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Abstract

This study empirically examines the competitiveness of different forecasting sets of re-
alized volatilities and correlations using linear and nonlinear specifications of time series
based on high frequency data. The linear specification uses lagged explanatory variables
to explain fractionally integrated series of realized volatilities and correlations. The non-
linear specification consists of a two-step approach. In the first step, joint time series of
realized volatilities and correlations are filtered using a multivariate singular system anal-
ysis approach. Based on the cleaned series, vectors of nearest neighbors are identified in
space and casted into a local linear regression to generate forecasts in the second step. The
empirical performance of those specifications is compared to a GARCH diagonal-BEKK
model in the context of a trader who would simultaneously quote a call spread option price
based on the forecasted parameters and delta-hedge her position with a replicating portfo-
lio. More traditional loss functions based on the absolute forecasting error are also used.
The forecasting methodologies based on time series of realized volatilities and correlations
generally (but not unanimously) dominate the GARCH approach. Evidence of nonlinearity
seems apparent for time series of volatilities irrespective of the return sampling frequency.
General performance ranking for the approaches based on realized volatilities and correla-
tions is not robust to the chosen loss function and the return sampling frequency.

Keywords: Futures interest rate, high-frequency data, realized volatility, realized correla-
tion, fractionally integrated linear model, multivariate singular spectrum analysis, local lin-
ear regression, GARCH diagonal-BEKK, nonlinear forecasting evaluation, vega-weighted
forecasting error, replication error, pricing error.



1 Introduction

Volatility and correlation forecasts are fundamental statistical parameters for many finance practitioners.
For instance, extensions from the seminal contribution of Markowitz (1959) suggest that the conditional
variance-covariance matrix of asset returns plays a determinant role in wealth allocation and portfolio man-
agement issues.1 In a similar fashion, these forecasts also play a central role in risk management insofar
as they capture the shifts in financial variables required for setting risk limits.2 Volatility and correlation
forecasts are also critical to devise profitable option trade rules since they are the only unknown parame-
ters amongst traders. Accordingly, profitable trades can emerge as the difference between the option sell
(buy) quoted price which depends on the anticipated volatility over the option’s life, and the costs (gains)
to linearly replicate the position. This category of trades, often implemented by traders, generates profits
proportional to the difference between the forecasted volatility and its realized value weighted by the gamma
of the position [Bazet al. (2000) and Fitzgerald (1998)]. Traders responsible for exotic option books face
an even more difficult challenge since the realization of profitable trades depends on the entire conditional
variance-covariance matrix.

Most of the academic work produced in the area of volatility and correlation parametrization falls either
within the categories of stochastic volatility models3 or GARCH models4. However, the non-observability
of the underlying true processes is such that these competing latent models are subject to misspecification.
Andersen, Bollerslev, Diebold and Labys (2001a, henceforth ABDL) make a very important contribution
on that issue. They resort to semi-martingale processes and demonstrate that ex-post estimators of volatility
and covariance parameters can be obtained simply by considering the sum squares and cross-products of
continuously recorded returns. These estimators display important attributes: when the sampling frequency
tends to infinity, the volatility and covariance estimators become free of measurement error and are not in-
fluenced by any econometric or mathematical specification. This approach permits volatility and correlation
forecasts to be generated from the empirical detection of the dynamics at work in the time series of realized
volatilities and correlations. Based on high frequency currency returns, ADBL (2001a,b,c) and Andersen,
Bollerslev, Diebold and Ebens (2000, henceforth ADBE) modelize times series of realized volatilities and
correlations of stock and currency returns as fractionally integrated processes to capture the persistence in
the time series. Forecasts follow from the estimation of a linear regression model with explanatory variables
or from an AR specification.

The first goal of this study is to formally extend the work undertaken by ABDL (2001c) into a mul-
tivariate context so the issue of volatilityand correlation forecasts is formally addressed. However, many
market practitioners are as much concerned with forecast assessments as they are with the technology used
to produce the forecasts. They must ensure that the characteristics of the approach employed to appreciate
forecasts matches their preoccupations5. Further complexity is added when a multivariate framework is
considered. The central loss function implemented in this study is inspired by option trading practices. In

1See, for instance, Huang and Litzenberger (1998) and Campbell, Lo and MacKinlay (1997) for formal treatment.
2For a broader perspective on risk management and related issues, see Alexander (1996) and Riskmetrics (1996).
3See Ghyselset al. (1996) for a review.
4See Bera and Higgins (1995) for a review.
5Diebold and Lopez (1996) provide an extensive and interesting survey on various forecasting evaluation approaches.
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the same spirit, Nohet al. (1994) generate GARCH volatility forecasts and implied volatility forecasts to
motivate daily buy or sell positions on option straddles. Gibson and Boyer (1998) address the multivariate
case via the trading of one-day rainbow options. In both cases, better forecasts imply more profitable trad-
ing strategies. Our approach differs from Gibson and Boyer (1998) and adopts the point of view of a trader
acting as a market maker of spread options. It is assumed that when the trader engages in a buy or sell trade
of the call spread option, she simultaneously sets a replication portfolio to cover the risk. This is performed
through the linear replication (‘delta-hedging’) of the option to delta-neutralize her position until the option
reaches expiration. If the trader is capable of providing an option price quote based on volatility and cor-
relation forecasts that exactly match their realized counterparts over the option life, the position should not
generate any profit or loss if delta-hedging is performed at a reasonably high frequency. Any discrepancy
between the two sets of parameters leads to nonzero profit whose magnitude is governed by the difference
between the forecasted and realized parameters and by the price path followed by the underlying assets
over the life of the option. The numerical approach introduced by Pearson (1995) is used for that purpose.
Overall, three reasons motivate this forecast evaluation approach. First, it places forecast evaluation into the
context of a practical financial situation. Second, spread option premia and delta-hedging implementation
depend on the entire variance-covariance matrix and constitute a natural multivariate criterion. Finally, this
criterion is a nonlinear function of the second moment. Thus, performance ranking might not be insensitive
to the transition from a linear to a nonlinear loss function.6

To enrich the analysis, we also propose a vega-weighted absolute forecasting error measure. This crite-
rion contrasts with the previous one because it is linear in the parameter distance, while each error compo-
nent depends proportionally on the option premium sensitivity to shifts in volatilities or correlations.

The second goal of this study is to inquire whether superior volatility and correlation forecasts can be
generated by a nonlinear specification of realized volatilities and correlations. While many stylized facts
have been observed with respect to volatility such as volatility clustering, leverage effect and volatility per-
sistence, realized volatilities are apparently well modelled by fractionally integrated processes. However, a
broader view on this issue suggests that unknown nonlinear but potentially noisy dynamic processes drive
the conditional variance-covariance matrix. To empirically examine this possibility, a two-stage method-
ology is proposed. In the first stage, the filtering methodology advocated by Lisiet al. (1994) and Lisi
and Medio (1997) is implemented. Their method is structured around the fact that joint time series of two
different variables may share the same nonlinear dynamics. The method is flexible and can accommodate
different market phenomenon such as nonlinear volatility spillover effects. To eliminate the noise and to
reconstruct clean series, they resort to orthogonal functions truncated at the point where the signal-to-noise
ratio maintains a satisfactory level. In the second step, forecasting is performed by means of local linear
regressions based on the reconstructed series of volatilities and correlations. Competing models to the non-
linear approach include a GARCH-diagonal BEKK model (Engle (2000)) and a naive estimator based on
previous week realized estimates.

The remainder of the paper is organized as follows. Section 2 describes the data. In section 3, the
different forecasting models and loss functions are presented; section 4 presents the empirical findings while
section 5 offers a conclusion.

