumulation 

of accidents 
Speeding 
violation 

t 1
fi
+γ  BMF 

t 1
fi BMF+γ  

× $10,000 
Number of 

trucks  

0.185 0 0 0.185 0.957 $1,770  6 $10,620 
0.185 0 1 0.324 0.957 $3,101  2 $6,202 
0.185 1 0 0.185 1.391 $2,573  1 $2,573 
0.185 1 1 0.324 1.391 $4,507  1 $4,507 
Total 2 2     10 $23,902 

 
 
We observe that the BMF is higher for vehicles having an accident than for those which did not. 

We note that accidents affect the BMF of all the vehicles (fleet effect). We also notice that the a 

priori risk measurement  increases significantly for vehicles which have accumulated a 

speeding violation. If none of the 10 vehicles in the fleet had been involved in an accident nor 

had been charged with speeding, the total premium would have decreased from $18,500 to 

$8,440 (10×$844), for the BMF would be equal to 0.456 and the individual truck premium to 

t 1
fi
+γ
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$844 (0.185 × 0.456 × $10,000 = $844). However, in our example, the total premium goes from 

$18,500 to $23,902 based on the accumulated experience of the 10 vehicles. 

 

Now, if the carrier has accumulated 3 past accidents and has 9 trucks with no accident and no 

speeding violation and 1 truck with 3 accidents but no speeding violation, the total premium is 

$24,776. The insurance premiums of the fleet for each of the experiences are given in Table 5. 

 

Table 5 
Table of Insurance Premiums for Vehicles Belonging to a Size-10 Fleet 

when the Fleet has Accumulated 3 Accidents 

t
fiγ  Accumulation 

of accidents 
t 1
fi
+γ  BMF 

t 1
fi BMF+γ  

× $10,000 
Number of 

trucks 
 

0.185 0 0.185 1.179 $2,181 9 $19,629
0.185 3 0.185 2.782 $5,147 1 $5,147
Total 3   10 $24,776

 
 
We note that the premium for a vehicle with no accident nor speeding violation is $2,181 when it 

belongs to a fleet having accumulated 3 accidents and drops to $1,770 if it belongs to a fleet 

having accumulated 2 accidents, while retaining the same characteristics (Table 4). This result is 

explained by the fact that the BMFs of all the vehicles are affected by the fleet’s accumulation of 

accidents. We also note that accumulating 3 accidents increases the insurance premium more 

($5,147) than accumulating one accident and one speeding violation ($4,507). 
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4.2.3. Dividing the vehicles into 2 groups 

 

In this situation, the estimated insurance premium of a truck i belonging to a carrier f is given by 

(19) with  
fI

i f
i 1

ˆI .
=

ν = ν∑

 

Suppose that the accidents accumulated by the carrier over the next period is 0, with 4 trucks 

belonging to group 1 (a priori expected number of accidents below or equal to 0.14345) and 6 

trucks belonging to group 2 (a priori expected number of accidents above 0.14345). By 

supposing that the average cost of claims is $10,000, the insurance premiums for the history of 

each of the fleet’s vehicles in the following period are given in Table 6. 

 

Table 6 
Insurance Premiums for Vehicles Belonging to a 10-Truck Fleet 

when the Fleet has not Accumulated a Single Accident 

Group t
fgiγ̂  Accumulation 

of accidents 
t 1
fi
+γ  BMF

t 1
fi BMF+γ  

× $10,000 
Number of 

trucks  

1 0.1305 0 0.1305 0.455 $594 4 $2,376
2 0.2331 0 0.2331 0.440 $1,026 6 $6,156

Total  0    10 $8,532
 
 
Now, if the fleet has accumulated 1 accident and if the vehicle involved in the accident belongs 

to group 2, the insurance premiums for the fleet’s vehicles are given in Table 7. 
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Table 7 
Table of Insurance Premiums for Vehicles Belonging to a 10-Truck Fleet 

when the Fleet has Accumulated 1 Accident (in group 2) 

Group t
fgiγ̂  Accumulation 

of accidents 
t 1
fi
+γ  BMF 

t 1
fi BMF+γ  

× $10,000 
Number of 

trucks  

1 0.1305 0 0.1305 0.720 $940 4 $3,760
2 0.2331 0 0.2331 0.689 $1,606 5 $8,030
2 0.2331 1 0.2331 1.001 $2,333 1 $2,333

Total  1    10 $14,123
 
 
In contrast, if the vehicle involved in the accident belongs to group 1, we obtain the values 

shown in Table 8. 

Table 8 
Table of Insurance Premiums for Vehicles Belonging to a 10-Truck Fleet 

when the Fleet has Accumulated 1 Accident (in group 1) 

Group t
fgiγ̂  Accumulation 

of accidents 
t 1
fi
+γ  BMF 

t 1
fi BMF+γ  

× $10,000 
Number of 

trucks  

1 0.1305 0 0.1305 0.728 $950 3 $2,850
1 0.1305 1 0.1305 1.058 $1,381 1 $1,381
2 0.2331 0 0.2331 0.697 $1,625 6 $9,750

Total  1    10 $13, 981
 
 
Table 9 sums up all the cases (numbers not in parentheses) with the hypergeometric method, as 

well those with the Monte Carlo method (number in parentheses). 
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Table 9 
Table of Insurance Premiums for Vehicles Belonging to a 10-Truck Fleet 

Separated into Two Risk Groups 
Fleet 
accidents 

10 t
j
fi

i 1 j 1
y 0

= =

=∑∑  
10 t

j
fi

i 1 j 1
y 1

= =

=∑∑  
10 t

j
fi

i 1 j 1
y 2

= =

=∑∑  

Group 1 
accidents 

4 t
j
fi

i 1 j 1
y 0

= =

=∑∑  
4 t

j
fi

i 1 j 1
y 0

= =

=∑∑  
4 t

j
fi

i 1 j 1
y 1

= =

=∑∑  
4 t

j
fi

i 1 j 1
y 0

= =

=∑∑  
4 t

j
fi

i 1 j 1
y 1

= =

=∑∑  
4 t

j
fi

i 1 j 1
y 2

= =

=∑∑  

t 1
fi
+γ  BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF 

× $10,000 
BMF 

t 1
fi
+γ BMF

× $10,000
Group 1             

0.1305             
t

j
fi

j 1
y 0

=

=∑ 0.455 
(0.456) 

