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Abstract

We study the effect of riskiness on optimal portfolio.  As discussed by Levy (1992), the
main drawback of the standard model with one decision variable and one risky asset
developed over the last twenty-five years, following the contributions of Rothschild and
Stiglitz (1970, 1971) and Hadar and Russell (1969), is in the area of finance since this
framework is not appropriate to study portfolio diversification.  Our purpose is to answer
the following question: How a mean preserving spread on the returns of a given asset
affect the composition of an optimal portfolio with two risky assets and one riskless
asset?  We propose a methodology to answer this difficult question and we show that we
must introduce different restrictions on the set of von Newman-Morgenstern utility
functions and that of returns distribution functions to obtain intuitive results.  However,
we do not have to limit the analysis to the mean-variance model.

JEL : D81, G11.

Résumé

Nous étudions l'effet du risque sur un portefeuille optimal. Comme discuté par Levy
(1992), la principale lacune du modèle standard avec une variable de décision et un actif
risqué développé au cours des vingt-cinq dernières années, suivant les contributions de
Rothschild et Stiglitz (1970, 1971) et Hadar et Russell (1969), est dans le domaine de la
finance, étant donné que ce cadre d'analyse est non approprié pour étudier la
diversification d'un portefeuille. Notre but est de répondre à la question suivante :
comment un accroissement de risque sur les rendements d'un actif affecte-t-il la
composition d'un portefeuille optimal ayant deux actifs risqués et un actif sans risque ?
Nous proposons une méthodologie pour répondre à cette difficile question et nous
montrons comment des restrictions sur l'ensemble des fonctions d'utilité von
Newman-Morgenstern et celui des fonctions de distribution des rendements doivent être
introduites pour obtenir des résultats intuitifs. Par contre, nous n'avons pas à limiter
l'analyse au modèle moyenne-variance.

JEL : D81, G11.
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1. Introduction

Since the contributions of Rothschild and Stiglitz (1970!1971) there has been a

proliferation of articles on the effect of increases in risk on the optimal decision variables

of economic problems under uncertainty (see the recent articles by Hadar and Seo

(1990); Eeckhoudt and Kimball (1992); Dionne, Eeckhoudt and Gollier (1993); Meyer and

Ormiston (1994); Bigelow and Menezes (1995); Gollier (1995), Dionne and Gollier (1996)

and Eeckhoudt, Gollier, Schlesinger (1996)).  Some papers have extended this literature

by considering problems with two random parameters but were restricted to applications

with only one decision variable which implies that this literature cannot yet study the

effect of a general increase in risk on an optimal portfolio.  Moreover, as discussed by

Levy (1992) in his survey, the main drawback of the standard one decision variable

model is in the area of finance, since the models cannot be used for the study of efficient

diversification strategies.  More recently, Meyer and Ormiston (1994) stated : "Extension

of these comparative results to portfolios with more than two assets is difficult.  This is

because more than one decision variable and first order conditions must be analyzed”

(p.611).

The object of this article is to extend significantly this literature by proposing a model with

two decision variables and two dependent random variables. In the literature on optimal

portfolio analysis, restrictions are often imposed on the distribution of the rates of return

and/or the utility function of the decision makers.  Any form of comparative statics

analysis becomes very complicated when more than one risky asset is in the portfolio.

Ross (1981) showed, for example, that we must restrict the Arrow!Pratt measure of risk

aversion in the presence of two risky assets, if we want to obtain the intuitive result that

a decision maker, with decreasing absolute risk aversion, will increase his investment in

the risky asset following an increase in his initial wealth. But, as demonstrated by

Machina (1982) and Epstein (1985), even the Ross' definition of risk aversion is not

strong enough to make the comparative statics analysis if the increment in wealth is



We know from Meyer (1987) and Epstein (1985) that mean-variance (or mean-standard deviation) does not1

imply quadratic utility functions or normal distributions.
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random instead of being non-stochastic (see also Eeckhoudt, Gollier and Schlesinger

(1996)).  Machina needs that the two base wealth distributions being comparable by

using the criteria of first-order stochastic dominance.  Epstein proposes another set of

restrictions and shows that his analysis implies mean-variance utility even if his

application is restricted to one decision variable.  In this paper we consider a different set

of restrictions by using a ceteris paribus assumption on changes in risk .1

Although this form of comparative static analysis associated to the variation of wealth is

not directly related to our problem, it is not without any link.  It is well known that

decreasing absolute risk aversion is a sufficient condition to sign the effect of an increase

in initial wealth on the optimal portfolio (one random variable-one decision variable

model).  Decreasing risk aversion in also part of the set of sufficient conditions (although

it is not necessary) to sign the effect of increases in risk of the risky asset on risk averse

individuals' portfolio composition.  In general, however, we need more restrictive

assumptions on the utility function to sign the effect of a Rothschild!Stiglitz mean

preserving spread on optimal decision variables than for an increase in base wealth.