6See Christoffersen et Jacobs (2001) for related issues.

3



2 Data

The data set used in this study consists of two similar series of futures contracts on interest rates: the
Eurodollar futures contract on the LIBOR 3-month interest rate (henceforthEuro) listed on the Chicago
Mercantile Exchange and its Canadian counterpart, the BAX futures contracts on the 3-month banking
acceptance interest rate listed on the Montreal Exchange. The underlying ‘asset’ of theEuro contract is an
index whose value corresponds to 100 minus the LIBOR 3-month futures interest rate implied by the market.
The contract is settled in cash and is linked to a notional value of $1,000,000. Thus, a fluctuation of one basis
point in the rate results in a $25 variation in the contract. The contract is issued according to a quarterly
expiry cycle based on the months of March, June, September and December up to ten years in advance.
Although contracts with shorter maturities are available, market activity is mainly concentrated in the first
two contracts of a quarterly cycle. The BAX contract possesses similar characteristics but the underlying
interest rate is the 3-month Canadian bankers’ acceptance rate. The BAX strip covers maturities up to three
years. One of the original motivations of the BAX design was to exploit possible arbitrage opportunities with
theEuro. Arbitrage attempts would, for instance, replicate the BAX position with appropriate combinations
of Euro and foreign exchange forwards. To facilitate such trade, both series of contracts trade at similar
times during the day7.

Tick-by-tick data for the entire strip ofEuro (BAX) are obtained from the Futures Industry Institute
(Montreal Exchange), for the period January, 1992 to December, 1999. Futures returns are calculated as
rc,t = ln(ic,t/ic,t−1) wherec is eitherEuroor BAX while ic,t is the quoted futures interest rate at timet for
contractc observed at the 30- and 90-minute sampling frequencies. To follow market activity, nearest matu-
rity contracts series are created by calculating futures returns on the front month contract until the last trading
day of the month before the expiration month of the contract is reached. At that point, the second front month
contract becomes the lead contract. The procedure is repeated until December, 1999. The resultingEuroand
BAX series of nearest maturity contracts are further trimmed to ensure that both sets of returns are available
at each periodt. Contiguous time series of weekly realized volatilities and correlations are then constructed
according to equations (1) and (2) of the next section. The 30-minute return trading frequency and the
weekly horizon emerge as a compromise to remove as much as possible microstructure effects and, on the
other hand, to preserve an adequate level of precision with which the estimators can represent reasonable
theoritical approximations. This choice is mainly motivated by ABDE (2000) and ABDL (2001b) where
they respectively identify 20- and 30-minute as the optimal trading frequencies. Therefore, for each trading
day, fourteen 30-minute returns are collected, and weekly estimates of realized volatilities and correlations
comprise seventy 30-minute returns.8 Weekly realized volatilities and correlations based on 90-minute re-
turns are also computed to further assess the impact of measurement errors on volatility and correlation
forecasting.9 Along with the one-week-ahead forecast horizon, the out-of-sample period begins on January

7On a typical trading day during the time period considered herein, the average volume peak reaches 150,000 to 200,000 (10,000
to 15,000) contracts on theEuro (BAX) market. Trading volume may go beyond 1,000,000 (50,000) contracts.

8Some of the weeks included in the sample comprise only four days of trading. In this case, weekly realized volatilities and
correlations are based on fifty-six 30-minute returns which is comparable to ABDL (2001b) who based their daily estimates on
forty-eight 5-minute returns. Therefore, these cases are included in the time-series.

9An experiment drawn from ABDE (2000) was conducted. BAX andEuromonthly realized volatilities were calculated for three
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1998 and ends on December 1999 for a total of 98 weeks.10 The remaining in-sample period begins on
January 1992 and ends on December 1997 for a total of 298 observations. The different sets of forecasts
produced in section 4 are compared to realized volatilities and correlation calculated from the 30-minute
sampling frequency since the theory suggests that those estimates are the closest to the trueEuro and BAX
volatilities and correlation. We use a rolling sample procedure to produce sets of one-week ahead forecasts.

3 Forecasting models and forecast evaluation

The main inputs are the time series of realized volatilities and correlations based on the BAX andEuro. The
work of ABDL (2001a,b,c) and ABDE (2000), amongst others, indicates that the realizedEuro and BAX
volatilities at weekt are given by:

σc,t =




nf∑

j=1

r2
c,tj




1/2

(1)

wherec = BAX , Euro; f = 30, 90; nf = 70, 14 and therc,tj ’s are the intra-week returns. In a manner
consistent with equation (1), the weekly realized correlationρt is inferred from:

ρt =

[∑nf

j=1 rBAX,tj · rEuro,tj

]

[∑nf

j=1 r2
BAX,tj

]1/2 [∑nf

j=1 r2
Euro,tj

]1/2
. (2)

The central issues addressed in this paper consist of forecasting those quantities by different methods
and assessing their performance mainly on financial grounds.

3.1 The linear model

The findings reported by ABDL (2001c), the volatility clustering effect retrieved by GARCH models and
the analysis of Frenchet al. (1987) and Hull and White (1987), amongst others, suggest thatEuroand BAX
lagged weekly realized volatilities are promising candidates for forecasting future realized volatilities. Fur-
thermore, the presence of volatility spillovers must be considered given the findings of Fonget al.(1997) and
Laopodis (2000) who observe volatility linkages in interest rate markets and the general perception enter-
tained in the Canadian trading community that theEurovolatility significantly influences the BAX volatility.
Thus, laggedEuroand BAX realized volatilities are introduced in both volatility equations. Research efforts
by Chan (1992) and Koutmos (2000) demonstrate that interest rate volatility dynamics can also be driven
by the level of interest rate. This is consistent with the theoritical contribution of Coxet al. (1985) where
the volatility of the instantaneous interest rate differential depends on the level of the instantaneous interest

different months. For each month, volatility signature plots were constructed through a sequential calculation of the volatilities
using sampling interval multiples of the 5-minute interval up to a daily interval. Generally, the volatilities begin to stabilize at
the 30-minute sampling frequency while full stability is reached before the 90-minute sampling frequency. The phenomenon is
particularly noteworthy for the BAX volatilities.

10Four weeks where only three trading days or less occurred were deleted from the out-of-sample period.
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rate. Inspired by this conjecture, the volatility equations also include the corresponding futures interest rate
observed at the beginning of each week.

Intuitively, the autoregressive nature of volatility dynamics should translate to covariance and correlation
dynamics. Therefore, lagged realized correlations are included as explanatory variables in the correlation re-
gression equation. Based on the findings of Solniket al. (1996) whereby international correlations between
stock markets tend to follow volatility cycles, lagged realizedEuro and BAX volatilities are also included
in the regression model. An alternative approach taken by Erbet al. (1994) relates correlations to business
cycles. They observe that correlations typically decrease when economies are expanding. Perhaps, fluctua-
tions in the weekly realized correlation betweenEuro and BAX returns reflect timing differences in the US
and Canadian business cycles. To account for this possibility in a weekly setting (where most macro indica-
tors are unavailable), the slope of the US and Canadian yield curves are considered.11 Accordingly, weekly
differences in the slopes of the US and Canadian yield curves are included in the regression model. For
each market, the slope is calculated from the difference between the yields on a constant 10-year maturity
government bond and the 3-month T-bill available on Bloomberg.12

The claims made in the previous paragraph, and the presumption that the time series of realized volatil-
ities and correlations should be fractionally integrated, lead to the following system of linear equations:

(1− L)1−d̂σBAX,t = α11 +
m1∑

i=1

α1iσBAX,t−i +
m1∑

j=1

α1jσEuro,t−j + θ1iBAX,t−1 + ε1t (3)

(1− L)d̂σEuro,t = α21 +
m1∑

i=1

α2iσBAX,t−i +
m1∑

j=1

α2jσEuro,t−j + θ2iEuro,t−1 + ε2t (4)

(1− L)d̂ρt = α31 +
m2∑

i=1

α3iρt−i +
m3∑

i=1

α2iσBAX,t−i +
m3∑

j=1

α3jσEuro,t−j + θ3∆yt−1 + ε3t (5)

whereiBAX,t−1 (iEuro,t−1) and∆yt−1 respectively designate the BAX (Euro) implied interest rate and the
difference between the US and Canadian yield curve slopes observed at the beginning of weekt. The
parameterd denotes the level of fractional integration. This parameter is obtained by running the regression
test procedure of Geweke and Porter-Hudack (1983)13. This system of equations (3) to (5) contrasts with
ABDL (2001c) who resort to a standard vector autoregressive approach. However, in an effort to make the
system of equations as parsimonious as possible, equations (3) to (5) include only explanatory variables
that can conceptually contribute to volatility and correlation forecasts. One and two period lagged realized
volatilities and the lagged level of interest rate, and the one period lagged realized volatilities and correlations
as well as the lagged US-Canada interest yield curve slope differential are respectively introduced in the
volatility and correlation equations. Since the explanatory variables differ across equations and thatε1t, ε2t

11Many market participants believe that an inversion of the interest rate yield curve is a signal for an impending recession. Stock
and Watson (1989, 1990a,b and 1993) and Lahiri and Jiazhuo (1996), amongst others, confirm the predictive power of the yield
curve slope. The conditional estimation of asset pricing model often uses the slope of the yield curve as an instrumental variable to
predict the expected return of assets. See, for instance, Kryzanowskiet al. (1997) and Ferson and Schadt (1996).

12These series were kindly provided by the HEC-School of Business trading room.
13See also Robinson (1995, 1994).
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andε3t might be correlated, the system is estimated via a seemingly unrelated regression procedure. The
residual variances are adjusted following the procedure of Newey and West (1987).

3.2 The nonlinear model

In this approach the realized volatilities and correlations are considered to be generated by an unknown
nonlinear dynamical system. Formally, it is assumed that there exists an unknown functionf such that

xt = f(xt−1, . . . , xt−M , yt−1, . . . , yt−M ′) (6)

wherext is eitherσBAX,t, σEuro,t or ρt as calculated by equations (1) and (2) and whereyt−1, . . . , yt−M ′

denotes the lagged values of an auxiliary variable generated from a similar system. It is possible, however,
that the conditions under which equation (6) holds might not be observed in the presence of noisy time
series. To circumvent this obstacle, Lisiet al. (1994) and Lisi and Medio (1997) propose to jointly filterxt

andyt to eliminate the noise in the series.14 In this setting, it is hoped that the forecasting model should
yield better results.

The first step is to representxt andyt into a double Hankel trajectory matrix15 such that:

Z =




x1 x2 . . . xM

x2 x3 . . . xM+1
...

...
...

...
xT−M+1 xT−M . . . xT

∣∣∣∣∣∣∣∣∣∣

y1 y2 . . . yM

y2 y3 . . . yM+1
...

...
...

...
yT−M+1 yT−M . . . yT




Now let N = T −M + 1 andm = 2M . Using the singular value decomposition, the rectangularN ×m

matrixZ can be decomposed as
Z = SΣCT

whereS is aN ×m matrix whose columnssj (j = 1, . . . ,m) are the eigenvectors of the symmetric matrix
ZZT ; C is am×m matrix whose columnscj (j = 1, . . . ,m) are the eigenvectors of the symmetricm×m

matrixZT Z; Σ is anm×m diagonal matrix whose elements are the positive square roots of the eigenvalues
of ZT Z. Therefore, each rowzi of Z can be expressed as:

zi =
m∑

r=1

σrsircr (7)

for i = 1, . . . , T . Insofar as the series are contaminated by noise, it is assumed that after a thresholdd, the
principal components are dominated by noise. Thus, the reconstructed noise-free seriesx∗t andy∗t are based
on equation (7) where the expansion is truncated at termd with d < m. But, as one should expect, the
reconstructed trajectory matrixW based on thed-truncated expansion may no longer be Hankel. Therefore,

14The filtering approach of Lisi and Medio (1987, 1984) is based on singular spectrum analysis (SSA) initially introduced by
Broomhead and King (1986a,b) and Vautard and Ghil (1989). Lisi and Medio (1987, 1984) focus on the multivariate case.

15To simplify the notation in what follows,M ′ is taken equal toM although the method does not depend on this assumption.
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one looks for the closest double Hankel matrix with respect to the matrix norm. In other words, the trajectory
matrix corresponding to the noise-free series is the unique double Hankel matrixZ∗ which minimizes

T−M+1∑

i=1

m∑

j=1

[
Z∗ij −Wij

]2
(8)

and is obtained by the so-calleddiagonal averagingof W . The reconstructed noise-free seriesx∗t andy∗t are
then given by the formulas:

x∗t =
1
t

t∑

j=1

Wt−j+1,j and y∗t =
1
t

t∑

j=1

Wt−j+1,j+M

for l ≤ t ≤ M − 1,

x∗t =
1
M

M∑

j=1

Wt−j+1,j and y∗t =
1
M

M∑

j=1

Wt−j+1,j+M

for M ≤ t ≤ T −M + 1, and

x∗t =
1

T − t + 1

M∑

j=t−T+M

Wt−j+1,j and y∗t =
1

T − t + 1

M∑

j=t−T+M

Wt−j+1,j+M

for T −M + 2 ≤ t ≤ T .
Once the reconstruction has been achieved, the next step is to forecastxT+1. To reach that goal, nearest

neighbors are identified and forecasting is performed by means of local linear regression. The idea of the
nearest neighbors method is to identify, among the vectors(x∗j , x

∗
j+1, . . . , x

∗
j+M−1), the closest neighbors

to (x∗T−M+1, x
∗
T−M+2, . . . , x

∗
T ) as they are anticipated to have successorsx∗j+M similar tox∗T+1.

Once the local linear regression econometric specification that relatesx∗j+M to its predecessors is esti-
mated, prediction ofx∗T+1 results from a linear combination ofx∗T−M+1, x∗T−M+2,. . . ,x∗T . The forecast is
further enriched by the presence of auxiliary vectors(y∗j , y

∗
j+1, . . . , y

∗
j+M−1) that contribute to the predic-

tion of x∗T+1. Overall, based on thek nearest(x∗j , x
∗
j+1, . . . , x

∗
j+M−1) vectors, the following local linear

regression is performed:

x∗t(1) = βo +
M∑

i=1

βix
∗
t(1)−i +

M∑

i=1

αiy
∗
t(1)−i + et(1)

... (9)

x∗t(k) = βo +
M∑

i=1

βix
∗
t(k)−i +

M∑

i=1

αiy
∗
t(k)−i + et(k)

Evidently, because the nearest neighbors are identified in space, not in time, the system of equations (9)
captures nonlinear dynamics.

One question remains: what are the best candidates fory∗t ? Market dynamics impose a natural choice
whenxt = σBAX,t or ρt. In this case,y∗t = σEuro,t naturally stands out. The significant impact of US markets
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over Canadian markets translates into a possible influence of the nonlinear dynamics exhibited byσEuro,t on
that of σBAX,t andρt. Whenxt = σEuro,t, the situation seems more complex. However, Rebonato (1998),
amongst others, contends that interest rate yield curves embody a rich set of information that includes future
market interest rate and volatility assessments. Since the interest level explains the largest proportion of
yield curve movements (see Rebonato (1998) again), it seems a warranted choice fory∗t whenxt = σEuro,t.