$594 
($594) 

0.720 
(0.720) 

$940 
($940) 

0.728 
(0.728) 

$950 
($950) 0.964 $1,258 0.974 $1,271 0.985 $1,285 

t
j
fi

j 1
y 1

=

=∑     1.058 
(1.059) 

$1,381 
($1,382)   1.416 $1,848 1.431 $1,867 

t
j
fi

j 1
y 2

=

=∑           1.878 $2,451 

Group 2             
0,2331             

t
j
fi

j 1
y 0

=

=∑ 0.440 
(0.441) 

$1,026 
($1,026) 

0.689 
(0.689) 

$1,606 
($1,606) 

0.697 
(0.697) 

$1,625 
($1,625) 0.914 $2,131 0.923 $2,152 0.932 $2,172 

t
j
fi

j 1
y 1

=

=∑   1.001 
(1.000) 

$2,333 
($2,331)   1.328 $3,096 1.341 $3,126   

t
j
fi

j 1
y 2

=

=∑       1.742 $4,061     

 
 
It should be noted that the Monte Carlo computations of premiums are identical to those with the 

hypergeometric approximation when we assume that all trucks are identical inside the two 

groups. They correspond to the numbers in parentheses in Table 9. One advantage of the Monte 

Carlo method is that we can use it to consider all trucks as different in a given fleet. We now 

present results for ten different trucks, using the Monte Carlo method to make a posteriori 

computations. We use the econometric results of Table 1 for a priori evaluations. The iterations 

are repeated n = 500,000 times; this takes about 10 minutes for a scenario like the one presented 

in Table 10, whereas the hypergeometric approximations are instantaneous. 
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Table 10 presents the premium evolution over five years for three scenarios. The a priori 

expected number of accidents for these three scenarios is 0.192. Scenario 1 is for a fleet that 

accumulates many accidents over time. In the first column, we observe the ten different a priori 

values. In the third column, we have the corresponding starting premiums for the three scenarios 

which amount to a total premium of $19,206 for the fleet. Accumulating eighteen accidents over 

five years yields a total premium of $33,190 for the next period. In scenario 2, the fleet 

accumulates only five accidents over the five years and the total premium drops to $11,196. 

Finally, in scenario 3, the fleet has two accidents each year (its average), resulting in an almost 

constant premium over time. 

 

(Table 10 here) 

 

In Figure 1, we graphically represent the three scenarios with solid lines. The dotted lines 

correspond to the cases where the fleet effect does not figure in both the regression and the 

premium computations (see the numbers in Table A-1 in the Appendix). The differences are 

significant. Introducing the fleet effect increases the fluctuations in the premiums and should 

introduce more incentives for road safety. Finally, we also indicate with solid dots the 

semiparametric solutions at time 1. We still observe that the variations in the premiums are 

lower than in the parametric model developed in this study. The corresponding numbers of the 

three scenarios are given in Table A2. 

 

(Figure 1 here) 
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Finally, we computed the relative errors in total premium estimation for a large fleet which may 

be generated when the hypergeometric method is used instead of the Monte Carlo method. We 

observe from Table 11 that the relative errors are non significant. The notation HH means that 

the parameters and the premiums were computed with the hypergeometric method while the 

notation HMC means that the parameters were estimated with the hypergeometric method, while 

the premiums were computed with the Monte Carlo method. 

 

Table 11 
Relative Error for Total Premium Computed 

by the Hypergeometric Model (HH) 

 Total premium 
 Number of trucks HMC HH Relative error 

Simulate fleet 150 $177,712.65 $178,020.34 0.17% 
Real fleet 149 $502,498.02 $504,704.59 0.44% 
 
 

 

5. CONCLUSION 

 

In this article, we have developed a parametric model for rating insurance premiums for fleets of 

vehicles. We have shown how taking into account both fleet and vehicle effects can affect the 

Bayesian calculation of insurance premiums over time. The model proposed was estimated using 

data over a single period. An important extension would be to model a panel effect which would 

take into account the repetitions of information on fleets and vehicles over time (see Abowd et 

al., 1999, for a first analysis of this type of model, and Angers et al., 2005, for an extension). 
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We have made comparisons between our hypergeometric model and a Monte Carlo model. For 

the parameters estimation both models yield the same results but the computing time is much 

lower with the hypergeometric approximation. For the bonus malus application, both models 

perform equally but the Monte Carlo is again more time consuming. 

 

We have also compared our hypergeometric model to a semiparametric one. The parametric 

model permits wider variations in premiums and should introduce more incentive for road safety. 

Both are equivalent in computing time. 

 

The rating formula developed presupposes a decentralized management of road safety as regards 

carriers. In effect, charging different premiums for each of the vehicles in a fleet based on the 

experience of both the fleet and its trucks will prompt road-safety managers themselves to keep a 

close eye on road-safety policy and to set up institutional incentives motivating drivers and 

carriers to adopt prudent behaviors. Indeed, knowing which drivers and carriers are risky, these 

managers can then assign sliding premiums according to the risk levels of the different drivers 

and trucks. 

 
A first version of the paper vas presented at the 2004 Risk Theory Seminar in New York City and at the 
2004 SCSE meeting in Quebec City. The research was financed by the Programme d’action concertée en 
sécurité routière FCAR-SAAQ-MTQ, by the Canada Research Chair in Risk Management, by the 
Fédération Française des Sociétés d’Assurances, and by the RQCHP. Detailed comments from two 
referees were very useful in improving both the content and the presentation of the paper. We thank 
Claire Boisvert very much for her contribution in the preparation of the manuscript. 
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Appendix A
Accuracy of the approximation of equation (8) by

equation (10)

The integral to evaluate in equation (8) is given by

Z
P

θfi=1

· · ·
Z QIf

i=1 θ
vi+yjfi−1

fi

(τ f +
PIf

i=1 θfiγ
j
fi)

If τf+
PIf

i=1 y
j
fi

dθef . (A-1)

This integral is almost impossible to do analytically. However, it can be

approximated in the following way.