One way that was adopted in the finance literature to simplify the analysis was to propose

that risk averse individuals act as they hold the same portfolio of risky assets and only

modify the composition between that portfolio and the riskless asset (two-fund

separation).  Cass and Stiglitz (1970) have demonstrated that such behaviour implies that

individuals hold a portfolio of two assets and corresponds to specific utility functions.

This approach has been intensively used over the recent years to analyze, for example,

the effects of, both, increases in initial wealth and mean preserving spreads on the

composition of individuals' portfolio (Hadar and Seo, 1990; Meyer and Ormiston, 1994



For models with two decisions variables but with one random parameter see Dionne and Eeckhoudt (1984) and2

Eeckhoudt, Meyer and Ormiston (1997). For standard models with one random variable and one decision
variable, see Hanoch and Levy (1969), Hammond (1974), Fishburn and Porter (1976), Cheng, Magill and Shafer
(1987).
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and Dionne and Gollier, 1996).  This methodology with one decision variable  is not free2

of criticism since it cannot explain how the increase in the riskiness of some risky assets

affect the composition of the risky portfolio.

Hadar and Seo (1990) assumed that the risk returns are independently distributed.  They

proposed conditions on preferences to obtain that, for a mean preserving spread on the

rate of return of a risky asset, the proportion of the portfolio invested in that asset does

not increase.  Meyer (1992) and Meyer and Ormiston (1994) extended their result by

showing that the condition proposed by Hadar and Seo remains necessary and sufficient

(along with U'(@) convex) for dependent risky returns when an appropriate restriction is

imposed on the definition of increase in risk (ceteris paribus condition).  It is important to

emphasize here that a ceteris paribus condition will play an important role in our analysis.

As mentioned above, such condition was not discussed in Machina (1982) and Epstein

(1985).

Dionne and Gollier (1992, 1996) proposed a different extension to Hadar and Seo (1990)

contribution by considering restrictions on the set of changes in risk for all risk averse

individuals instead of restrictions on utility functions.  They showed that the order of

Linear Stochastic Dominance (Gollier, 1995) can be extended to models with two

dependent risky assets but, again, their model contains only one decision variable.  They

also had to impose a ceteris paribus condition.

Indeed, they proposed to use the joint distribution of x  and x  as dF(x *x )dG(x ) where1 2 1 2 2

F(x *x ) is the distribution of x  conditional on x  and G(x ) is the marginal distribution of1 2 1 2 2

x .  In this framework the ceteris paribus assumption consists to assume that the marginal2

distribution of x  is unchanged when a change in risk is imposed on the conditional2

distribution of x .  Meyer and Ormiston (1994) extended the analysis of Hadar and Seo1



7

(1990) by supposing that the conditional distribution of x  is altered in the following way :1

"as x  is changed, the marginal cumulative distribution of x  is assumed to be unchanged"1 2

(p.606, with appropriate modifications of notation) which is related to the definition

proposed by Dionne and Gollier (1992).  An example where the conditions imposed on

the change of x  are met is the following : let x  = x +d where d is a random variable1 1 1
1 0

which satisfies E(d*x ,x ) = 0 (Meyer and Ormiston, 1994).  A sufficient condition to1 2
0

obtain the desired comparative static result is that the noise (d) added to the initial

random variable x  be independent of both x  and x  whatever the dependence1 1 2
0 0

between x  and x .  1 2
0

In this article we propose a detailed analysis of a three assets portfolio with two decision

variables and show how the increase in risk of one risky asset affects the composition

of risk averse individuals' portfolios.  In the next section, we propose a model with two

random and two decision variables and present conditions that characterize an optimal

portfolio. A new sufficient condition is proposed to obtain a direct relationship between

the values of the decisions variables and the covariances of their respective returns. In

section 3, the comparative statics in terms of increases in risk is analysed.  Four

examples are studied in detail.  Section 4 discusses the ceteris paribus assumption.  The

last section summarizes the main results (contained in Propositions 4 and 5) and

proposes some extensions.