Since no guideline seems to exist for the optimal choice ofd,M , M ′ andk, the nonlinear approach
described by equations (7) to (9) displays an intensive data driven nature. The optimal set ofd, M , M ′ and
k minimizes the following mean absolute forecasting error measure (MAE):

MAE =
1
98

98∑

t=1

|x̂t − xt| (10)

wherex stands forσBAX , σEuro or ρ and thex̂t denotes the forecast produced at timet. To ensure total
independence between the estimation and forecasting steps, the in-sample period is split into rolling samples
of 200 observations dedicated to the estimations of equations (7) to (9) for the production of 98 ‘pseudo’
out-of-sample sets of volatilities and correlation forecasts over which the criterion (10) is applied. Based on
the criterion (10), the optimal sets ofd, M , M ′ andk parameters for the BAX andEuro realized volatilities
and correlations at the 30-minute and 90-minute return sampling frequencies are: (7,3,5,170), (7,5,4,140),
(5,3,4,40), (5,3,4,100), (6,4,3,170), and (7,5,3,90).

3.3 The multivariate GARCH model

Recognizing, as many market operators believe, thatEuro and BAX contracts move together across time,
the estimation of the entire conditional covariance matrix into one GARCH-type system of equations might
be well advised. However, since full multivariate GARCH estimations raise many numerical difficulties, a
diagonal BEKK representation was chosen (see, for instance, Engle (2000)). According to this specification,
the conditional variance-covariance matrix is parametrized as:

Ht = V ′V + A′εt−1ε
′
t−1A + B′Ht−1B (11)

where

Ht =

[
hBAX,BAX,t hBAX,Euro,t

hEuro,BAX,t hEuro,Euro,t

]

is a2×2 conditional covariance matrix,A andB are2×2 diagonal parameter matrices,εt is the innovation
at timet and the matrixV ′V is determined via a variance targeting procedure. Thes-step-ahead forecast at
time t of the conditional matrix,Et [vech(Ht+s)], is given by:

V ′V + Avech(εtε
′
t) + Bvech(Ht) (12)

whens = 1, and by:

V ′V

[
s−1∑

i=0

(A + B)i

]
+ (A + B)s−1Et [vech(Ht+1)] (13)

9



whens > 1.

The bivariate system depicted by equation (11) is estimated using daily returns. Other frequencies are
disregarded since Andersonet al. (2001) demonstrate that GARCH specifications are incapable of ade-
quately capturing intra-day fluctuations.

The time indext in equation (11) denotes a daily frequency. Weekly estimates are obtained by adding
daily estimates over the week. The weekly forecast at timet is given by:

5∑

s=1

Et [Ht+s] (14)

from whichEuroand BAX volatilities are directly extracted. The corresponding correlation forecast is:

∑5
s=1 Et [hBAX,Euro,t+s]√∑5

s=1 Et

[
hBAX,BAX,t+s

]√∑5
s=1 Et

[
hEuro,Euro,t+s

] . (15)

3.4 Forecast evaluation

There exists a variety of loss functions available to compare competitive sets of forecasts. This lack of a
unique reference point suggests that forecasting evaluation may not be robust to the chosen criterion. At the
same time, it creates opportunities to use different evaluation methodologies based on financial foundations
like derivative trading as in Nohet al. (1994) or Gibson and Boyer (1998). There are essentially two
categories of derivative trading based on volatility. The first assumes that the trader has a view on the
implied volatility and the expected realized volatility levels. The second focuses on the dynamic behavior of
the implied volatility. The work of Nohet al. (1994) falls within the second category. In their contribution,
future volatilities are provided by a GARCH and compared to the future implied volatility estimated from a
linear regression model. Based on the forecasted direction of future volatility, buy or sell trades in one-day
straddle are engaged using option market data. This approach cannot really be extended to exotic options
based on the entire variance-covariance matrix insofar as market data are not available. The work of Gibson
and Boyer (1998) belongs to the first category. They examine forecasting issues with respect to the entire
variance-covariance matrix. In their artificial market, there exists a community of traders who take buy and
sell positions amongst themselves on one-day rainbow options based on their respective variance-covariance
matrix forecasts. The best forecasts should generate the largest profits.

Our approach belongs also to the first category and it is an attempt to add further realism to volatility-
based option trading in the presence of volatility and correlation forecasts. The criterion adopts the view of
an exotic option trader who quotes prices on a weekly at-the-money interest rate spread option using fore-
casted volatilities and correlations and who simultaneously implements and manages a replication portfolio
using delta-hedging. Delta-hedging is performed in order to insulate the positions from underlying BAX
andEuro movements. Basically, perfect accuracy in volatility and correlation forecasting should result in
no trading profit. Since the motivation is the assessment of forecasting abilities, no suitable margin for the
cost of hedging and for extra profits are added to the estimates.
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The terminal payoff on a European call spread option with a one week maturity is based on the differ-
ential BAX-Euroagainst the strike differential:

Payoff= max
{
(iBAX − iEuro)−K, 0

}
(16)

whereiBAX andiEuro designate the BAX andEuro level at maturity whileK is the at-the-money strike level16.
While there are several types of exotic options sensitive to the entire variance-covariance matrix of under-
lying assets, our choice to focus on an interest-rate call spread option is mainly motivated by the depth of
over-the-counter market for that type of option. Many dealers active in the US and Canadian interest rate
markets can readily provide quotes on this instrument. The simultaneous quoting of an option price and
implementation of the replication portfolio over the life of the option gives an absolute replication error for
weekt:

|et| =
∣∣∣Ct(σ̂BAX,t, σ̂Euro,t, ρ̂t)− Payoff+ Delta-hedging costs

∣∣∣ (17)

whereCt is the theoretical premium on the call spread option quoted at the beginning of the weekt. This
quote depends on the set of forecasts{σ̂BAX,t, σ̂Euro,t, ρ̂t} for that week. The delta-hedging cost is given
by the gains and losses that result from the systematic rebalancing of the replication portfolio in order to
match BAX andEuro positions with the option’s deltas17. Now observe that the replication error can be
disentangled as:

et =
(
Ct(σ̂BAX,t, σ̂Euro,t, ρ̂t)− Ct(σBAX,t, σEuro,t, ρt)

)

+
(
Ct(σBAX,t, σEuro,t, ρt)− Payoff+ Delta-hedging cost

)

that is18

Replication error= Pricing error+ Delta-hedging error (18)

While the pricing error is essentially a distance between two nonlinear functions, the delta-hedging error
reflects the imperfections involved in the replication of the call spread payoff. Equation (17) shows that dis-
crete rebalancing brings the identification of optimal forecasts beyond a simple pricing differential criterion
and reveals that the trader’s preferences for the optimal sets of forecasted of volatilities and correlation can
be influenced by the delta-hedging errors.

To enrich the analysis, an absolute vega-weighted forecast error for each week of the out-of-sample
period is given by19:

et = V2t|σ̂BAX,t − σBAX,t|+ V2t|σ̂Euro,t − σEuro,t|+ V3t|ρ̂t − ρ̂t| (19)

16The call spread payoff is invariant to the side of the spread. A payoff given by max{(iEuro − iBAX ) − K, 0} whereK is set
at-the-money possesses the same properties.

