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Abstract

This paper studies comparative risk aversion between risk averse agents in the presence of

a background risk. Although the literature covers this question extensively, our contribution

di¤ers from most of the literature in two respects. First, background risk does not need to

be additive or multiplicative. Second, the two risks are not necessary mean independent,

and may be quadrant dependent. We show that our order of cross Ross risk aversion is

equivalent to that of partial risk premium, while our index of decreasing cross Ross risk

aversion is equivalent to that of a decreasing partial risk premium. These results generalize

the comparative risk aversion model developed by Ross (1981) for mean independent risks.

Finally, we show that decreasing cross Ross risk aversion gives rise to the utility function

family belonging to the class of n-switch utility functions.
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1 Introduction

Arrow (1965) and Pratt (1964) propose an important theorem stating that risk aversion com-

parisons using risk premia and measures of risk aversion always give the same result. Ross

(1981) shows that when an agent faces more than one risk, Arrow-Pratt measures are not strong

enough to support the plausible association between absolute risk aversion and the size of the

risk premium. He proposes a stronger ordering called Ross risk aversion. Several studies extend

Ross�results. Most papers generalize them to higher-orders of risk aversion for univariate utility

functions (see Modica and Scarsini, 2005; Jindapon and Neilson, 2007; Li, 2009; Denuit and

Eeckhoudt, 2010a). This paper provides another direction to this line of research.

There is growing concern about risk attitudes of bivariate utility function in the literature

(see Courbage, 2001; Bleichrodt et al., 2003; Eeckhoudt et al., 2007; Courbage and Rey, 2007;

Menegatti, 2009 a,b; Denuit and Eeckhoudt, 2010b; Li, 2011; Denuit et al., 2011a). To our

knowledge, these studies do not analyze comparative risk aversion. The �rst paper that looks at

preservation of �more risk averse�with general multivariate preferences and background risk is

Nachman (1982). However, in his setting the background risk is independent. Pratt (1988) also

considers the comparison of risk aversion both with and without the presence of an independent

background risk using a two-argument utility function.

This paper examines comparative Ross risk aversion in the setting of a positive quadrant

dependent (PQD, or negative quadrant dependent, NQD) background risk1. First, we extend

Finkelshtain et al.�s (1999) research by analyzing comparative risk aversion in a slightly di¤erent

context. Then we introduce the notion of cross Ross risk aversion and show that more cross

Ross risk aversion is associated with a higher partial risk premium in the presence of a PQD

(or NQD) background risk. Hence, we demonstrate that the index of cross Ross risk aversion is

equivalent to the order of partial risk premium. We also propose the concept of decreasing cross

Ross risk aversion and derive necessary and su¢ cient conditions for obtaining an equivalence

between decreasing cross Ross risk aversion and decreasing partial risk premium for a PQD

(or NQD) background risk. We apply this result to examine the e¤ects of changes in wealth

and �nancial background risk on the intensity of risk aversion. Finally, we show that speci�c

1The concept of quadrant dependence was introduced by Lehmann (1966). Portfolio selection problems with

quadrant dependence have been explored by Pellerey and Semeraro (2005) and Dachraoui and Dionne (2007),

among others.
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assumptions about the behavior of the decreasing cross Ross risk aversion gives rise to the utility

function form that belongs to the class of n-switch utility functions (Abbas and Bell, 2011).

Our paper is organized as follows. In Section 2, we review some concepts of dependence.

In Section 3, we consider necessary and su¢ cient conditions for risk aversion to one risk in the

presence of a PQD (or NQD) background risk. Section 4 o¤ers the necessary and su¢ cient

conditions for comparing two agents� attitudes towards risk with di¤erent utility functions.

Section 5 considers the same agent�s attitude at di¤erent wealth levels under a PQD (or NQD)

background risk. Section 6 applies our results to �nancial background risks. Section 7 relates

decreasing cross Ross risk aversion to the n-switch independence property. Section 8 concludes

the paper.

2 Review of some concepts of dependence

Let F (x; y) denote the joint distribution and FX(x) and FY (y) the marginal distribution of ~x

and ~y. Ross (1981) consider the following relationship between ~x and ~y.

De�nition 2.1 (Ross, 1981) (~x; ~y) is mean independent if E[~yj~x = x] = E(~y) for all x.

Mean independence is a stronger restriction than uncorrelatedness. However, it is weaker

than independence. Lehmann (1966) introduced the following general concept to investigate

positive dependence.

De�nition 2.2 (Lehmann, 1966) (~x; ~y) is positively quadrant dependent, written PQD(~x; ~y), if

F (x; y) � FX(x)FY (y) for all x; y: (1)

(1) can be rewritten as

FX(xj~y � y) � FX(x): (2)

~x and ~y are negative quadrant dependent, written NQD(~x; ~y), if the above inequalities hold with

the inequality sign reversed. Lehmann interpreted (1) as follows: �knowledge of ~y being small

increases the probability of ~x being small�. In the economic literature (see for example Gollier,

2007), positive (or negative) quadrant dependence is related to �rst-order stochastic dominance:

FX(x) �rst-order dominates (or is dominated by) FX(xj~y � y) under PQD(~x; ~y) (NQD(~x; ~y)).

Pellerey and Semeraro (2005) assert that a large subset of the multivariate elliptical distribution

class is PQD. For more examples, see Joe (1997).
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We now propose relationships between the three following de�nitions: E[~yj~x = x] = E(~y),

E[~yj~x = x] is non-decreasing in x (Finkelshtain et al., 1999) and PQD(~x; ~y).