In order to simplify the notation we assumed that γjf1 ≤ γjf2 ≤ . . . , γjfg <

γjf(g+1) ≤ . . . γjfIf The main idea is to divide γjf1, γ
j
f2, . . . , γ

j
fIf

into two sub-

groups which are as homogenous as possible, that is γjfg − γjf1 and γjfIf −

γjf(g+1) are as small as possible. Next, we do the change of variables

µ =

gX
i=1

θfi,

ui =
θfi
µ

for i = 1, 2, . . . , g − 1,

wi =
θf(i+g)

1− µ
for i = 1, g + 2, . . . , If − g

The Jacobian of this transformation is given by

|J | = µg−1(1− µ)If−g−1. (A-2)

1



Consequently, the numerator of the integrant of equation (A-1) can be written

as

IfY
i=1

θ
vi+yjfi−1

fi =

"
gY

i=1

(µui)
vi+yjfi−1

#⎡⎣If−gY
i=1

({1− µ}wi)
vi+g+yj

f(i+g)
−1

⎤⎦
= µS1−g(1− µ)S2−If+g

"
gY

i=1

u
vi+yjfi−1

i

#⎡⎣If−gY
i=1

(wi)
vi+g+yj

f(i+g)
−1

⎤⎦
(A-3)

where ug = θfg/µ, S1 =
Pg

i=1(vi + yjfi) and S2 =
PIf−g

i=1 (vi+g + yjf(i+g)).

Let γ(1) = g−1
Pg

i=1 γ
j
fi and γ(2) = (If − g)−1

PIf−g
i=1 γjf(i+g) and S3 =

Ifκ
−1
f +

PIf
i=1 y

j
fi. Hence, the denominator of equation (A-1) can be written

as⎛⎝τ f +

IfX
i=1

θfiγ
j
fi

⎞⎠S3

=

⎛⎝τ f +

gX
i=1

µui[γ
j
fi − γ(1) + γ(1)] +

If−gX
i=1

(1− µ)wi[γ
j
f(i+g) − γ(2) + γ(2)]

⎞⎠S3

=

⎛⎝τ f + µγ(1)

gX
i=1

ui + (1− µ)γ(2)

If−gX
i=1

wi + µ

gX
i=1

ui[γ
j
fi − γ(1)]

+(1− µ)

If−gX
i=1

wi[γ
j
f(i+g) − γ(2)]

⎞⎠S3

=

⎛⎝τ f + µγ(1) + (1− µ)γ(2) + µ

gX
i=1

ui[γ
j
fi − γ(1)] + (1− µ)

If−gX
i=1

wi[γ
j
f(i+g) − γ(2)]

⎞⎠S3

2



=
¡
τ f + µγ(1) + (1− µ)γ(2)

¢S3

×
Ã
1 +

µ

τ f + µγ(1) + (1− µ)γ(2)

gX
i=1

ui[γ
j
fi − γ(1)]

!
(A-4)

+
(1− µ)

τ f + µγ(1) + (1− µ)γ(2)

If−gX
i=1

wi[γ
j
f(i+g) − γ(2)]

⎞⎠S3

.

Let Aµ = µ/(τ f +µγ(1)+(1−µ)γ(2)), Bµ = (1−µ)/(τ f +µγ(1)+(1−µ)γ(2))

and

g(ue , we ) =
⎛⎝1 +Av

gX
i=1

ui[γ
j
fi − γ(1)] +Bv

If−gX
i=1

wi[γ
j
fi − γ(2)]

⎞⎠−S3

.

Expanding g(ue , we ) in a Taylor series of order 1 around ue0 = (1/g, 1/g, . . . , 1/g)
t

and we 0 = (1/(If − g), 1/(If − g), . . . , 1/(If − g))t, g(ue , we ) can be written as

g(ue , we ) = 1− S3Aµ

gX
i=1

(u∗i − 1/g)(γjfi − γjfg)

− S3Bµ

If−gX
i=1

(w∗i − 1/[If − g])(γjf(i+g) − γjfIf ), (A-5)

where ue∗ and we ∗ are points between the boundary of the simplex and ue0 and

we 0. Using equations (A-2), (A-3), (A-4) and (A-5), equation (A-1) can be

written as

Z
P

θfi=1

· · ·
Z QIf

i=1 θ
vi+yjfi−1

fi

(τ f +
PIf

i=1 θfiγ
j
fi)

Ifκ
−1
f +

PIf
i=1 y

j
fi

dθef

=

Z
P

θfi=1

· · ·
Z µS1−g(1− µ)S2−If+g

∙Qg
i=1 u

vi+yjfi−1

i

¸ hQIf−g
i=1 (wi)

vi+g+yj
f(i+g)

−1
i

¡
τ f + µγ(1) + (1− µ)γ(2)

¢S3

3



"
1− S3Aµ

gX
i=1

(u∗i − 1/g)(γjfi − γjfg)

−S3Bµ

If−gX
i=1

(w∗i − 1/[If − g])(γjf(i+g) − γjfIf )

⎤⎦µg−1(1− µ)If−g−1duedwe dµ

=

Z
P

θfi=1

· · ·
Z µS1−1(1− µ)S2−1

∙Qg
i=1 u

vi+yjfi−1

i

¸ hQIf−g
i=1 (wi)

vi+g+yj
f(i+g)

−1
i

¡
τ f + µγ(1) + (1− µ)γ(2)

¢S3"
1− S3

µ

(τ f + µγ(1) + (1− µ)γ(2))

gX
i=1

(u∗i − 1/g)(γjfi − γjfg)

−S3
(1− µ)

(τ f + µγ(1) + (1− µ)γ(2))

If−gX
i=1

(w∗i − 1/[If − g])(γjf(i+g) − γjfIf )

⎤⎦ duedwe dµ
=

QIf
i=1 Γ(y

j
fi + vi)

Γ(S1)Γ(S2)

"Z
P

θfi=1

· · ·
Z

µS1−1(1− µ)S2−1¡
τ f + µγ(1) + (1− µ)γ(2)

¢S3
dµ

− S3

gX
i=1

(u∗i − 1/g)(γjfi − γjfg)

Z
P

θfi=1

· · ·
Z

µS1(1− µ)S2−1¡
τ f + µγ(1) + (1− µ)γ(2)

¢S3+1
dµ

−S3

If−gX
i=1

(w∗i − 1/[If − g])(γjf(i+g) − γjfg)

Z
P

θfi=1

· · ·
Z

µS1−1(1− µ)S2¡
τ f + µγ(1) + (1− µ)γ(2)

¢S3+1
dµ

⎤⎦ .
Using an increasing factorial function (Gradshteyn and Ryzhik, 1980, Section

9.1), we then have

Z
P

θfi=1

· · ·
Z QIf

i=1 θ
vi+yjfi−1

fi

(τ f +
PIf

i=1 θfiγ
j
fi)

Ifκ
−1
f +

PIf
i=1 y

j
fi

dθef

=

QIf
i=1 Γ(y

j
fi + vi)

Γ(S1)Γ(S2)

"
Γ(S1)Γ(S2)

(τ f + γ(2))
S3Γ(S1 + S2)

2F1

Ã
S1;S3;S1 + S2;

γ(2) − γ(1)

κ−1 + γ(2)

!