2. A portfolio with two random variables and two decision variables

2.1 The maximization problem

The basic model with one decision variable can be extended as follows. A strictly risk

averse individual must allocate his normalized initial wealth W  / 1 in two risky assets0

and a risk free asset.  Initial position is equal to
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1 = z  + z  + z (1)0 1 2

where z , z  and z  are initial investments in the risk free asset Z  and two risky assets0 1 2 0

Z  and Z .  We assume that the choice set is compact. This assumption implies that the1 2

investor has a limited access to the credit market which means that he cannot borrow +

4. 

End of period random wealth is then equal to :

W(z ,z ) = (1 + x ) + z (x !x ) + z (x !x )1 2 0 1 1 0 2 2 0

where x  is the risk free rate of return and x  and x  are random rates of return for Z  and0 1 2 1

Z  respectively.2

Since x  is a constant, W(z , z ) can be rewritten as z (x !x ) + z (x !x ) without any loss0 1 2 1 1 0 2 2 0

of generality in order to simplify the notation.  z * and z * solve the following maximization1 2

problem :

(2)

where  and  are respectively the support of x  and x  and H(x ,x ) is the joint1 2 1 2

distribution of the two random rates of return.  The continuity of U(@) and the fact that the
choice set is compact insure the existence of a solution. Assuming that we limit the
analysis to interior solutions, the first order conditions of the above problem are :

, (3)
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EUr z1 x1&x0%z2 x2&x0 m1 %

EUr z1 x1&x0%z2 x2&x0 m2 %
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. (4)

The above conditions are necessary and sufficient for an optimal solution under strict risk

aversion or when U is strictly concave. By application of the definition of the covariance,

the two first order conditions can be written as :

 cov(Ur(W),x !x ) = 0 (5)1 0

cov(Ur(W),x !x ) = 0 (6)2 0

where m = E(x  ! x ) and m = E(x  ! x ).  In general, we cannot solve the above1 1 0 2 2 0

conditions to get explicit values of z * and z *. However, for our purpose, explicit solutions1 2

are not necessary.  The next four examples will be useful for both motivating Propositions

1, 2 and 3, and deriving comparative statics results.

1) U is a quadratic utility function, which means that U“(W) = 0.  The two first order

conditions become

z (F +m ) + z (F  +m m ) = m (7)1 11 1 2 12 1 2 1
2

z (F  + m ) + z (F  +m m ) = m (8)2 22 2 1 12 1 2 2
2

where F  and F  are respectively for the variance of x  and the covarianceii ij i

between x  and x .i j

Solving the system of two equations yields the following explicit values for

z * and  z * :1 2



z (
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z (

1 '
m1F22

F11F22 & F2
12 % m 2

1 F22

z (

2 '
& m1F12

F11F22 & F2
12 % m 2

1F22
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(9)

. (10)

By using the fact that the determinant of the variance-covariance matrix

is positive, we can show that the common denominator is strictly positive.

Consequently, the optimal values are function of four different parameters

(see Mossin (1973) for a detailled analysis of the different cases). To

simplify both the presentation and the interpretation of the results, we will

assume that m  = 0.  It is clear that even if m  = 0, the asset proportion z2 2 2

is not trivially equal to zero since it can be used for hedging purposes

when x  is correlated with x .  Other cases with different values of m  and2 1 1

m are discussed in Section 5.  When m  = 0, (9) and (10) become2 2

respectively :

(9')

 , (10')

where the common denominator is strictly positive.

When m  > 0, we verify that z * > 0 and z * < 0 when F  > 0 and z * > 01 1 2 12 1

and z * > 0 when F  < 0.  An other case of interest is when  m  < 0.  We2 12 1

verify that z * < 0 and z * > 0 when F  > 0 and z * < 0, z * < 0 when1 2 12 1 2

F  < 0.  Consequently Sign (z * z *) = !Sign Cov (x , x ) and Sign ( z *)12 1 2 1 2 1
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= Sign (m ). It is important to repeat here that since the utility function is1

quadratic, only the first two moments of the distribution do matter.