Proposition 2.3

E[~yj~x = x] = E(~y) for all x) E[~yj~x = x] is non-decreasing in x) PQD(~x; ~y): (3)

Proof See the Appendix.

3 Risk aversion with two risks

We consider an economic agent whose preference for wealth, ~w, and a variable, ~y, can be repre-

sented by a bivariate model of expected utility. We let u(w; y) denote the utility function, and

let u1(w; y) denote @u
@w and u2(w; y) denote

@u
@y , and follow the same subscript convention for the

functions u11(w; y) and u12(w; y) and so on, and assume that the partial derivatives required for

any above de�nition all exist and are continuous.

Let us consider the following de�nition of risk aversion proposed by Finkelshtain et al. (1999).

De�nition 3.1 (Finkelshtain, Kella and Scarsini, 1999) An agent is risk averse in zero-mean

risk ~x with (~x; ~y) if

Eu(w + ~x; ~y) � Eu(w + E~x; ~y) (4)

for all initial wealth w.

Finkelshtain et al. (1999) provide the following necessary and su¢ cient condition on u for

obtaining risk aversion to one risk in the presence of a background risk.

Proposition 3.2 (Finkelshtain, Kella and Scarsini, 1999) The following statements are equiv-

alent:

(i) For 8w and every zero-mean risk ~x such that E[~yj~x = x] is non-decreasing in x, inequality

(4) holds;

(ii) u is submodular (i.e., u(x _ y) + u(x ^ y) � u(x) + u(y) for all x; y 2 R2) and concave

in its �rst argument.

We now propose an alternative condition on u to obtain risk aversion in the presence of

PQD(~x; ~y):
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Proposition 3.3 The following statements are equivalent:

(i) For 8w and every ~x with PQD(~x; ~y), inequality (4) holds;

(ii) u11 � 0 and u12 � 0.

Proof See the Appendix.

The interpretation of the sign of the u12 goes back to De Finetti (1952) and has been studied

and extended by Epstein and Tanny (1980); Richard (1975); Scarsini (1988) and Eeckhoudt et

al. (2007). For example, Eeckhoudt et al. (2007) show that u12 � 0 is necessary and su¢ cient

for an agent to be �correlation averse,� meaning that a higher level of the second argument

mitigates the detrimental e¤ect of a reduction in the �rst argument. Agents are correlation

averse if they always prefer a 50-50 gamble of a loss in x or a loss in y over another 50-50 gamble

o¤ering a loss in both x and y.

Propositions 3.2 and 3.3 each have their comparative advantages. More speci�cally, Propo-

sition 3.2, contrary to Proposition 3.3, does not require that any of the utility function�s partial

derivatives be continuous. However, regarding applications, di¤erentiability is often a natural

requirement.

Proposition 3.3 shows that an agent with both risk aversion (concavity) in its �rst argument

and correlation aversion dislikes a risk in the presence of a PQD background risk. We want to

quantify this e¤ect. This can be done by evaluating the maximum amount of money that this

agent is ready to pay to escape one component of the bivariate risk in the presence of the other.

Chalfant and Finkelshtain (1993) introduced the following idea into the economics literature.

De�nition 3.4 (Chalfant and Finkelshtain, (1993)) For u and v, the partial risk premia �u

and �v in ~x for (~x; ~y) is de�ned as

Eu(w + ~x; ~y) = Eu(w � �u + E~x; ~y) (5)

and

Ev(w + ~x; ~y) = Ev(w � �v + E~x; ~y): (6)

From Proposition 3.3 we know that u11 � 0 and u12 � 0 (v11 � 0 and v12 � 0) if and only if

�u � 0 (�v � 0) for any risk ~x with PQD(~x; ~y).
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4 Comparative cross risk attitudes

The partial risk premia �u and �v are the maximal monetary amounts individuals u and v are

willing to pay for removing one risk in the presence of a second risk. We derive necessary and

su¢ cient conditions for comparative partial risk premia in the presence of PQD background

risk. Extension of the analysis to NQD background risk is discussed later. Let us introduce two

de�nitions of comparative risk aversion motivated by Ross (1981). The following de�nition uses

�u12(w;y)
u1(w;y)

and �v12(w;y)
v1(w;y)

as local measures of correlation aversion.

De�nition u is more cross Ross risk averse than v if and only if there exists �1; �2 > 0 such

that for all w; y and y0

u12(w; y)

v12(w; y)
� �1 �

u1(w; y
0)

v1(w; y0)
(7)

and
u11(w; y)

v11(w; y)
� �2 �

u1(w; y
0)

v1(w; y0)
: (8)

When u(w; y) = U(w + y) in (7) and (8), we obtain the de�nition of comparative Ross

risk aversion for mean independent risks. However, we are interested in comparisons when the

agents face two dependent risks which is more general than mean independence. The following

proposition provides an equivalent comparison between risk aversion and partial risk premium

in the presence of PQD background risks.

Proposition 4.1 For u, v with u1 > 0, v1 > 0, v11 < 0, u11 < 0, u12 < 0 and v12 < 0, the

following three conditions are equivalent:

(i) u is more cross Ross risk averse than v.

(ii) There exists � : R � R ! R with �1 � 0, �12 � 0 and �11 � 0, and � > 0 such that

u = �v + �.

(iii) �u � �v for 8 w and ~x with PQD(~x; ~y).

Proof See the Appendix.