− S3

gX
i=1

(u∗i − 1/g)(γjfi − γjfg)
Γ(S1 + 1)Γ(S2)

(τ f + γ(2))
S3+1Γ(S1 + S2 + 1)
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× 2F1

Ã
S1 + 1;S3 + 1;S1 + S2 + 1;

γ(2) − γ(1)

τ f + γ(2)

!

− S3

If−gX
i=1

(w∗i − 1/[If − g])(γjf(i+g) − γjfg)
Γ(S1)Γ(S2 + 1)

(τ f + γ(2))
S3+1Γ(S1 + S2 + 1)

×2F1

Ã
S1;S3 + 1;S1 + S2 + 1;

γ(2) − γ(1)

τ f + γ(2)

!#

=

QIf
i=1 Γ(y

j
fi + vi)

(τ f + γ(2))
S3Γ(S1 + S2)

2F1

Ã
S1;S3;S1 + S2;

γ(2) − γ(1)

τ f + γ(2)

!
"
1−

(
gX

i=1

(u∗i − 1/g)(γjfi − γjfg)

)
S1S3

(τ f + γ(2))(S1 + S2)

×
2F1

³
S1 + 1;S3 + 1;S1 + S2 + 1;

γ(2)−γ(1)

τf+γ(2)

´
2F1

³
S1;S3;S1 + S2;

γ(2)−γ(1)

τf+γ(2)

´
−
⎧⎨⎩

If−gX
i=1

(w∗i − 1/[If − g])(γjfi − γjfIf )

⎫⎬⎭ S2S3

(τ f + γ(2))(S1 + S2)

×
2F1

³
S1;S3 + 1;S1 + S2 + 1;

γ(2)−γ(1)

τf+γ(2)

´
2F1

³
S1;S3;S1 + S2;

γ(2)−γ(1)

τf+γ(2)

´
⎤⎦ .

To illustrate the relative precision of this approximation, we computed the

average of the expression in squared bracket of the last equation for several

values of If and g. To do so, we selected If values at random among the

following values of γjfi:

{0.00929, 0.01316, 0.01734, 0.01862, 0.01952, 0.02065, 0.02223, 0.03725, 0.04527,

0.04998, 0.05643, 0.05785, 0.06076, 0.09432, 0.10037, 0.10771, 0.10800, 0.10893,

5



0.11646, 0.11935, 0.12243, 0.12864, 0.13466, 0.13469, 0.14709, 0.14724, 0.14781,

0.14998, 0.15502, 0.15788, 0.16524, 0.17454, 0.18125, 0.18470, 0.20312, 0.20995,

0.21316, 0.21316, 0.21626, 0.21760, 0.22727, 0.24248, 0.24624, 0.25641, 0.27592,

0.29423, 0.30632, 0.32179, 0.32457, 0.44040},

along with τ f = 0.1542 and ν = 2.2056. We also generate max{1, 0.1× If}

accidents at random with probability proportional to the γjfi. The value of

g was chosen in order to minimize (V1 + V2)/V where Vi is the standard

deviation of the γjfi for the elements of the ith group and V , the standard

deviation of the γjfi for the whole fleet. In the following table, we listed the

values of If , g, V1, V2,
PIf

i=1 y
j
fi and Relative Error.

In the following figure, we plotted the relative error as a function of If .

(Figure 2 here)

As expected, the relative error increases as If increases. This can be

explained by the fact that the more trucks there are in a fleet, the more

likely it is to see some variation between the γjfi. The correlation between If

and the relative error is around 0.88.
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APPENDIX B 
Gradient and Hessian Computation 
 
For matters of faster convergence, we made the following variable change: . The Log-
likelihood function of equation (11) for F firms is equal to: 

1
f fˆ −τ = κ

 

( ) ( )

( ) ( )

( ) ( )

f f f

f f f

f

I I IF
1 j 1 j 1 j

f f fi f f fi f f f fi f fg2
f 1 i 1 i 1 i 1

I I I
j j

i i fi i fi
i 1 i 1 i 1

I
j j
fi fi i

i 1

L log I y log I y log( ) I y log 1

log log y log y

y log log log y

− − −

= = = =

= = =

=

⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= Γ κ + − Γ κ + × κ − κ + + κ γ⎢ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣
⎛ ⎞ ⎛ ⎞

Γ ν − Γ ν + + Γ ν + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

γ − Γ ν − Γ

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ( )

( ) ( )

+

f f

f f

I I
j
fi

i 1 i 1

I Ig
fg2 fg1j 1 j j

2 1 i fi f f fi i fi 1
i 1 i 1 i 1 f fg2

1

log F y , I y , y , .

= =

−
−

= = =

+ +

⎤⎛ ⎞⎛ ⎞⎛ ⎞γ − γ
⎥⎜ ⎟ν + κ + ν +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟κ + γ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎦

∑ ∑

∑ ∑ ∑  

 
We used the maximum likelihood method to estimate the unknown parameters, 

. The gradient and Hessian take the following forms: f 1, , , ,ν κ β = β β" m

 
Gradient 
 

F
f

f 1i i

LL
=

∂∂
=

∂ν ∂ν∑   

 

( ) ( ) ( )

( )( )

f f f fI I I I
j jf

i i fi i fi
i 1 i 1 i 1 i 1i

2 1
i

L y y

log F a,b,c,d

= = = =

⎛ ⎞ ⎛ ⎞∂
= Ψ ν −Ψ ν + + Ψ ν + − Ψ ν⎜ ⎟ ⎜ ⎟∂ν ⎝ ⎠ ⎝ ⎠

∂
+
∂ν

∑ ∑ ∑ ∑ i

 

with ( ) ( )
( )
.