However, as pointed out by Meyer (1987), other utility functions can be

used for mean-variance analysis.  Our second example is the  mean-

standard-deviation utility case.

2) We now suppose that the welfare of the risk averse agent is represented by

V(µ,F) where µ is the mean of the portfolio and F is its standard deviation.  To be

more precise

(11)

(12)

We use the standard deviation in accordance to Meyer's comment (1987)

that two-moment  decision models correspond to a broader class of utility

functions having the appropriate convexity properties.  Maximizing V(µ,F)

over z  and z  yields as first order conditions (when m  / 0) :1 2 2

(13)

(14)

where V  > 0 and V  < 0 are for dV/dµ and dV/dF respectively, which1 2

implies that
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 When x  and x  are bivariate normally distributed, we can write by using the Stein’s lemma cov (g(x ), x ) =3
1 2 1 2

E( (x )) cov (x , x ) provided that g(x ) is differentiable and meets some regulatory conditions (see Huang and1 1 2 1
Litzenberger, 1988, section 4.14 for more details).  

12

(15)

. (16)

We observe that the results are similar to those obtained in the preceding

case while z  and z  are not explicit solutions.  We must take into account1 2

that the inverse of the marginal rate of substitution (!V /V ) between µ1 2

and F is a function of both µ and F and F is itself function of F , F  and11 22

F .  12

Finally, when V(µ,F ) =  µ ! aF  (a > 0), z * and z * can be derived2 2
1 2

explicitly.  It can be shown that this case may correspond to U(W) = !e!*

 or to constant absolute risk aversion (Epstein, 1985), which introducesw

our third example.

3) We now assume that x  and x  are random variables that are bivariate normally1 2

distributed, which implies that W(z , z ) is also normally distributed.  Therefore,1 2

applying the Stein's lemma , when m  / 0, cov(Ur(W(z , z )),x !x ) / EUO(W(z ,3
2 1 2 2 0 1

z )) cov(z (x !x ) + z (x !x ), (x -x )) = 0 which is equivalent to2 1 1 0 2 2 0 2 0

EUO(W(z , z ))(z F +z F ) = 0 (17)1 2 1 12 2 22

implying that  from the first order condition for z .2
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Applying the Stein's lemma to the first order condition for z  yields1

(18)

where W / W(z , z ) for the reminder of this section.1 2

Substituting the value of z  from (17) in (18), we obtain:2

(19)

(20)

and different values for z  and z  can be derived for different assumptions about F  and1 2 12

m . We also observe from (19) and (20) that Sign (z *z *) = ! Sign cov (x , x ) without any1 1 2 1 2

assumption on the utility function. When V(µ,F ) = µ !aF  or when U(W) = -e , the2 2 -*W

corresponding values of (19) and (20) are obtained by substituting  or  to .

Two important conclusions come from these examples. For m = 0, Sign (z *) = Sign  (m )2 1 1

and Sign (z *z *) = !Sign cov (x , x ). The following three propositions show how these1 2 1 2

results can be obtained for all concave utility functions.

2.2 A charactherization of the optimal portfolio

Let us write d  H(x , x ) / dF(x *x ) dG(x ) where F(x *x ) is the distribution of x2
1 2 1 2 2 1 2 1

conditional on x  and G(x ) is the marginal distribution of x . In the reminder of the paper,2 2 2

we assumne that F(x *x ) is differentiable with respect to x  to simplify the presentation.1 2 2

However, this assumption is not necessary to get the results. We now propose a
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sufficient condition on F(x *x ) in order to characterize the optimal portfolio for all concave1 2

utility functions.

Proposition 1 :When m =0, suppose that F(x *x )  is monotone in x  for every x  then2 1 2 2 1 

Sign (z *z *) = !Sign (cov(x , x )) for all risk averse individuals.1 2 1 2

Proof : By the first order condition (4) we have (x !x ) I(x )dG(x ) = 02 0 2 2

where 

Taking the first derivative of I(x ) and using the Leibniz rule, we get2

. (21)

By the monotonicity of F(x *x ) and the concavity of U, a necessary condition to have an1 2

interior solution is that:

Sign (z *z *) = Sign . (22)1 2

In fact, suppose that (22) is not true, then we would have Sign (z *z *) = !Sign1 2

and one can verify that I(x ) is monotonic which cannot be true if we impose an interior2

solution.