When an agent faces a PQD background risk, the cross Ross risk aversion de�nition estab-

lishes an unambiguous relation between more risk version and a higher willingness to pay for

insurance. Hence, the cross Ross measure of absolute risk aversion is in line with our intuition

in this partial insurance economic problem. Bacause, as mentioned in the preceding section,
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u12 � 0 is necessary and su¢ cient for correlation aversion, the above proposition introduces

�u12
u1
as the local measure of correlation aversion.

Proposition 4.1 introduces two extensions of Ross. First, we generalize Ross by replacing the

additive utility function by a general bivariate utility function. Second, we consider dependent

risks. Suppose at this stage that we maintain Ross assumption that E[~yj~x = x] is independent

of x. It is easy to demonstrate the following proposition in that context:

Conjecture 4.2 For u, v with u1 > 0, v1 > 0, v11 < 0 and u11 < 0, the following three

conditions are equivalent:

(i) There exists � > 0 such that for all (w; y): u11(w;y)
v11(w;y)

� � � u1(w;y0)
v1(w;y0)

;

(ii) There exists � > 0 and � : R�R! R with �1 � 0 and �11 � 0 such that u = �v + �;

(iii) �u � �v for 8 (~x; ~y) such that E[~yj~x = x] is independent of x.

In other words, Ross�result is easily extended to the bivariate case. Observe that in this

conjecture, we do not need to know anything about cross-derivatives. This means that cross-

derivatives are useful only to take PQD into account. This could be made clearer with the

following polar conjecture:

Conjecture 4.3 For u, v with u1 > 0, v1 > 0, v12 < 0 and u12 < 0, the following three

conditions are equivalent:

(i) There exists � > 0 such that for all (w; y): u12(w;y)
v12(w;y)

� � � u1(w;y0)
v1(w;y0)

;

(ii) There exists � > 0 and � : R�R! R with �1 � 0 and �12 � 0 such that u = �v + �;

(iii) �u � �v for 8 (~x; ~y) such that ~yj~x = x is degenerated and non-decreasing in x.

Proposition 4.1 in this paper combines these two conjectures in a single proposition by linking

PQD to the sign of the cross-derivative of �.

5 Decreasing cross Ross risk aversion with respect to wealth

In this section, we examine how the partial risk premium for a given risk ~x is a¤ected by a change

in initial wealth w, in the presence of a PQD background risk. Fully di¤erentiating equation (5)

with respect to w yields2

Eu1(w + ~x; ~y) = Eu1(w + E~x� �u; ~y)� �0(w)Eu1(w + E~x� �u; ~y); (9)

2Equation (9) has a univariate counterpart in Eeckhoudt and Kimball (1992).
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hence,

�0(w) =
Eu1(w + E~x� �u; ~y)� Eu1(w + ~x; ~y)

Eu1(w + E~x� �u; ~y)
: (10)

Thus, the partial risk premium is decreasing in wealth if and only if

Eh(w + E~x� �u; ~y) � Eh(w + ~x; ~y); (11)

where h � �u1 is de�ned as minus the partial derivative of function u. Because h1 = �u11 � 0,

condition (11) simply states that the partial risk premium of agent h is larger than the partial

risk premium of agent u. From Proposition 4.1, this is true if and only if h is more cross Ross

risk averse than u. That is, 9�1; �2 > 0, for all w,y and y0, such that

h12(w; y)

u12(w; y)
� �1 �

h1(w; y
0)

u1(w; y0)
(12)

and
h11(w; y)

u11(w; y)
� �2 �

h1(w; y
0)

u1(w; y0)
; (13)

or, equivalently,

�u112(w; y)
u12(w; y)

� �1 � �
u11(w; y

0)

u1(w; y0)
(14)

and

�u111(w; y)
u11(w; y)

� �2 � �
u11(w; y

0)

u1(w; y0)
: (15)

We obtain the following proposition:

Proposition 5.1 For u with u1 > 0, u11 < 0, u12 < 0, u111 � 0 and u112 � 0, the following

three conditions are equivalent:

(i) the partial risk premium �u; associated with any PQD(~x; ~y) is decreasing in wealth;

(ii) There exists � : R � R ! R with �1 � 0, �12 � 0 and �11 � 0, and � > 0 such that

�u1 = �u+ �;

(iii) 9�1; �2 > 0, for all w, y and y0, such that

�u112(w; y)
u12(w; y)

� �1 � �
u11(w; y

0)

u1(w; y0)
(16)

and

�u111(w; y)
u11(w; y)

� �2 � �
u11(w; y

0)

u1(w; y0)
: (17)
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The proof of Proposition 5.1 is obtained by using (9) to (15).

Proposition 5.1 introduces �u112(w;y)
u11(w;y)

and �u111(w;y)
u11(w;y)

as local measurements of cross-prudence

and prudence. These local measures of prudence are essentially identical to the measure pro-

posed by Kimball (1990). It is well known that, for the single-risk case, DARA is equivalent

to the utility function �u0(:) being more concave than u(:) (see for example, Gollier, 2001).

Proposition 5.1 is an extension of this result to bivariate risks under a PQD background risk.

An interpretation of the sign of u112 is provided by Eeckhoudt et al. (2007), who showed that

u112 > 0 is a necessary and su¢ cient condition for �cross-prudence in its second argument�,

meaning that a higher level of second argument mitigates the detrimental e¤ect of the monetary

risk.

There are economic situations where negative dependence is more pertinent. If ~x and ~y are

NQD, then ~x and �~y are PQD. We can de�ne m(x; y) = u(x;�y), and Propositions 3.3, 4.1 and

5.1 can be applied to m(x; y) directly.