.
.

′Γ
Ψ =

Γ
 denotes the first derivative of the natural logarithm function of gamma 

function  and its derivative ( ).Γ ( ).′Γ . 
 

( )

( )

f

f

Ig
j 1

i fi f f fi
i 1 i 1

I
fg2 fg1j

j fi 1
i 1 f fg2

a y b I

c y d

−

= =

−
=

⎛ ⎞
= ν + = κ +⎜ ⎟

⎝ ⎠
⎛ ⎞γ − γ

= ν + = ⎜ ⎟⎜ ⎟κ + γ⎝ ⎠

∑ ∑

∑

jy

 

 
and  

 1



( )( )
( ) ( ) ( ) ( ) ( )( )

fIg
j j j j

2 1 i fi i fk k i fi i k fk 2 1
k i k i

2 1
i i

log F y h y , b, y h y ,d log F a, b,c,d
log F a, b,c,d

h
≠ ≠

⎛ ⎞⎛ ⎞
ν + + + + ν ν + + + ν + + −⎜ ⎟⎜ ⎟

∂ ⎝ ⎠⎝ ⎠≈
∂ν

∑ ∑

 
F

f

f 1f f

LL
=

∂∂
=

∂κ ∂κ∑   

 

( )

( ) ( )( )

f

f

f

I
1 j

f f fi fg2I
i 11 j 2f

f fi f f f fg2
i 1f f

I
2 1 j 2 1

f f f f fi f f f f 2 1
i 1 f

I y
L y I log 1

1

I I y I I log F a, b,c,d

−

=− −

=

− − − −

=

⎛ ⎞
κ + γ⎜ ⎟∂ ⎝ ⎠= κ + κ + κ γ − −

∂κ + κ γ

⎛ ⎞ ∂
κ Ψ κ + + κ Ψ κ +⎜ ⎟ ∂κ⎝ ⎠

∑
∑

∑

fg2  

 

( )( )
( )

( )
( )( )

fI1 fg2 fg1j
2 1 f f f fi 2 11

i 1 f f fg2

2 1
f f

log F a, I h y ,c, log F a, b,c,d
h

log F a,b,c,d
h

−

−
=

⎛ ⎞⎛ ⎞⎛ ⎞γ − γ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟κ + + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ κ + + γ∂ ⎝ ⎠⎝ ⎠⎝ ⎠≈
∂κ

∑
 

 
F

f

f 1

LL
=

∂∂
=

∂β ∂β∑   

 

( ) (( )
fI

1 jf f
f f fi 2 1

i 1 f fg2 f

L X
X * Y I y * #group log F a, b,c,d

1 I g
−

=

⎛ ⎞ ′⎛ ⎞⎛ ⎞∂ κ ∂′= − κ + γ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂β + κ γ − ∂β⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ )  where 

 

( )( ) ( ) ( )2 1 2 1
2 1

1log F a, b,c,d F a, b,c,d
F a, b,c,d

∂ ∂
=

∂β ∂β
×   

 
with 
 

( ) ( )

( )

( )

( ) ( ) ( )
( )

( )

f f

f

2 1 2 1

I I
j 1 j

i fi f f fi
i 1 i 1

I
j

i fi
i 1

fg2 fg1f
21 1

f fg2 ff fg2

F a,b,c,d F 1 a,1 b,1 c,d

y I y

y

X X* #group * #(1 group)
I g g X* * #group

I g

−

= =

=

− −

∂
= + + + ×

∂β

⎛ ⎞
ν + × κ +⎜ ⎟

⎝ ⎠ ×
ν +

′ ′⎡ ⎤⎛ ⎞γ − γ −⎢ ⎥⎜ ⎟ γ − γ ⎛ ⎞′−⎢ ⎥⎜ ⎟ − γ⎜ ⎟κ + γ −⎢ ⎥⎜ ⎟ ⎝ ⎠κ + γ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

∑
 

 2



 

where    with       

f

f1

fi

fI

X

XX

X

⎛ ⎞
⎜ ⎟…⎜
⎜=
⎜ ⎟
…⎜ ⎟

⎜ ⎟
⎝ ⎠

⎟
⎟ ( )fi fi1 fipX x , , x= "

f

f1

fi

fI

y

yY

y

⎛ ⎞
⎜ ⎟…⎜
⎜=
⎜ ⎟

⎟
⎟

…⎜ ⎟
⎜ ⎟
⎝ ⎠

       

f

f1

fi

fI

γ⎛ ⎞
⎜ ⎟…⎜ ⎟
⎜ ⎟γγ =
⎜ ⎟
…⎜ ⎟

⎜ ⎟γ⎝ ⎠

   

 
 
with . The group vector of dimension  corresponds to 0 if truck i is in the first group 
and to 1 if truck i is in the second group. 

fiX
fi fid e βγ = fI

 
In matricial notation,  

• * corresponds to the matrices multiplication; 
• # corresponds to the elementwise multiplication; 
• group = 1 when the truck is a high risk and 0 otherwise. 

 
Hessian 
 

22 F
f

f 1q k q k

LL
=

∂∂
=

∂ν ∂ν ∂ν ∂ν∑   

 

( ) ( ) ( ) ( )( )
f f f fI I I I2 2

j jf
i i fi i fi i 2 1

i 1 i 1 i 1 i 1q q q q

L y y log F a,
= = = =

⎛ ⎞ ⎛ ⎞∂ ∂′ ′ ′ ′= Ψ ν −Ψ ν + + Ψ ν + − Ψ ν +⎜ ⎟ ⎜ ⎟∂ν ∂ν ∂ν ∂ν⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ b,c,d
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( )( ) ( )( )2 1 q q 2 12

q q
2 1

q q q

log F a h ,b,c h ,d log F a,b,c,d
log F a,b,c,d

h

∂ ∂+ + −
∂ν ∂ν∂

=
∂ν ∂ν

 et 

 

( ) ( ) ( ) ( )( )
f f f fI I I I2 2

j jf
i i fi i fi i 2 1

i 1 i 1 i 1 i 1q k q k

L y y log F a,
= = = =

⎛ ⎞ ⎛ ⎞∂ ∂′ ′ ′ ′= Ψ ν −Ψ ν + + Ψ ν + − Ψ ν +⎜ ⎟ ⎜ ⎟∂ν ∂ν ∂ν ∂ν⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ b,c,d  