Moreover, by definition, when  and by using the Leibniz rule,
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From the last expression and, again,  the fact that m =0, we can write:2

(23)

Under the assumption that F(x *x ) is monotone in x  for every x ,1 2 2 1

. (24)

Expressions (22) and (24) end the proof of Proposition 1. O

We can also show the next result :

Proposition 2 : Suppose m  = 0 and  and  are independent random variables, then2

.

Proof : If  and  are independent then dF(x *x ) = dF(x ). We can then write the first1 2 1

order condition as :



x1,x2 x1

x2

z (

2

x2 x1

É̃1 É̃2

x̃1 x̃2

x̃2 ' a % bÉ̃1, and x̃1 ' c % dÉ̃2 % eÉ̃1

Pr x̃1 # x1*x̃2 ' x2

In fact, one can prove that if m  = 0 and F(x *x ) is monotone in x  for every x , then cov = 0 implies that 4
2 1 2 2 1

and  are independent. We know that the reverse is always true.

Even if risk aversion does not figure in the proof of Proposition 2, one should keep in mind that risk aversion makes5

the first order condition necessary and sufficient for a maximum. This is exactly what we use in the proof of
Proposition 2.
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Note that if we keep the same assumption on the monotonicity of F(x *x ), then the1 2

independence assumption in Proposition 2 can be replaced by the assumption of a nil

covariance .4

Proposition 1 shows that even if the second asset is actuarially fair (m  = 0) the asset2

proportion  at the optimum is not trivially equal to zero since it can be used for

hedging purposes when  is correlated with . If the two assets are not correlated,

then a risk averse investor  would not invest in the second asset which confirms the5

existence of hedging in the optimal portfolio. This conclusion in confirmed by the

relation through the covariance of the two random variables given in Propositions 1

and 2.

We must now discuss on the sufficient condition that F(x *x ) is monotone in x . First,1 2 2

notice that this condition is met naturally when two variables are bivariate normally

distributed (see the Appendix for the details).

A more general example is the following. Let’s consider  and , two dependent

random variables. We construct  and  as:

(25)

We can write:

F (x *x ) =  1 2
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=  

= 

As we can see, F (x *x ) is always monotone in x  and the sign of this monotonicity1 2 2

depends on the sign of b and e, i.e.:

Note that if   and  are normal then  is bivaritate normally distributed. But

the example clearly shows that   and  have not to be normal to obtain the

desired dependance between  and . The transformations  and  can also be

power functions if  and  are positive values, i.e.:

.

Now we turn to identify the different positions (long vs short) that the investor takes on

the first risky asset depending on the expected return. We know that, in the situation

where an agent is allocating his wealth between a risk-free asset and a risky asset, a

necessary and a sufficient condition for an agent to invest a positive amount in the

risky asset is that the expected return exceeds that of the riskless asset. In the next

proposition we try to generalize this result to our model when we add another risky

asset. In fact we can prove the next result :

Proposition 3 :Suppose that m  = 0, then a necessary and sufficient condition for2

having a positive  is that m  > 0.1



z (
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Proof : We need to prove that Sign  = Sign (m ) or equivalently that the first order1

condition (3) (W (z ,z )), evaluated at z *=0, has the same sign as m . When1 2 1 1

z *=0, we verify that (4) is reduced to1

which implies that Sign ( (W(0,z ))) = !Sign (z ).2 2

By the above expression we see that if the individual invests 0 in the first asset then

he will invest 0 in the second asset. From first order condition (3), (W(0,0)) =

(0)m . Since (@) > 0, by the concavity of U we have that Sign (z *) = Sign (m ). O1 1 1

3. Comparative static analysis

3.1 General Framework

Let us consider the following comparative static problem : how a mean preserving

spread of x  affects the composition of the optimal portfolio?  This question implies1

that we must consider simultaneously the effect of the mean preserving spread on the

two decision variables. 

Suppose that we use the following notation.  An increase in risk is designed by a

partial derivative of the joint distribution function with respect to a parameter r, for risk. 