17Details on the computation of premiums, deltas and vegas can be found in the Appendix.
18To conform with market practice with respect to the quotations of options on BAX andEuro, all components in equation (18)

are sequentially multiplied by $ 25 and 100.
19See Diebold and Lopez (1996) for a discussion on the traditional statistical procedures available for assessing the quality of

forecasts.
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whereVit = ∂C/∂xit, x1t = σBAX,t, x2t = σEuro,t, andx3t = ρt. The vegas are standardized to yield∑3
i=1 Vit = 1. As opposed to the nonlinear criterion proposed in equation (16), this loss function is linear in

the parameter distances. The goal pursued with this criterion is the natural behavior of a trader who would
put more energy into forecasting the parameters that most affect the option premium. A more traditional
evaluation approach is performed by applying descriptive statistics to the individual forecasting error terms
of equation (19).

4 Empirical Findings

Descriptive statistics and a statistical evaluation of the time series properties of the realized volatilities and
correlations calculated for the 30-minute and 90-minute sample frequencies using equations (1) and (2) are
presented in Table 1. Two sampling frequencies are used to assess the impact of modifying the trade-off
between the number of observations available for moment estimation and potential market microstructure
effects. The summary statistics for the two sets of realized volatilities seem relatively robust to the sampling
frequency. Such is not the case however for the correlation series. These claims are confirmed in Figure 1.
Each graph respectively reports the 30-minute and 90-minute-based realized weekly volatilities and corre-
lations. While the BAX and euro 30-minute and 90-minute estimates are virtually indistinguishable, the
correlation estimates differ substantially. As expected, higher estimates of the mean and standard deviation
are obtained for the BAX volatility, reflecting the general market consensus that the BAX market is more
volatile than itsEurocounterpart. In fact, the sample contains weeks where the BAX volatility exhibits val-
ues beyond 100%. The mean of the weekly correlations is positive, which is consistent with the closeness of
these two markets. The skewness and excess kurtosis coefficients suggest that the densities of the estimates
are not Gaussian with predominant fat tails in the case of the BAX volatility density. The next block of
statistics shows the correlation matrices. As expected, the BAX andEuro volatilities tend to fluctuate in a
correlated manner, but the correlation series fluctuate relatively independently20.

One of the most distinctive features of ABDL (2001a,b,c) and ABDE (2001) is the parametrization of
return volatility and correlation dynamics as fractionally integrated processes. The first eight autocorrelation
coefficients and (to save space) the average autocorrelation coefficients for lags 10 to 24 shown in Table 1
raise the possibility that a similar characterization is taking place with this data set. The autocorrelations
start around 0.5 and decrease progressively while the Ljung-Box statistics clearly reject the null hypothesis
of white noise at the 1% level for 24 lags21. To formalize this intuition, the log-periodogram estimatord

proposed by Geweke and Porter-Hudack (1983) is estimated by running this regression on each of the six
times series:

log(I(ωj)) = α0 + α1 log(ωj) + ηj (20)

whereI(ωj) denotes the sample periodogram at thejth frequency,ωj = 2πj/T with j = 1, . . . , m, and
where the GPH estimator corresponds tod̂ = −0.5α̂1 with its standard error defined asπ(24m)−0.5 where

20This finding contrasts with some empirical evidence pointing out that high volatility regimes are associated with correlation
coefficients closer to unity. See Karoyli and Stulz (1996), Solniket al. (1996), and Longin and Solnik (2001) for a discussion.

21Similar significant results are obtained using 48 lags.
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m = T 4/5 andT is the total number of observations. Thed̂ estimates reported in the second to last block
in Table 1 are all significant and around 0.4 for theEuro volatility and correlation series. In contrast,d̂

estimates for BAX are around 0.6. Again, the sampling frequency does not seem to substantially influence
the estimates. To investigate whether a fractional difference filter can eliminate the bulk of autocorrelation
in the series, the Ljung-Box statistics are calculated again for 24 lags by applying the filters(1− L)d̂ to the
Eurovolatility and correlation series and(1−L)−d̂(1−L) to the BAX volatility series. These findings are
reported at the bottom of Table 1. In spite of the rejection of the null hypothesis of white noise series in
all cases, the magnitude of the Ljung-Box statistics indicates that the transformed series are left with little
autocorrelation. ABDL (2001c) report similar results for currency data.

The in-sample results from the estimation of the GARCH diagonal-BEKK (equation (11)) based on
daily returns and the system of linear equations (equations (3) to (5)) are reported in Table 2. Given the
non-parametric nature of the nonlinear approach, in-sample intermediary analysis does not appear relevant.
Furthermore, it is impossible for that model to provide similar comparative statistics as those presented in
Table 2. The analysis focuses more on out-of-sample forecasting performance. Based on the magnitude of
the individual gradients upon convergence, the GARCH diagonal-BEKK explains the data well. Estimated
coefficients exhibit the typical behavior found in GARCH estimations whereby the autoregressive param-
eters are much closer to one than those of the squared noise components. The linear system appears to
reasonably explain the data and is robust to the sampling frequency. There are many significant regression
coefficients and the Lyung-Box statistics applied to the residuals of the regressions indicate that the null
hypothesis of no serial correlation is not rejected for the vast majority of cases. Note that the empirical
findings also emphasize a spillover effect from lagged Euro volatility to BAX volatility, which confirms the
intuition of many Canadian traders on the influence of the US markets over Canadian markets. Interestingly,
the fluctuations in the realized correlations seem mainly driven by the yield curve slope differential. Lagged
correlation and volatilities marginally affect the current fractionally differenced correlation.

Summary statistics for the absolute forecast error (AFE) are reported in Table 3. This analysis is based
on the individual terms of the loss function corresponding to equation (19) where the 30-minute frequency
estimates form the benchmark of the analysis. The ability of the GARCH to produce forecasts differs across
the parameters since the mean AFE is 0.5% for theEuro, 1.5% for the BAX and 0.188 for the correlation.
ABDL (2001c) contend that the incorporation of intra-day information in the realized volatility and correla-
tion time series is such that approaches based on this information should outperform GARCH modelizations.
Contrasting findings to those of ABDL (2001c) are found for the linear model, since it outperforms (under-
performs) the GARCH for the BAX (Euro) volatilities based on the mean AFE, irrespective of the sampling
frequency. A two-tailed binomialt-test of the null hypothesis that the 50% probability of having a weekly
AFE from the linear model (AFE-linear) different from the weekly AFE-GARCH, is implemented. Given
that there are respectively 70 (13) and 67 (13) weeks for which the AFE-linear is lower under the 30-minute
and 90-minute sampling frequencies for the BAX (Euro), the null hypothesis is rejected. It is interesting to
note that although correlation forecasts lead to lower mean AFE-linears, the null hypothesis of 50% proba-
bility cannot be rejected at the 5% level since there are only 48 weeks where the weekly AFE-linear domi-
nates the weekly AFE-GARCH. Nevertheless, adopting the point of view of call spread trader by focusing
on the mean vega-weighted AFE, the findings indicate that the forecasts produced by the linear model are
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collectivelymore accurate. This is further supported by the rejection of the associated null hypothesis, since
the number of weeks where the vega-weighted-AFE-linear dominates the vega-weighted-AFE-GARCH lies
between 60 and 62 weeks.