 

with ( )( )
( )( ) ( )( )2 1 k k 2 12

q q
2 1

q k k

log F a h ,b,c h ,d log F a,b,c,d
log F a,b,c,d

h

∂ ∂
+ + −

∂ν ∂ν∂
=

∂ν ∂ν
 

 
with  denotes the second derivative of the natural logarithm function of gamma function ′Ψ
 

F 22
f

f 1f f f f
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∂∂
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f

f f
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i 1 f f fg22 j 3f
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I I y 2I I y

I I 2I I

−
−
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=
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= =
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⎛ ⎞
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∑
∑

∑ ∑

×
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2

2 1
f f
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+
∂κ ∂κ
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fI1 fg2 fg1j
2 1 f f f fi 2 11

i 1f f2 f f fg2
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=
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Table 1 
Parameters Estimation 

 

Two groups method Monte Carlo method 
Explanatory variables Coefficient Standard 

deviation Coefficient Standard 
deviation 

Statistic t 

Constant -3.4049 0.0978 -3.4416 0.0619 0,3171
Number of years as carrier at  31 December 1998 -0.0596 0.0056 -0.0614 0.0055 0,2293
Sector of activity in 1998     
 Other sector -0.2021 0.3404 -0.2979 0.1644 0,2534
 General public trucking 0.1675 0.0740 0.1087 0.1013 0,4687

Bulk public trucking Reference group Reference group 
 Private trucking 0.0810 0.0583 0.0381 0.0757 0,4490
 Short-term rental firm 0.6476 0.1468 0.5576 0.1445 0,4369
Size of fleet   

2 Reference group Reference group 
3 0.1805 0.0488 0.1953 0.0566 -0,1980
4 to 5 0.2076 0.0473 0.2260 0.0462 -0,2783
6 to 9 0.3117 0.0474 0.3373 0.0503 -0,3704
10 to 20 0.4111 0.0490 0.4369 0.0463 -0,3827
21 to 50 0.4358 0.0626 0.4667 0.0766 -0,3124
More than 50 0.5907 0.0970 0.5940 0.0980 -0,0239

Number of days authorized to circulate in 1997 1.8679 0.0730 1.8818 0.0234 -0,1813
Number of violations of trucking standards in 1997     
 For overload 0.1803 0.0389 0.1949 0.0439 -0,2489
 For excessive size 0.6118 0.2840 0.6444 0.1191 -0,1059
 For poorly secured cargo 0.4611 0.1148 0.4893 0.2212 -0,1132
 For failure to respect service hours 0.2761 0.1367 0.3217 0.1545 -0,2210
 For failure to pass mechanical inspection 0.3630 0.0940 0.4051 0.1113 -0,2890
 For other reasons 0.3980 0.1780 0.3638 0.1109 0,1631
Type of vehicle use     
 Commercial use including transport of goods without C.T.Q. permit -0.1163 0.0535 -0.0650 0.0635 -0,6178
 Transport of other than "bulk" goods -0.1376 0.0654 -0.0778 0.0752 -0,6000

Transport of "bulk" goods Reference group Reference group 
Type of fuel   

Diesel Reference group Reference group 
 Gas -0.4402 0.0429 -0.4446 0.0457 0,0702
 Others -0.1813 0.1776 -0.1949 0.1668 0,0558
Number of cylinders     
 1 to 5 cylinders 0.1814 0.1025 0.1785 0.0974 0,0205
 6 to 7 cylinders 0.3548 0.0353 0.3642 0.0378 -0,1817

8 or more than 10 cylinders Reference group Reference group 
Number of axles   

2 axles (3,000 to 4,000 kg) -0.3480 0.0529 -0.3298 0.0573 -0,2334
2 axles (more than 4,000 kg) -0.3143 0.0370 -0.3017 0.0393 -0,2334
3 axles -0.1677 0.0361 -0.1676 0.0385 -0,0019
4 axles -0.1442 0.0488 -0.1474 0.0477 0,0469
5 axles -0.1913 0.0424 -0.1967 0.0433 0,0891
6 axles or more Reference group Reference group 

Number of violations with demerit points in 1997   
For speeding 0.2648 0.0241 0.2810 0.0290 -0,4296

 For driving under suspension 0.4725 0.1356 0.4271 0.1621 0,2148
 For running a red light 0.4031 0.0653 0.4570 0.0875 -0,4937
 For ignoring stop sign or traffic agent 0.5134 0.0684 0.5134 0.0703 0,0000
 For not wearing a seat belt 0.1741 0.1059 0.1877 0.1088 -0,0896
 For other offenses 1.1218 0.0769 1.2257 0.1371 -0,6610
ν̂ 2.2056 0.2098 2.2710 0.2179 -0,2162

1ˆ−τ  (fleets of  2 trucks) 1.5615 0.2686 1.5107 0.2748 0,1322
1ˆ−τ  (fleets of  3 trucks) 2.1061 0.3494 2.0658 0.4532 0,0704
1ˆ−τ  (fleets of 4 to 5 trucks) 3.0853 0.4048 3.0481 0.3961 0,0657
1ˆ−τ  (fleets of  6 to 9 trucks) 3.5167 0.4661 3.4933 0.4159 0,0375
1ˆ−τ  (fleets of 10 to 20 trucks) 6.4867 0.7011 6.4552 0.6521 0,0329
1ˆ−τ  (fleets of  21 to 50 trucks) 15.9511 1.9657 15.6209 4.3179 0,0696
1ˆ−τ  (fleets more than 50 trucks) 118.4366 15.7770 89.0506 10.0112 1,5727

Log-likelihood -30,494 -30,500 
Number of carriers 13,159 13,159 
Number of vehicles 73,328 73,328 
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Scenario 1 (( )    Table 10: Monte Carlo Method1 fˆ ˆ2.2056; 0.1542ν = τ =

t    0 1  2  3  4  5  

fiγ  BMF Premium $ BMF Premium $ BMF Premium $ BMF        Premium $ BMF Premium $ BMF Premium $