Then H(x ,x *r) is the joint cumulative distribution of x  and x  for a given risk r of x . 1 2 1 2 1

Now in order to take into account of the ceteris paribus assumption we will define
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d H(x ,x *r) / dF(x *x ,r)dG(x ) and we will use dG(x )dx dr for an increase in risk2
1 2 1 2 2 2 1

on x  under the ceteris paribus hypothesis.1

Differentiating the two first order conditions (3) and (4) with respect to z ,z  and r1 2

yields :

(26)

(27)

where Ur(@) and Urr(@) are written for Ur(W(z , z )) and Urr(W(z , z )) to save space.1 2 1 2

Rearranging the two above relations in matrix form and applying the Cramer's rule we

obtain :
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(28)

(29)

where the determinant of the Hessian Matrix  for a maximum.  Since

both conditions are symmetric, we will first focus our attention to (28).  We now

analyze in detail each of the four terms.  To simplify the notation, let us rewrite (28) as

(30)

where (31)
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(32)

(33)

. (34)

)  is the Direct increase in risk effect usually analysed in the literature with one3

decision variable (Dionne-Gollier, 1996, and Meyer-Ormiston, 1994) while )  is from4

the second order condition. )  is the Pseudo Increase in Risk Effect that may be1

associated with the background risk effect (Eeckhoudt-Kimball, 1992, and Eeckhoudt

et al, 1996). However, here this affect is endogenous instead of being exogenous.

Finally, )  has never been discussed in the literature. We name this effect the2

Interaction Effect. These four effects are discussed in detail in the next section.

By symmetry,  where has a corresponding definition from

(29).

3.2 Comparative Statics Results

We now present our first important result by introducing restrictions on U(@) and on

 for a Rothschild-Stiglitz mean preserving spread. The restrictions on U(@) are well

known in both literatures on increase in risk for one decision variable and the analysis
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of background risk. The new important restriction is on F(x *x ).  We will consider in1 2

Proposition 5 particular cases of increasing risk.

Proposition 4 : Assume # 0 and CRRA # 1.  Assume also that  = 0 for all x .1

Now introduce F(x *x , r ) as a mean preserving spread of F(x *x , r ) in the sense of1 2 2 1 2 1

Rothschild and Stiglitz and suppose that G(x ) is not changed. Then for m  = 0,2 2

a) when m  > 01

,  when z * > (#) 0, and  when .2

b) when m  # 0 ,   when z * > (#) 0, and1 2

 when .

Proof : We have to show that :

Sign () )  ! ) ) ) = ! Sign (z *) and Sign () )  ! ) ) = !1 2 3 4 1 2 3 1

Sign (z *).2

Let us begin with the case m  > 0. From Proposition 3, we know that  z * > 0. We first1 1

analyze the two terms )  and )  by starting with ) , the Interaction Effect.  This effect1 2 2

links z * and z * via the interaction between the two random parameters.  This terms is1 2

very difficult to sign because it links three random variables, x , x , and . 1 2

Moreover, an increase in the product of (x !x )(x !x ) does not mean a particular1 0 2 0

variation of W(z *, z *) / z *(x !x ) + z *(x !x ) and therefore does not mean a1 2 1 1 0 2 2 0

particular variation of UO(@). However we can prove the following result :
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Lemma 1 : When z * … 0, Sign () ) = Sign (z *z *) under constant relative risk1 2 1 2

aversion (CRRA).

Proof :  )  can be rewritten as 2

)   =2 

(35)

Under CRRA we have :

where c is a constant.

Suppose that z  … 0, then we have1

Substituting the above expression in (35) and after simplifications we get

     )2  

=

The first term is nil by the first order condition associated to the choice of z  (equation2

(4)). Using the concavity of U(@) we have :
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1 z (
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2

2 x2 x2&x0 dG x2
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Sign () ) = Sign (z *z *).2 1 2

which concludes the proof. O

Lemma 2 in Appendix consider the special case where z * = 0 since it was not treated1

in Lemma 1. Aside from CRRA, two other cases are of interest : 1) U is quadratic; 2)

x  and x  are two random variables distributed according to a bivariate normal1 2

distribution. In both cases, the third moment of the distribution has no weight. Lemma

3, in Appendix, shows that under these assumptions Sign () ) = Sign .2

We now analyze ) , the Pseudo Increase in Risk Effect which can be related to the1

background risk effect (Eeckhoudt and Kimball, 1992, Doherty and Shlesinger, 1983

and Eeckhoudt, Gollier and Schlesinger, 1996).  But here this effect is endogenous.