6 Comparative risk aversion in the presence of a �nancial back-

ground risk

Financial background risk has received much attention in the economics literature. For addi-

tive �nancial background risk, we refer to Doherty and Schlesinger (1983a,b, 1986), Kischka

(1988), Eeckhoudt and Kimball (1992), Eeckhoudt and Gollier, (2000), Schlesinger (2000), Gol-

lier (2001), Eeckhoudt et al. (2007) and Franke et al. (2011). For multiplicative �nancial

background risk, see Franke et al. (2006, 2011). In this section, we consider some examples

to illustrate the use of Propositions 4.1 and 5.1 in the framework of additive or multiplicative

background risks.

6.1 Additive background risk

First, we show that Proposition 4.1 allows us to extend the results of Ross (1981) for an additive

background risk. Note that, for an additive background risk ~y, we have

u(w; y) = U(w + y) (18)

and

v(w; y) = V (w + y): (19)
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Here w can be interpreted as the random wealth of an agent and y as a random increment to

wealth, i.e., random income or �nancial portfolio.

Given that

u1 = U
0 ; u11 = u12 = U

00 and u111 = u112 = U
000 (20)

and

v1 = V
0 ; v11 = v12 = V

00 and v111 = v112 = V
000; (21)

Ross (1981) proposed the following results.

Proposition 6.1 (Ross (1981, Theorem 3)) For u(w; y) = U(w + y), v(w; y) = V (w + y) with

U 0 > 0, V 0 > 0, U 00 < 0 and V 00 < 0, the following two conditions are equivalent:

(i) 9� > 0
U 00(w + y)

V 00(w + y)
� � � U 0(w + y0)

V 0(w + y0)
for all w ; y and y0: (22)

(ii) �u � �v for 8 w, any zero-mean risk ~x and ~y with E[~xj~y = y] = E~x = 0.

Proposition 6.2 (Ross (1981, Theorem 4)) For u(w; y) = U(w + y), with U 0 > 0, U 00 < 0 and

U 000 > 0, the partial risk premium associated with any zero-mean risk ~x with E[~xj~y = y] = 0 is

decreasing in wealth if and only if, 9� > 0, for all w, y and y0,

�U
000(w + y)

U 00(w + y)
� � � �U

00(w + y0)

U 0(w + y0)
(23)

We now show that Propositions 4.1 and 5.1 generalize Ross�conditions.

Conditions (7) and (8) imply

U 00(w + y)

V 00(w + y)
� � � U 0(w + y0)

V 0(w + y0)
for all w ; y and y0: (24)

Proposition 4.1, (20), (21) and (24) immediately entail the following result.

Corollary 6.3 For u(w; y) = U(w + y), v(w; y) = V (w + y) with U 0 > 0, V 0 > 0, U 00 < 0 and

V 00 < 0, the following two conditions are equivalent:

(i) 9� > 0
U 00(w + y)

V 00(w + y)
� � � U 0(w + y0)

V 0(w + y0)
for all w ; y and y0: (25)

(ii) �u � �v for 8 w and PQD(~x; ~y).
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Conditions (16) and (17) imply, for all w, y and y0,

�U
000(w + y)

U 00(w + y)
� � � �U

00(w + y0)

U 0(w + y0)
(26)

From Proposition 5.1, (20), (21) and (26), we obtain the following corollary:

Corollary 6.4 For u(w; y) = U(w + y), with U 0 > 0, U 00 < 0 and U 000 > 0, the following two

conditions are equivalent:

(i) the partial risk premium associated with any PQD(~x; ~y) is decreasing in wealth.

(ii) 9� > 0, for all w, y and y0,

�U
000(w + y)

U 00(w + y)
� � � �U

00(w + y0)

U 0(w + y0)
(27)

In Corollary 6.4, the condition for decreasing risk premia under PQD risks is equivalent to

that for a �rst-order stochastic dominance (FSD) improvement in an independent background

risk to decrease the risk premium, as shown by Eeckhoudt et al. (1996).

6.2 Multiplicative background risk

For a multiplicative background risk ~y, we have

u(w; y) = U(wy) (28)

and

v(w; y) = V (wy): (29)

Here w may represent the random wealth invested in a risky asset and y may represent a

multiplicative random shock on random wealth, like a variation of random interest rate.

Because

u1 = yU
0; u11 = y

2U 00; u12 = U
0 + wyU 00; u111 = y

3U 000 and u112 = 2yU
00 + wy2U 000 (30)

and

v1 = yV
0; v11 = y

2V 00; v12 = V
0 + wyV 00; v111 = y

3V 000 and v112 = 2yV
00 + wy2V 000: (31)

Conditions (7) and (8) imply, 9�1; �2 > 0, for all w, y and y0,

U 0(wy) + wyU 00(wy)

V 0(wy) + wyV 00(wy)
� �1 �

U 0(wy0)

V 0(wy0)
(32)

10



and
U 00(wy)

V 00(wy)
� �2 �

U 0(wy0)

V 0(wy0)
: (33)

Then, from Proposition 4.1, (53), (54), (57) and (33), we obtain

Corollary 6.5 For u(w; y) = U(wy), v(w; y) = V (wy) with U 0 > 0, V 0 > 0, U 00 < 0 and

V 00 < 0, the following two conditions are equivalent:

(i) 9�1; �2 > 0, for all w, y and y0,

U 0(wy) + wyU 00(wy)

V 0(wy) + wyV 00(wy)
� �1 �

U 0(wy0)

V 0(wy0)
(34)

and
U 00(wy)

V 00(wy)
� �2 �

U 0(wy0)

V 0(wy0)
: (35)

(ii) �u � �v for 8 w and PQD(~x; ~y).