0.1190  1.000 1,190 1.213 1,444 1.349 1,605 1.839* 2,188 2.388* 2,842 2.860* 3,404 
0.1207  1.000 1,207 1.762* 2,127 2.566* 3,098 2.407 2,905 2.945* 3,554 2.853 3,444 
0.1408  1.000 1,408 1.199 1,688 2.502** 3,523 2.320 3,267 2.273 3,200 2.181 3,070 
0.1415  1.000 1,415 1.197 1,693 1.312 1,857 1.216 1,720 1.730* 2,448 2.696** 3,814 
0.1633  1.000 1,633 1.179 1,925 1.274 2,081 1.701* 2,777 1.649 2,693 1.567 2,559 
0.2281  1.000 2,281 1.652* 3,767 2.249* 5,130 2.014 4,594 1.900 4,333 1.773 4,045 
0.2301  1.000 2,301 1.646* 3,788 1.711 3,937 1.531 3,523 1.445 3,326 1.766* 4,064 
0.2421  1.000 2,421 1.126 2,725 1.161 2,812 1.030 2,494 1.415* 3,426 1.310 3,172 
0.2633  1.000 2,633 1.111 2,924 1.134 2,986 1.456* 3,833 1.359 3,577 1.257 3,309 
0.2717  1.000 2,717 1.105 3,002 1.123 3,052 0.990 2,691 0.922 2,506 0.850 2,309 

        Total 19,206 Total 25,083 Total 30,079 Total 29,991 Total 31,906 Total 33,190
Scenario 2 

t    0 1  2  3  4  5  

fiγ  BMF                  Premium $ BMF Premium $ BMF Premium $ BMF Premium $ BMF Premium $ BMF Premium $

0.1190  1.000 1,190 0.724 862 0.934* 1,111 0.866 1,030 0.690 821 0.789 939 
0.1207  1.000 1,207 0.724 874 0.641 774 0.595 718 0.474 572 0.542 655 
0.1408  1.000 1,408 0.719 1,013 0.632 890 0.584 823 0.463 653 0.529 744 
0.1415  1.000 1,415 0.718 1,015 0.631 894 0.584 827 0.465 657 0.766* 1,083 
0.1633  1.000 1,633 0.710 1,159 0.622 1,015 0.831* 1,357 0.660 1,078 0.975* 1,593 
0.2281  1.000 2,281 1.004* 2,289 0.867 1,977 0.785 1,789 0.622 1,419 0.686 1,565 
0.2301  1.000 2,301 0.691 1,591 0.594 1,368 0.539 1,240 0.426 981 0.470 1,082 
0.2421  1.000 2,421 0.687 1,662 0.591 1,430 0.534 1,292 0.422 1,021 0.463 1,120 
0.2633  1.000 2,633 0.681 1,794 0.582 1,533 0.524 1,380 0.414 1,091 0.454 1,194 
0.2717  1.000 2,717 0.680 1,846 0.579 1,574 0.521 1,414 0.411 1,117 0.449 1,220 

           Total 19,206 Total 14,106 Total 12,565 Total 11,870 Total 9,409 Total 11,196
Scenario 3 

t    0 1  2  3  4  5  

fiγ  BMF                  Premium $ BMF Premium $ BMF Premium $ BMF Premium $ BMF Premium $ BMF Premium $

0.1190  1.000 1,190 0.970 1,154 0.928 1,104 0.897 1,068 0.861 1,024 1.200* 1,428 
0.1207  1.000 1,207 0.969 1,170 0.927 1,119 0.896 1,082 0.855 1,032 0.824 994 
0.1408  1.000 1,408 0.959 1,350 0.911 1,282 0.873 1,229 0.828 1,166 0.792 1,116 
0.1415  1.000 1,415 0.961 1,360 1.323* 1,872 1.662* 2,352 1.956* 2,768 1.868 2,643 
0.1633  1.000 1,633 0.946 1,545 0.891 1,454 1.233* 2,014 1.162 1,898 1.104 1,802 
0.2281  1.000 2,281 1.330* 3,033 1.224 2,792 1.141 2,602 1.057 2,412 0.987 2,252 
0.2301  1.000 2,301 0.915 2,107 0.840 1,932 0.782 1,799 0.724 1,666 0.677 1,557 
0.2421  1.000 2,421 1.325* 3,207 1.208 2,925 1.122 2,718 1.036 2,509 1.270* 3,075 
0.2633  1.000 2,633 0.901 2,373 1.187* 3,126 1.094 2,879 1.320* 3,476 1.225 3,227 
0.2717  1.000 2,717 0.896 2,435 0.810 2,202 0.746 2,028 0.685 1,860 0.635 1,725 

             Total 19,206 Total 19,734 Total 19,808 Total 19,770 Total 19,813 Total 19,820
1 One * indicates that the truck had one accident during the previous period while two * is for two accidents during the previous period. 
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Scenario 1( )  Table A1: Monte Carlo Simulations Without the Fleet Effect in both the Premium Computation and Parameter Estimation fˆ 0.9289τ =
t    0 1  2  3  4  5  

fiγ  BMF Premium $ BMF Premium $ BMF Premium $ BMF        Premium $ BMF Premium $ BMF Premium $

0.1190  1.000 1,190 0.886 1,055 0.796 947 1.500* 1,785 2.085* 2,481 2.578* 3,068 
0.1207  1.000 1,207 1.838* 2,218 2.503* 3,021 2.269 2,738 2.783* 3,359 2.564 3,095 
0.1408  2,526 1.000 1,408 0.868 1,223 2.420* 3,407 2.167 3,052 1.963 2,764 1.794 
0.1415  1.000 1,415 0.852 1,206 0.743 1,051 0.658 931 1.227* 1,736 2.672* 3,781 
0.1633  1.000 1,633 0.850 1,389 0.740 1,208 1.360* 2,220 1.219 1,991 1.105 1,805 
0.2281  1.000 2,281 1.667* 3,803 2.115* 4,823 1.816 4,141 1.591 3,628 1.415 3,228 
0.2301  1.000 2,301 1.664* 3,830 1.389 3,195 1.191 2,741 1.043 2,400 1.409* 3,241 
0.2421  1.000 2,421 0.793 1,920 0.657 1,591 0.561 1,359 1.017* 2,461 0.902 2,183 
0.2633  1.000 2,633 0.779 2,051 0.638 1,680 1.122* 2,955 0.973 2,562 0.859 2,262 
0.2717  1.000 2,717 0.774 2,102 0.631 1,714 0.533 1,447 0.461 1,252 0.406 1,103 