Similar claims can be made when the performance of the nonlinear model is considered in comparison
with the GARCH model. On the other hand, it seems that the nonlinear approach performs better than
the linear one. Looking at the mean AFE, the nonlinear model seems to do a better job at forecasting
the volatilities and producing correlation forecasts of a comparable quality at the 30-minute frequencies.
Overall, a multivariate appreciation of the performance based on the mean vega-weighted AFE favors the
nonlinear model for both sampling frequency. This is consistent with the rejection of the null hypothesis of
50% probability since there are respectively 67 weeks where the weekly vega-weighted AFE-nonlinear is
inferior to the weekly vega-weighted AFE-linear. It is noteworthy that in the case of the correlation series,
the null hypothesis cannot be rejected irrespective of the model considered in the analysis.

To make the empirical analysis more complete, forecasts based on previous-week realized estimates
are considered. These forecasts yield interesting findings. The historical estimates based on a 90-minute
return sampling frequency deliver the worst individual (collective), forecasts as indicated by the different
mean AFE’s (the mean vega-weighted AFE). In most cases, the null hypothesis is rejected and the number
of weeks where the AFE-previous-week is lower to that of AFE-model, being systematically lower than
50%. In contrast, the previous-week estimates based on the 30-minute return sampling frequency appear
relatively accurate. When the mean AFE and the mean vega-weighted AFE are considered, the previous-
week estimates outperform the GARCH forecasts everywhere. In addition, more than 50% of the time,
the previous-week estimates produce lower absolute weekly errors, leading to a rejection (non-rejection)
of the null hypothesis in the case of the BAX volatility and vega-weighted (Euro and correlation) absolute
errors22. This suggests that the nature of the information available is a critical aspect when attempts are
made to capture the persistence nature of volatility.

The ability of the previous-week estimates to compete further extends to volatility forecasts for the
30-minute return sampling frequency. In short, these forecasts deliver a mean AFE for BAX and Euro
volatilities and vega-weighted errors of order similar to that of the nonlinear model, although such is not the
case for the correlation forecasts. When the binomialt-test is computed against the nonlinear model, the
null hypothesis of 50% probability cannot be rejected in all cases.

Summary statistics for the absolute replication errors inherent in the different forecasting candidates
sequentially utilized for dynamically replicating the call option spread are reported in Table 4. The errors are
grouped under three different categories according to equation (18). Since the pricing and replication of the
call option depend on BAX andEurovolatilities and correlations, this financial approach provides a natural
multivariate criterion to globally evaluate forecasting abilities. The analysis begins with an examination
of the absolute pricing error (APE) which captures the discrepancies observed when the option premium is
calculated from the forecasted as opposed to the realized volatilities and correlations. The GARCH produces
a mean APE of $66.92 with a standard deviation of $60.63 across the 98 weeks of the out-of-sample period.
The linear-model-based forecasts of volatilities and correlations using either the 30-minute or 90-minute

22In a similar spirit, Poteshman (2000) observes that when the SPX realized volatility is regressed on a volatility forecast, the
historical estimator based on 5-minute time intervals outperforms the GARCH(1,1) volatility.
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sampling frequencies produce substantially lower mean APE’s of $37.07 and $35.79, respectively. This is
consistent with a rejection of the null hypothesis of the binomialt-test as there are respectively 78 and 76
weeks out of 98 where the APE-linear is inferior to the APE-GARCH. The nonlinear model performance
does not appear robust to the choice of the loss function. While it outperforms the GARCH modelization, it
produces mean APE’s of $45.65 and $42.02, respectively. However, the null hypothesis of a 50% probability
of observing the weekly APE-nonlinear being lower than the APE-linear cannot be rejected.

The historical one-week forecasts do quite well with mean APE’s between $36 and $39. Somehow, the
forecasting errors of this naive estimator behave in such a way that their collective impact seems diminished
when filtered by a nonlinear loss function such as an option.

The statistics that describe the delta-hedging errors are presented in the last column of Table 4. The
analysis focuses on the algebraic errors in order to address the ability of model (21)(presented in the Ap-
pendix) to replicate the call spread option and, accordingly, to acquire an understanding of their impact
on the replication errors. As the theory indicates, the continuous rebalancing of the replication portfolio
should eliminate any delta-hedging error if the option pricing model is satisfactory. Thus, these summary
statistics strictly reflect the imperfections from discrete delta-hedging assumed to occur four times a day23.
Since these errors are invariant with respect to the forecasting technology, the set of descriptive statistics is
repeated several times in Table 4 only to facilitate the reading. The evidence reveals that the mean delta-
hedging error deviates slightly from zero at a value of -$2.08. This mean is accompanied by a much larger
standard error of $69.39. In addition, the delta-hedging error appears asymmetrical since the maximum
gain and loss are respectively $81.30 and -$444.09. This skewness is probably affected by the asymmetrical
nature of the terminal payoff value24 and may impact on the weekly absolute replication error. Overall,
the insights provided by the descriptive statistics and the empirical evidence displayed by the histogram in
Figure 2, support the contention that model (21) provides an adequate description of BAX andEuro futures
interest rates and a satisfactory replication of the option payoffs.

Finally, the second and third column of Table 4 show the descriptive statistics for the weekly absolute
replication error (ARE). Recall that the ARE corresponds to the weekly gains or losses a trader would expe-
rience from simultaneously quoting a call spread option premium based on a set of volatility and correlation
forecasts and creating a replication portfolio. Most importantly, equation (18) emphasizes the fact that per-
formance ranking based on the APE and ARE may differ because of the influence of the delta-hedging error.
To some extent, this is confirmed by the findings shown in Table 4. Irrespective of the forecasting method-
ology, all mean ARE’s are higher than their APE counterparts. Based on this statistic and on the binomial
t-test, the different modelization approaches based on time series of realized volatilities and correlations
dominate the GARCH approach, although the performance ranking within the group is relatively robust to
the inclusion of the absolute delta-hedging errors in the analysis. The mean ARE tends to favor the linear
model as the preferred forecasting methodology. As far as the ARE is concerned, it must be underscored
that the standard deviation parameter is as important as the mean. Consider a trader whose trading activities
are regularly bounded by risk limits. A lower standard deviation of the errors suggests that the probability

23In practice, traders usually delta-hedge on an infrequent basis depending on market conditions.
24The estimated skewness coefficient of the delta-hedging errors with (without) the option terminal payoff value is -4.916 (-

1.086).
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of reaching those bounds through the realization of huges losses is less. This conjecture implies that some
traders may be indifferent to the choice between the linear and the nonlinear models since they produce sim-
ilar ARE standard deviations. Given this broader perspective, the previous-week estimates are unanimously
dominated by that of the linear model. However, it should be emphasized that the linear and the nonlinear
models generate virtually identical ARE standard deviations. Finally, the null hypothesis of 50% probability
measured against the linear and the nonlinear models cannot be rejected in essentially all cases.

5 Concluding Remarks

The ability of different methodologies to exploit patterns in time series of weekly realized volatilities and
correlations based on high-frequency returns for the BAX andEuro futures contracts was assessed using
two performance criteria. The first criterion simply consists of an absolute forecasting error which is linear
over the distance that separates the estimated and realized estimates. A multivariate version of this criterion
weights each forecasting error by its corresponding call spread option vega. The second criterion adopts
the point of view of an option trader who simultaneously quotes prices on a call spread option based on the
forecasted set of volatilities, and correlations and dynamically replicates the option payoffs. As opposed to
the first criterion, this second one is strongly nonlinear in the forecasts and provides a natural multivariate
evaluation approach. Three approaches are used to model the time series of realized volatilities and corre-
lations: a linear model where explanatory variables forecast the fractionally integrated series of volatilities
and correlations, a nonlinear approach where jointly filtered series based on a multivariate singular system
analysis of realized volatilities and correlations are casted into autoregressive linear local regressions, and a
set of naive forecasts that consist of previous-week realized volatilities and correlations.