Because

U 0(wy) + wyU 00(wy)

V 0(wy) + wyV 00(wy)
(36)

=
U 00(wy)( U

0(wy)
U 00(wy) + wy)

V 00(wy)( V
0(wy)

V 00(wy) + wy)

=
U 00(wy)(wy � 1

RAU (wy)
)

V 00(wy)(wy � 1
RAV (wy)

)
;

where RAU (wy) = �U 00(wy)
U 0(wy) and RAV (wy) = �

V 00(wy)
V 0(wy) are indices of absolute risk aversion. We

can obtain a more concise su¢ cient condition from Corollary 6.5.

Corollary 6.6 For u(w; y) = U(wy), v(w; y) = V (wy) with w > 0, ~y > 0 almost surely, U 0 > 0,

V 0 > 0, U 00 < 0 and V 00 < 0, If 9� > 0, for all w,y and y0,

U 00(wy)

V 00(wy)
� � � U 0(wy0)

V 0(wy0)
; (37)

then �u � �v for 8 w and PQD(~x; ~y).

Proof From Corollary 6.5 and (36), we know that for all w,y and y0,

U 00(wy)

V 00(wy)
� � � U 0(wy0)

V 0(wy0)
(38)

and RAU (wy) � RAV (wy) imply that �u � �v for 8 w and PQD(~x; ~y). Using the fact that �U

is more Ross risk averse than V ) RAU (wy) � RAV (wy)�, we obtain the result. Q.E.D.
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Corollary 6.6 states that �more Ross risk aversion� is a su¢ cient condition to order the

partial risk premium in the presence of PQD multiplicative background risk.

From Proposition 5.1, we obtain

Corollary 6.7 For u(w; y) = U(wy), with U 0 > 0, U 00 < 0 and U 000 > 0, the partial risk

premium associated with any PQD(~x; ~y) is decreasing in wealth if and only if, 9�1; �2 > 0, for

all w,y and y0,

�2yU
00(wy) + wy2U 000(wy)

U 0(wy) + wyU 00(wy)
� �1 � �

y0U 00(wy0)

U 0(wy0)
(39)

and

�yU
000(wy)

U 00(wy)
� �2 � �

y0U 00(wy0)

U 0(wy0)
: (40)

Because

�2yU
00(wy) + wy2U 000(wy)

U 0(wy) + wyU 00(wy)
(41)

= �
yU 000(wy)(2 U

00(wy)
U 000(wy) + wy)

U 00(wy)( U
0(wy)

U 00(wy) + wy)

= �
yU 000(wy)(wy � 2 1

PU (wy)
)

U 00(wy)(wy � 1
RAU (wy)

)
;

where PU (wy) = �U 000(wy)
U 00(wy) is the index of absolute prudence. We can obtain a shorter su¢ cient

condition from Corollary 6.7 and (41).

Corollary 6.8 For u(w; y) = U(wy), with w > 0, ~y > 0 almost surely, U 0 > 0, U 00 < 0 and

U 000 > 0, The partial risk premium associated with PQD(~x; ~y) is decreasing in wealth if , 9� > 0,

for all w, y and y0,

�yU
000(wy)

U 00(wy)
� � � �y

0U 00(wy0)

U 0(wy0)
(42)

and PU (wy) � 2RAU (wy).

Moreover, (42) can be multiplied by w on both sides to obtain the results in terms of measures

of relative risk aversion and relative prudence:

�wyU
000(wy)

U 00(wy)
� � � �wy

0U 00(wy0)

U 0(wy0)
; (43)

which implies �min relative prudence � max relative risk aversion�. Whereas in the literature,

PU � 2RAU is an important condition for risk vulnerability (see Gollier 2001, p129), Corollary

6.8 shows that PU � 2RAU is also an important condition for comparative risk aversion in the

presence of a PQD multiplicative background risk.
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7 Decreasing cross Ross risk aversion and n-switch indepen-

dence property

Because the conditions derived in Ross (1981) are fairly restrictive upon preference, some readers

may regard Ross�results as negative, because no standard utility functions (logarithmic, power,

mixture of exponentials) satisfy these conditions. Pratt (1990) suggests that probability distrib-

ution restrictions stronger than mean independence may provide more satisfactory comparative

statics. In a very di¤erent domain, Bell (1988) proposes that agents are likely to be characterized

by a utility function satisfying the one-switch rule: there exists at most one critical wealth level

at which the decision-maker switches from preferring one alternative to the other. He shows

that the linex function (linear plus exponential) is the only relevant utility function family if one

adds to the one-switch rule some very reasonable requirements. This utility function has been

studied by Bell and Fishburn (2001), Sandvik and Thorlund-Petersen (2010), Abbas and Bell

(2011) and Tsetlin and Winkler (2009, 2012). In a recent paper, Denuit et al. (2011b) show

that Ross�stronger measure of risk aversion gives rise to the linex utility function and therefore

they provide not only a utility function family but also some intuitive and convenient properties

for Ross�measure.

Abbas and Bell (2011) extend the one-switch independence property to two-attribute utility

functions, and propose a new independence assumption based on the one-switch property: n-

switch independence (see Tsetlin and Winkler, 2012, for a similar extension).