           Total 19,206 Total 20,797 Total 22,639 Total 23,370 Total 24,635 Total 26,292

Scenario 2 

t    0 1  2  3  4  5  

fiγ  BMF                  Premium $ BMF Premium $ BMF Premium $ BMF Premium $ BMF Premium $ BMF Premium $

0.1190  1.000 1,190 0.886 1,055 1.653* 1,967 1.500 1,785 1.373 1,634 1.266 1,506 
0.1207  1.000 1,207 0.885 1,068 0.794 958 0.720 868 0.658 794 0.606 732 
0.1408  1.000 1,408 0.868 1,223 0.767 1,080 0.687 968 0.623 877 0.569 801 
0.1415  1.000 1,415 0.852 1,206 0.743 1,051 0.658 931 0.591 836 1.113* 1,575 
0.1633  1.000 1,633 0.850 1,389 0.740 1,208 1.360* 2,220 1.219 1,991 1.678* 2,740 
0.2281  1.000 2,281 1.667* 3,803 1.393 3,177 1.196 2,727 1.048 2,390 0.932 2,126 
0.2301  1.000 2,301 0.801 1,844 0.669 1,539 0.574 1,320 0.502 1,156 0.447 1,028 
0.2421  1.000 2,421 0.793 1,920 0.657 1,591 0.561 1,359 0.490 1,185 0.434 1,051 
0.2633  1.000 2,633 0.779 2,051 0.638 1,680 0.540 1,423 0.469 1,234 0.414 1,089 
0.2717  1.000 2,717 0.774 2,102 0.631 1,714 0.533 1,447 0.461 1,252 0.406 1,103 

             Total 19,206 Total 17,662 Total 15,966 Total 15,049 Total 13,348 Total 13,752

Scenario 3 

t    0 1  2  3  4  5  

fiγ  BMF                  Premium $ BMF Premium $ BMF Premium $ BMF Premium $ BMF Premium $ BMF Premium $

0.1190             1.000 1,190 0.886 1,055 0.796 947 0.722 860 0.661 787 1.266* 1,506
0.1207  1.000 1,207 0.885 1,068 0.794 958 0.720 868 0.658 794 0.606 732 
0.1408  1.000 1,408 0.868 1,223 0.767 1,080 0.687 968 0.623 877 0.569 801 
0.1415  1.000 1,415 0.852 1,206 1.543* 2,183 2.075* 2,937 2.499* 3,536 2.267 3,208 
0.1633  1.000 1,633 0.850 1,389 0.740 1,208 1.360* 2,220 1.219 1,991 1.105 1,805 
0.2281  1.000 2,281 1.667* 3,803 1.393 3,177 1.196 2,727 1.048 2,390 0.932 2,126 
0.2301  1.000 2,301 0.801 1,844 0.669 1,539 0.574 1,320 0.502 1,156 0.447 1,028 
0.2421  1.000 2,421 1.647* 3,988 1.365 3,305 1.165 2,821 1.017 2,461 1.369* 3,314 
0.2633  1.000 2,633 0.779 2,051 1.325* 3,489 1.122 2,955 1.478* 3,891 1.304 3,434 
0.2717    1.000 2,717 0.774 2,102 0.631 1,714 0.533 1,447 0.461 1,252 0.406 1,103 

             Total 19,206 Total 19,729 Total 19,600 Total 19,123 Total 19,134 Total 19,058
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Table A2: Comparison of BMF and Premiums for Fleets of 10 Trucks 
between Parametric and Semiparametric Models 

Scenario 1 with t = 1 
 Equation 22 Section 3.5 Dionne et al., 2001  

t 1
fi
+γ  BMF Premium ($) BMF Premium ($) Number of Accident 

0,1190 1,213 1 444 1,220 1 452 0 
0,1207 1,762 2 127 1,432 1 729 1 
0,1408 1,199 1 688 1,216 1 712 0 
0,1415 1,197 1 693 1,216 1 720 0 
0,1633 1,179 1 925 1,211 1 978 0 
0,2281 1,652 3 767 1,406 3 206 1 
0,2301 1,646 3 788 1,405 3 233 1 
0,2421 1,126 2 725 1,195 2 894 0 
0,2633 1,111 2 924 1,191 3 136 0 
0,2717 1,105 3 002 1,190 3 232 0 

 Total 25 083 Total 24 292 3 
 

Scenario 2 with t = 1 
 Equation 22 Section 3.5 Dionne et al., 2001  
t 1
fi
+γ  BMF Premium ($) BMF Premium ($) Number of Acccident 

0,1190 0,724 862 0,767 913 0 
0,1207 0,724 874 0,767 926 0 
0,1408 0,719 1 013 0,763 1 074 0 
0,1415 0,718 1 015 0,763 1 079 0 
0,1633 0,710 1 159 0,758 1 238 0 
0,2281 1,004 2 289 0,953 2 173 1 
0,2301 0,691 1 591 0,745 1 714 0 
0,2421 0,687 1 662 0,742 1 797 0 
0,2633 0,681 1 794 0,738 1 944 0 
0,2717 0,680 1 846 0,737 2 001 0 

 Total 14 106 Total 14 858 1 
 

Scenario 3 with t = 1 
 Equation 22 Section 3.5 Dionne et al., 2001  
t 1
fi
+γ  BMF Premium ($) BMF Premium ($) Number of Accidents 

0,1190 0,970 1 154 0,988 1 176 0 
0,1207 0,969 1 170 0,988 1 192 0 
0,1408 0,959 1 350 0,984 1 385 0 
0,1415 0,961 1 360 0,983 1 392 0 
0,1633 0,946 1 545 0,979 1 599 0 
0,2281 1,330 3 033 1,174 2 677 1 
0,2301 0,915 2 107 0,966 2 222 0 
0,2421 1,325 3 207 1,170 2 833 1 
0,2633 0,901 2 373 0,959 2 525 0 
0,2717 0,896 2 435 0,958 2 602 0 

 Total 19 734 Total 19 603 2 
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Figure 1: Simulation with and without the Fleet Effect 
 

 5



 
 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 5 10 15 20 25 30 35 40 45 50

Size of fleet

R
el

at
iv

e 
er

ro
rs

 
 

Figure 2:Relative Errors as a Function of Size of Fleet 
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