In a manner consistent with ABDL (2001c), the forecasts produced by the methodologies that resort to
time series of weekly realized volatilities and correlations generally dominate those produced by a GARCH
diagonal-BEKK. These findings are robust to the choice of a loss function and return sampling frequency.
The findings do not necessarily discredit GARCH modeling but confirm the importance of accounting for
the extra information contained in intra-day returns. GARCH modeling was limited to daily information
whereby the noise contained in daily squared returns mitigate the performance of the model.

Performance ranking based on the absolute forecasting error demonstrates that no approach based on
the realized volatilities and correlations unanimously dominates the other ones and sensitivity to the return
sampling frequency is somewhat observed. Evidence of nonlinear dynamics in the volatility time series
is observed and the nonlinear approach is favored with this performance criterion. Performance ranking
based on the absolute replication errors are different. Forecast evaluation based on the distance between
option premia using the forecasted parameters and those using the realized parameters appears robust to the
inclusion of delta-hedging errors. With this criterion, the linear model delivers the lowest mean and standard
deviation forecasting error. At the 30-minute sampling frequency, the forecasting performance of the naive
forecasts is impressive irrespective of the evaluation criterion although the related ARE standard deviations
are the highest amongst all approaches considered.

Finally, we are left with the impression that volatility and correlation forecasting are two different issues.

16



6 Appendix

Consider a call option whose payoff is dependent on the spread between the Eurodollar three-month futures
rate and the BAX futures rate. At the expiration dateT , the payoff of the spread call option is

CT = max{ iEuro,T − iBAX,T −K, 0 }

whereK is the strike level.
In this study, the two rates are assumed to be log-normal and correlated. Under the risk-neutral measure

the rates follow a bivariate geometric Brownian motion process:
[

diBAX,t

diEuro,t

]
=

[
σB iBAX,t 0
ρσE iEuro,t

√
1− ρ2σE iEuro,t

] [
dW1(t)
dW2(t)

]
(21)

and the value of the call spread option at the current datet is the double integral of the payoff over the
risk-neutral joint distributionh of iBAX,T andiEuro,T :

Ct =
∫ ∞

0

∫ ∞

0
max{y − x−K, 0}h(x, y)dydx

where

h(x, y) =
1

2π|Σ|1/2xy
exp

{
−1

2

[
ln(x)−mBAX

ln(y)−mEuro

]′
Σ−1

[
ln(x)−mBAX

ln(y)−mEuro

]}

and

mBAX ≡ ln(iBAX,t)− σ2
B

2
(T − t)

mEuro ≡ ln(iEuro,t)− σ2
E

2
(T − t)

Σ ≡
[

σ2
B ρσBσE

ρσBσE σ2
E

]
(T − t) .

To compute the integral, the approach of Pearson (1995) is followed. The first step is to factorizeh as a
product of the marginal densityf(x) of iBAX,T and the conditional density ofg(y | x) of iEuro,T giveniBAX,T :

Ct =
∫ ∞

0

[∫ ∞

0
max{y − x−K, 0} g(y | x) dy

]
f(x) dx

The inner integral may be computed and explicitly leads to the formula:

Ct =
∫ ∞

0
F (x)f(x) dx (22)

where

F (x) = eAiEuro,t

(
x

iBAX,t

) ρσE
σB

N(x1)− (x + K)N(x2)
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A = ρ

(
σB

2

)
(σE − ρσE)(T − t)

x1 =
M2(x) + σ2 − ln(x + K)

σ

x2 =
M2(x)− ln(x + K)

σ

M2(x) = mEuro +
ρσE

σB

(ln(x)−mBAX)

and whereN(·) is the cumulative standard normal distribution function.
The next step is to approximateF by a piecewise linear function. Since this function may be interpreted

as the payoff of a portfolio of bonds, puts and calls,Ct can be arbitrarily closely approximated by the value
of such a portfolio.

The approximation also applies to the computation of Greek letters. For example, to calculate the delta
∂Ct/∂iEuro,t one can pass differentiation through the integral in (22) and write

∂Ct

∂iEuro,t
=

∫ ∞

0

∂[F (x)f(x)]
∂iEuro,t

dx =
∫ ∞

0
GEuro(x)f(x) dx

with

GEuro(x) =
∂[F (x)f(x)]

∂iEuro,t

1
f(x)

.

This expression has the same form as (22), withGEuro replacingF . Therefore, to compute the delta, it is
sufficient to apply the piecewise linear approximation toGEuro instead ofF . The same approach applies to
the option vegas.
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TABLE 1
Descriptive Statistics and GPH Estimates for Time Series of Weekly Realized Volatilities and Correlations

Based on 30-minute and 90-minute Sampling Frequencies.

30-minute sampling frequency 90-minute sampling frequency

Vol Euro Vol BAX Corr Vol Euro Vol BAX Corr
Mean 13.812 26.044 0.353 12.438 25.376 0.424
Std 8.175 16.974 0.247 8.001 17.770 0.286

Skew 1.791 3.296 -0.229 1.671 3.246 -0.557
Ex-kurtosis 2.254 12.908 -3.541 0.966 14.030 -3.247

Max 60.112 161.127 0.945 51.614 165.946 0.968
Min 3.228 4.575 -0.295 2.374 4.760 -0.509

Correlation matrices
1.000 1.000
0.444 1.000 0.381 1.000
0.080 0.014 1.000 0.140 -0.082 1.000

Lag Autocorrelation coefficients
1 0.577 0.479 0.509 0.520 0.455 0.438
2 0.512 0.337 0.366 0.413 0.284 0.361
3 0.437 0.247 0.365 0.362 0.234 0.353
4 0.417 0.237 0.286 0.334 0.235 0.331
5 0.376 0.214 0.279 0.296 0.206 0.264
6 0.347 0.154 0.234 0.264 0.137 0.303
7 0.337 0.179 0.216 0.248 0.142 0.199
8 0.371 0.129 0.259 0.282 0.098 0.237

10-24 0.3574 0.0913 0.147 0.268 0.071 0.128
LB-24 lags 1613.100 524.168 523.381 1124.700 477.052 472.045

p-value 0.000 0.000 0.000 0.000 0.000 0.000

Fractional integration

d estimates 0.424 0.592 0.403 0.414 0.554 0.360

t-value 6.470 9.038 6.149 6.318 8.447 0.549

Fractionally differenced series
LB-24 lags 116.552 44.645 46.498 75.331 40.761 56.056

p-value 0.000 0.000 0.000 0.000 0.017 0.001

LB-24 lags and d estimates respectively refer to the Ljung-Box statistic for 24 lags and the GPH fractional integration parameter estimate.
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TABLE 2
In-Sample Estimation Results for the GARCH diagonal-BEKK and the Linear Models.