De�nition (Abbas and Bell 2011) For utility function u(x; y), X is n-switch independent

of Y if two gambles ~x1 and ~x2 can switch in preference at most n times as Y progresses from its

lowest to its highest value.

They provide the following propositions:

Proposition 7.1 (Abbas and Bell 2011) X is one-switch independent of Y if and only if

u(x; y) = g0(y) + f1(x)g1(y) + f2(x)g2(y); (44)

where g1(y) has a constant sign, and g2(y) = g1(y)�(y) for some monotonic function �.

Proposition 7.2 (Abbas and Bell 2011) If X is n-switch independent of Y , then there exist

some functions fi, gi such that

u(x; y) = g0(y) +

n+1X
i=1

fi(x)gi(y): (45)

13



We now show that the one-switch property of Proposition 7.1 is a consequence of Proposition

5.1. We also argue that (45) is a utility function that satis�es the decreasing cross Ross risk

aversion condition proposed in Section 3.

From Proposition 5.1 we know that the partial risk premium �u, associated with any

PQD(~x; ~y) is decreasing in wealth, if and only if there exists � : R � R ! R with �1 � 0,

�12 � 0 and �11 � 0, and � > 0 such that

�u1(x; y) = �u(x; y) + �(x; y): (46)

Solving the above di¤erential equation implies that u is of the form

u(x; y) = �
Z x

�1
e�t�(t; y)dte��x: (47)

If we take �(x; y) = �H(x)J(y) such that J(y) has a constant sign, then we get

u(x; y) =

Z x

�1
e�tH(t)dte��xJ(y) (48)

= [
1

�
e�xH(x)� 1

�

Z x

�1
e�tH 0(t)dt]e��xJ(y)

=
1

�
H(x)J(y)� 1

�

Z x

�1
e�tH 0(t)dte��xJ(y):

De�ning g1(y) = g2(y) = 1
�J(y), f1(x) = H(x) and f2(x) = �

R x
�1 e

�tH 0(t)dte��x, we recognize

the functional form in Proposition 7.1.

Integrating the integral term of (48) by parts again and again, we obtain

u(x; y) =
nX
i=1

e�x
(�1)i�1H(i�1)(x)

�i
+
1

�n

Z x

�1
e�t(�1)nH(n)(t)dt]e��xJ(y) (49)

=
nX
i=1

J(y)
(�1)i�1H(i�1)(x)

�i
+
1

�n

Z x

�1
e�t(�1)nH(n)(t)dte��xJ(y)

=

n+1X
i=1

fi(x)gi(y);

where fi(x) = (�1)(i�1)H(i�1)(x) for i = 1; :::; n, fn+1(x) =
R x
�1 e

�t(�1)nH(n)(t)dte��x, gi(y) =

1
�i
J(y) for i = 1; ::; n and gn+1(y) = 1

�nJ(y). Therefore we obtain the functional form in

Proposition 7.2 from decreasing cross Ross risk aversion. Although coming from very di¤erent

approaches, decreasing cross Ross risk aversion and n-switch independence reach the same func-

tional form. Our result thus provides a connection between decreasing cross Ross risk aversion

and n-switch independence.
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8 Conclusion

In this paper we consider expected-utility preferences in a bivariate setting. The analysis focuses

on PQD random variables. The main contribution is to propose a risk premium for removing

one of the risks in the presence of a second dependent risk. To this end, we extend Ross�

(1981) contribution by de�ning the concept of �cross Ross risk aversion.�We derive several

equivalence theorems relating measures of risk premia with measures of risk aversion. We then

consider additive risks and multiplicative risks as two special cases. We also show that the

decreasing cross Ross risk aversion assumption about behavior gives rise to the utility function

family that belongs to the class of n-switch utility functions. The analysis and the index of

risk aversion in this paper may be instrumental in obtaining comparative static predictions in

various applications.

9 Appendix

9.1 Proof of Proposition 2.3

It is obvious that E[~yj~x = x] = E(~y) implies E[~yjx] is non-decreasing in x. We now consider

PQD(~x; ~y). Cohen et al. (1994) introduce the concept of conditionally increasing in sequence:

De�nition 9.1 (Cohen et al. 1994) The random variables (~y; ~x) are said to be conditionally

increasing in sequence (CIS) if

E[~yj~x = x] � E[~yj~x = x�]; (50)

for x � x�.

We know that E[~yj~x = x] non-decreasing in x implies that (~y; ~x) are CIS. From the theorems

in Cohen et al. (1994, Theorem 2.5) and Joe (1997, Theorem 2.3 (b)), we obtain

E[~yj~x = x] is non� decreasing in x) PQD(~x; ~y): (51)

Q.E.D.

9.2 Proof of Proposition 3.3

We will use following notations: dxF (x; y) =
@F (x;y)
@x dx, dyF (x; y) =

@F (x;y)
@y dy and dxdyF (x; y) =

@2F (x;y)
@x@y dxdy.
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(ii) implies (i): First, we have

Eu(w + ~x; ~y)� Eu(w + E~x; ~y) (52)

=

Z Z
u(w + x; y)dxdyF (x; y)�

Z
u(w + E~x; y)dyFY (y)

�
Z Z

u(w + x; y)dxdyF (x; y)�
Z Z

u(w + x; y)dxFX(x)dyFY (y) (because u11 � 0)

=

Z Z
u(w + x; y)dxdyF (x; y)�

Z Z
u(w + x; y)dxdyH(x; y);

where H(x; y) = FX(x)FY (y). From Levy (1974, corollary 4), we know thatZ Z
u(w + x; y)dxdyF (x; y)�

Z Z
u(w + x; y)dxdyH(x; y) (53)

=

Z Z
u12(w + x; y)[F (x; y)�H(x; y)]dxdy

+ lim
y!1

Z
(HX(x)� FX(x))u1(w + x; y)dx+ lim

x!1

Z
(HY (y)� FY (y))u2(w + x; y)dy

=

Z Z
u12(w + x; y)[F (x; y)�H(x; y)]dxdy (because FX(x) = HX(x) and FY (y) = HY (y))

=

Z Z
u12(w + x; y)[F (x; y)� FX(x)FY (y)]dxdy � 0 (because u12 � 0 and PQD(~x; ~y)):

From the above manipulations, we obtain that Eu(w + ~x; ~y) � Eu(w + E~x; ~y).

(i) implies (ii): We prove this claim by contradictions. Suppose u12(w; y) > 0 for some w

and y. Because u12 is continuous, we have

u12(w; y) > 0 for (w; y) 2 [m1;m2]� [n1; n2]: (54)

Let us consider w0 2 [m1;m2] and ~x = k~z with k > 0, where ~z is a zero-mean risk and (~z; ~y)

is PQD with the joint distribution function G(z; y)3. Using Taylor expansion of Eu(w0 + k~z; ~y)

around w0, this yields, for any k:

Eu(w0 + k~z; ~y) = E[u(w0; ~y)] + E[~zu1(w0; ~y)]k + o(k): (55)

Because

E~zu1(w0; ~y) (56)

= E~zEu1(w0; ~y) + Cov(~z; u1(w0; ~y))

= Cov(~z; u1(w0; ~y))

=

Z Z
[G(z; y)�GZ(z)GY (y)]dzdyu1(w0; y) (by Cuadras 2002; Theorem 1)

=

Z Z
[G(z; y)�GZ(z)GY (y)]u12(w0; y)dzdy:

3Lehmann (1966, Lemma 1) showed that (~x; ~y) is PQD ) (r(~x); s(~y)) is PQD, for all non-decreasing functions

r and s
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Then, from (54) we know that, when k ! 0, we get Eu(w0 + ~x; ~y) > Eu(w0; ~y) for G(z; y) such

that G(z; y)�GZ(z)GY (y) is positive in domain [m1;m2]� [n1; n2] and zero elsewhere. This is

a contradiction.

Suppose u11(w; y) > 0 for some w and y. Because u11 is continuous, we have

u11(w; y) > 0 for (w; y) 2 [m0
1;m

0
2]� [n01; n02]: (57)

Let us consider w0 2 [m0
1;m

0
2] and ~x = k~z, where ~z is a zero-mean risk and (~z; ~y) are

independent. Using Taylor expansion of Eu(w0 + k~z; ~y) around w0. For any k, this yields

Eu(w0 + k~z; ~y) = E[u(w0; ~y)] +
1

2
E[u11(w0; ~y)]E~z

2k2 + o(k2): (58)

Then, from (57) we know that, when k ! 0, we get Eu(w0 + ~x; ~y) > Eu(w0; ~y) for F (x; y) such

that FY (y) has positive support on interval [n01; n
0
2]. This is a contradiction. Q.E.D.

9.3 Proof of Proposition 4.1

(i) implies (ii): We note that

u12(w; y)

v12(w; y)
� �1 �

u1(w; y
0)

v1(w; y0)
, �u12(w; y)
�v12(w; y)

� �1 �
u1(w; y

0)

v1(w; y0)
: (59)

u11(w; y)

v11(w; y)
� �2 �

u1(w; y
0)

v1(w; y0)
, �u11(w; y)
�v11(w; y)

� �2 �
u1(w; y

0)

v1(w; y0)
: (60)

De�ning � = u � �v, ,where � = minf�1; �2g, and di¤erentiating one obtains �1 = u1 � �v1,

�12 = u12 � �v12 and �11 = u11 � �v11 , then (59) and (60) imply that �1 � 0, �12 � 0 and

�11 � 0.

(ii) implies (iii): From Proposition 3.3, we know that �11 � 0, �12 � 0 and (~x; ~y) is PQD(~x; ~y)

, E�(w+~x; ~y) � E�(w; ~y). We also know that �1 � 0) �(w; y) � �(w��v; y). The following

proof is as in Ross:

Eu(w � �u + E~x; ~y) = Eu(w + ~x; ~y) (61)

= E[�v(w + ~x; ~y) + �(w + ~x; ~y)]

= �Ev(w � �v; ~y) + E�(w + ~x; ~y)

� �Ev(w � �v; ~y) + E�(w; ~y)

� �Ev(w � �v; ~y) + E�(w � �v; ~y)

= Eu(w � �v + E~x; ~y):
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Because u1 > 0, �u � �v.

(iii) implies (i): We prove this claim by contradictions. Suppose that there exists some w, y

and y0 such that u12(w;y)v12(w;y)
< u1(w;y0)

v1(w;y0)
. Because u1, v1, u12 and v12 are continuous, we have

u12(w; y)

v12(w; y)
<
u1(w; y

0)

v1(w; y0)
for (w; y); (w; y0) 2 [m1;m2]� [n1; n2]; (62)

which implies

�u12(w; y)
�v12(w; y)

<
u1(w; y

0)

v1(w; y0)
for (w; y); (w; y0) 2 [m1;m2]� [n1; n2]; (63)

this implies

v1(w; y
0)

�v12(w; y)
<

u1(w; y
0)

�u12(w; y)
for (w; y); (w; y0) 2 [m1;m2]� [n1; n2]: (64)

If F (x; y) is a distribution function such that FY (y) has positive support on interval [n1; n2],

then we have
Ev1(w; ~y)

�v12(w; y)
<
Eu1(w; ~y)

�u12(w; y)
for (w; y) 2 [m1;m2]� [n1; n2]; (65)

which can be written as

u12(w; y)

Eu1(w; ~y)
>
v12(w; y)

Ev1(w; ~y)
for (w; y) 2 [m1;m2]� [n1; n2]: (66)

Let us consider w0 2 [m1;m2] and ~x = k~z with k > 0, where ~z is a zero-mean risk and

(~z; ~y) is PQD with a distribution function G(z; y). Let �u(k) denote its associated partial risk

premium, which is

Eu(w0 + k~z; ~y) = Eu(w0 � �u(k); ~y): (67)

Di¤erentiating the equality above with respect to k yields

E~zu1(w0 + k~z; ~y) = ��0u(k)Eu1(w0 � �u(k); ~y): (68)

Observing that �u(0) = 0, we get

�0u(0) = �E~zu1(w0; ~y)
Eu1(w0; ~y)

(69)

= �E~zEu1(w0; ~y) + Cov(~z; u1(w0; ~y))
Eu1(w0; ~y)

= �Cov(~z; u1(w0; ~y))
Eu1(w0; ~y)

= �
R R
[G(z; y)�GZ(z)GY (y)]dzdyu1(w0; y)

Eu1(w0; ~y)
(by Cuadras 2002; Theorem 1)

= �
Z Z

[G(z; y)�GZ(z)GY (y)]
u12(w0; y)

Eu1(w0; ~y)
dzdy
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Similarly, for v we have

�0v(0) = �
Z Z

[G(z; y)�GZ(z)GY (y)]
v12(w0; y)

Ev1(w0; ~y)
dzdy: (70)

Now �u and �v can be written in the form of a Taylor expansion around k = 0:

�u(k) = �k
Z Z

[G(z; y)�GZ(z)GY (y)]
u12(w0; y)

Eu1(w0; ~y)
dzdy + o(k) (71)

and

�v(k) = �k
Z Z

[G(z; y)�GZ(z)GY (y)]
v12(w0; y)

Ev1(w0; ~y)
dzdy + o(k): (72)

Then, from (66) we know that, when k ! 0, we get �u < �v for F (x; y) and G(z; y) such that

FY (y) and G(z; y)�GZ(z)GY (y) have positive supports on domain [m1;m2]� [n1; n2]. This is

a contradiction.

Now let us turn to the other condition. Suppose that there exists some w, y and y0 such

that u11(w;y)v11(w;y)
< u1(w;y0)

v1(w;y0)
. Because u1, v1, u11 and v11 are continuous, we have

u11(w; y)

v11(w; y)
<
u1(w; y

0)

v1(w; y0)
for (w; y); (w; y0) 2 [m0

1;m
0
2]� [n01; n02]; (73)

which implies

�u11(w; y)
�v11(w; y)

<
u1(w; y

0)

v1(w; y0)
for (w; y); (w; y0) 2 [m0

1;m
0
2]� [n01; n02]: (74)

This implies

�u11(w; y)
u1(w; y0)

<
�v11(w; y)
v1(w; y0)

for (w; y); (w; y0) 2 [m0
1;m

0
2]� [n01; n02]: (75)

If F (x; y) is a distribution function such that FY (y) has positive support on interval [n01; n
0
2],

then we have

�Eu11(w; ~y)
u1(w; y0)

<
�Ev11(w; ~y)
v1(w; y0)

for (w; y0) 2 [m0
1;m

0
2]� [n01; n02] (76)

and
�Eu11(w; ~y)
Eu1(w; ~y)

<
�Ev11(w; ~y)
Ev1(w; ~y)

: (77)

Let us consider w0 2 [m0
1;m

0
2] and ~x = k~z, where ~z is a zero-mean risk and ~z and ~y are

independent. Let �u(k) denote its associated partial risk premium, which is de�ned by

Eu(w0 + k~z; ~y) = Eu(w0 � �u(k); ~y): (78)
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Di¤erentiating the above equality with respect to k yields

E~zu1(w0 + k~z; ~y) = ��0u(k)Eu1(w0 � �u(k); ~y); (79)

and so �0u(0) = 0 because E~z = 0. Di¤erentiating once again with respect to k yields

E~z2u11(w0 + k~z; ~y) = [�
02
uEu11(w0 � �u(k); ~y)� �00u(k)Eu1(w0 � �u(k); ~y): (80)

This implies that

�00u(0) = �
Eu11(w0; ~y)

Eu1(w0; ~y)
E~z2: (81)

Similarly, for v we have

�00v(0) = �
Ev11(w0; ~y)

Ev1(w0; ~y)
E~z2: (82)

Now �u and �v can be written in the form of Taylor expansions around k = 0:

�u(k) = �
Eu11(w0; ~y)

Eu1(w0; ~y)
E~z2k2 + o(k2) (83)

and

�v(k) = �
Ev11(w0; ~y)

Ev1(w0; ~y)
E~z2k2 + o(k2): (84)

Then, from (77) we know that, when k ! 0, we get �u < �v for F (x; y) such that FY (y) has

positive support on interval [n01; n
0
2]. This is a contradiction. Q.E.D.
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