DIAGONAL-BEKK GARCH
a1 a2 b1 b2 mean1 mean2

Mean grad. (� 103) -0.245 -0.113 -0.320 -0.400 0.265 -0.021
Mean coeff. 0.441 0.329 0.812 0.919 -0.002 -0.000

Std. 0.077 0.071 0.093 0.036 0.000 0.000
# sign.(5%) 98 98 98 98 0 0

LINEAR MODEL

BAX equation
30-minute sampling frequency 90-minute sampling frequency

Intercept Vol BAX (1) Vol Euro (1) Vol BAX (2) Vol Euro (2) Level Intercept Vol BAX (1) Vol Euro (1) Vol BAX (2) Vol Euro (2) Level
Mean coeff. 9.458 -0.152 -0.115 -0.164 0.321 -0.776 9.166 -0.106 -0.185 -0.164 0.261 -0.642

Std. 0.781 0.027 0.181 0.034 0.054 0.493 0.924 0.025 0.172 0.044 0.060 0.479
# sign.(5%) 98 84 27 96 91 28 98 55 65 96 65 27
Residuals Mean LB(12) 16.126 # of rej.(5%) 22 Mean LB(12) 16.671 # of rej.(5%) 26

Euro equation
Mean coeff. 12.730 -0.019 -0.069 0.023 0.058 -1.424 12.834 -0.016 -0.038 0.014 0.023 -1.409

Std. 2.747 0.026 0.081 0.015 0.049 0.415 2.420 0.025 0.070 0.014 0.048 0.384
# sign.(5%) 97 0 33 0 32 92 97 0 27 0 9 90
Residuals Mean LB(12) 5.986 # of rej.(5%) 0 Mean LB(12) 6.788 # of rej.(5%) 0

Correlation equation
Intercept Corr (1) Vol BAX (1) Vol Euro (1) Diff. shape Intercept Corr (1) Vol BAX( 1) Vol Euro (1) Diff. shape

Mean coeff. 0.181 -0.057 -0.000 -0.000 -0.030 0.165 -0.013 -0.000 -0.000 -0.287
Std. 0.013 0.034 0.001 0.001 0.014 0.013 0.025 0.001 0.001 0.014

# sign.(5%) 98 10 0 0 59 98 0 0 0 59
Residuals Mean LB(12) 11.090 # of rej.(5%) 0 Mean LB(12) 12.002 # of rej.(5%) 0

The mean coefficient estimates (Mean coeff.) across the 98 estimation periods, their standard deviations (Std.) and the number of significant coefficients at the 5% level
(# sign. (5%)) for the GARCH diagonal-Bekk (equation (11)) based on daily returns and the system of linear equations (equations (3) to (5)) based on time series of realized
volatilities and correlations using 30-minute and 90-minute returns are reported in this Table. Mean grad., Mean LB(12) and # of rej. (5%) respectively refer to the average
gradients upon convergence of the likelihood function, the mean Ljung-Box statistics based on 12 lags and applied on the residuals of the linear regression equation and to
the number of cases for which the null hypothesis of white noise is rejected at the 5% level. Vol BAX (x), Vol Euro (x), Corr (x), Level and Diff. shape respectively refer
to the realized BAX and Euro volatilities and correlation lagged by x periods, to the interest rate level at the beginning of week t and to the US-Canada interest yield curve
slope differential.
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TABLE 3
Summary Statistics for the Absolute Forecasting Errors for the GARCH Diagonal-BEKK,

the Linear and Nonlinear Models, and Previous-Week Estimates.

GARCH DIAGONAL-BEKK
Mean Std. Min. Max.

Vol Bax 0.015 0.011 0.001 0.066
Vol Euro 0.005 0.005 0.001 0.028

Corr 0.188 0.174 0.859 0.859
Vega-weighted 0.016 0.013 0.002 0.093

30-minute sampling frequency 90-minute sampling frequency
Mean Std. Min. Max. # of cases Mean Std. Min. Max. # of cases

LINEAR MODEL

< garch <garch
Vol BAX 0.011 0.011 0.001 0.082 70* 0.016 0.011 0.000 0.082 67*
Vol Euro 0.010 0.006 0.000 0.028 13* 0.009 0.006 0.000 0.033 13*

Corr 0.159 0.112 0.001 0.675 48 0.160 0.106 0.010 0.599 48
Vega-weighted 0.014 0.015 0.003 0.110 60* 0.014 0.0141 0.003 0.109 62*

NONLINEAR MODEL

< garch < linear < garch < linear
Vol BAX 0.009 0.009 0.000 0.071 80* 56 0.009 0.010 0.000 0.072 78* 60*
Vol Euro 0.005 0.004 0.000 0.031 55 81* 0.004 0.004 0.000 0.031 64* 81*

Corr 0.158 0.122 0.006 0.663 52 52 0.189 0.133 0.010 0.729 43 42
Vega-weighted 0.011 0.012 0.007 0.100 77* 67* 0.011 0.013 0.000 0.101 76* 67*

PREVIOUS-WEEK

< garch < linear < nonlinear < garch < linear < nonlinear
Vol BAX 0.009 0.011 0.000 0.077 70* 62* 55 0.014 0.012 0.000 0.089 50 25* 27*
Vol Euro 0.005 0.005 0.001 0.039 50 79* 50 0.013 0.011 0.000 0.079 20 33* 25*

Corr 0.179 0.002 0.002 0.666 50 42 46 0.220 0.157 0.009 0.728 40 40 37*
Vega-weighted 0.011 0.013 0.001 0.088 75* 63* 51 0.017 0.013 0.004 0.011 41 22* 19*

The mean absolute forecasting error estimates (Mean), their standard deviations (Std.) and the minimum (Min.) and maximum (Max.) absolute forecasting errors across
the 98 weeks of the out-of-sample period under the GARCH diagonal-BEKK, the linear and nonlinear models and the previous-week estimates are reported in this Table.

< ‘model’ and vega-weighted respectively refer to the number of weeks out of 98 where the studied forecast generates an absolute forecasting error lower than that of
‘model’ and the vega-weighted absolute forecasting error calculated as in equation (19).
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TABLE 4
Summary Statistics for the Absolute Replication, the Absolute Pricing and the Delta-Hedging Errors
for the GARCH Diagonal-BEKK, the Linear and Nonlinear Models and Previous-Week Estimates.

Absolute Replication Error Absolute Pricing Error Algebraic/Absolute
Delta-Hedging Error

GARCH DIAGONAL-BEKK

Mean 82.818 66.916 -2.076/28.726
Std. 76.34 60.627 69.392
Min. 0.66 0.5 -444.092
Max. 433.61 448 81.301

Sampling frequency Sampling frequency
30-minute 90-minute 30-minute 90-minute

LINEAR MODEL

Mean 56.732 55.468 37.068 35.786 -2.076/28.726
Std. 67.43 68.42 44.707 45.973 69.392
Min. 3.87 0.78 0.25 0.5 -444.092
Max. 425.09 423.34 380 397.5 81.301

# of cases < garch 71* 68* 78* 76*

NONLINEAR MODEL

Mean 63.235 58.419 45.647 42.023 -2.076/28.726
Std. 68.419 64.025 45.050 46.930 60.392
Min. 1.712 1.454 1.25 0.500 -444.092
Max. 381.6 389.6 352.5 377.3 81.301

# of cases < garch 68* 66* 73* 71*
# of cases < linear 41 52 37 42

PREVIOUS-WEEK

Mean 58.674 62.552 39.390 36.242 -2.076/28.726
Std. 80.01 83.25 56.461 62.236 60.292
Min. 0.44 0.16 1 0.25 -444.092
Max. 429.34 424.59 397.25 421.25 81.301

# of cases < garch 69* 62* 78* 68*
# of cases < linear 51 42 47 41

# of cases < nonlinear 58 49 63* 50

The mean absolute replication, pricing and delta-hedging error estimates (Mean), their standard deviations (Std.) and the minimum (Min.) and maximum (Max.) values
across the 98 weeks of the out-of-sample period for the call spread option pricing and replication based on equation (18) under the GARCH diagonal-BEKK, the linear and
nonlinear models and the previous-week estimates are reported in this Table. # of cases < ‘model’ refers to the number of weeks that the studied approach generates an
error lower than that of ‘model’.
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Figure 1: Realized volatilities and correlations based on 30-minute and 90-minute returns
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Figure 2: Histogram of Delta-Hedging Errors
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