This term measures the effect of an increase in risk of random variable x  on z *, via1 1

the fact that z * is determined simultaneously with z *.  In other words, when the risk1 2

of x  increases, this change in the distribution of x  affects z * which in turn affects z *1 1 2 1

(since both are determined simultaneously).

By defining , )  becomes :1

)  =  . (39)1

We show that Sign () ) = !Sign (z *).1 2
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Lemma 4 : Suppose that  for all x , then Sign () ) = !Sign (z *) when 1 1 2

< 0.

Proof : See Appendix.

We must emphasize here that the sufficient conditions to obtain our result differ from

those in Eeckhoudt, Gollier and Schlesinger (1996) since the latter restricted their

analysis to independent risks although they used . In their model  by

the assumption of independence. However, the converse is not true. It is relatively

easy to construct examples where  with dependent random variables. One

example is presented in the Appendix.

We now analyse )  and  ) .  )  is identified as the Direct Increase in Risk Effect since3 4 3

it corresponds to the standard term of models with one decision variable.  It can be

rewritten as

(40)

where S(x *x ) = F(x *x ,r ) ! F(x *x ,r ) and r  is more risky than r  by definition.1 2 1 2 2 1 2 1 2 1

We must extend the result of Meyer and Ormiston (1994) to obtain the sign of  )3

since we must consider cases where the supports of the random variables can

contain negative values for both x  and x .  Implicitely the support of x  must be1 2 2

positive in Meyer and Ormiston (1994) so they do not need a condition on (@).
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Lemma 5 in Appendix shows that sign () ) = !Sign (z ), which is a well known result in3 1

the literature. A sufficient condition to obtain the concavity of (W (@))W (@) is that

CRRA # 1 which is an intuitive condition. This means that the sufficient conditions on

U(W) discussed in the literature for models with one decision variable and one

random variable (Meyer, 1992; Dionne and Gollier, 1992) are sufficient to get intuitive

comparative statics results for )  when < 0 and .3

)  is from the second order condition and is always strictly negative under strict risk4

aversion.  Consequently the Sign of product !) )  is equal to that of Sign () ) or to3 4 3

!Sign (z *) as in models with one decision variable. We have now all the ingredients1

to complete the proof of Proposition 4.

Indeed, we obtain from Lemma 5 that Sign () ) = !Sign (z *) < 0. Since Sign (!) ) is3 1 4

always positive, it remains to study  )  and ) . From Lemma 1 we have that Sign () )1 2 2

= Sign (z *z *) and from Lemma 4 we verify that Sign () ) = !Sign (z *).1 2 1 2

Consequently, it is immediate to verify that Sign () ) ) = !Sign (z *) and to obtain1 2 1

dz /dr < 0. For dz /dr, by symmetry, Sign (!) ) = !Sign (z *) and Sign () ) ) =1 2 1 2 2 3

!Sign (z *) which completes the proof for m > 0. For m  # 0, the result is obtained by2 1 1

applying the same analysis with the appropriate signs and by using Lemma 2 when

z * = 0. The result for  is a consequence of the fact that z  + z  + z  = 1, which1 0 1 2

completes the proof. �

It should be noted that the sufficient conditions in Proposition 4 are standard in the

literature. Up to now, we have not investigated their necessity. Such exercise would

imply a non-trivial extension of the analysis since the model is much more general

than those used for problems with one decision variable.
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We may also use restrictions on the definition of increasing risk along with weaker

conditions on U(@). A starting point is Lemma 6 for Sign (!) ) ) where the result does3 4

not require any other restriction on U(@) than risk aversion. However, for Sign (!) ) ),1 2

sufficient conditions are  that  and CRRA. Consequently, we can reduce

restrictions on U(@) by adding restrictions on increasing risk. Indeed, the measure of

CRRA has not to be lower than one.

Lemma 6 : Sufficient conditions on  to Sign () ) = !Sign (z *) for all risk averse3 1

individuals is that the change in risk is one of the following : 1) conditional strong

increase in risk; 2) conditional simple increase in risk.

Proof : Direct from Dionne and Gollier (1996).

Consequently, we can show:

Proposition 5 : Assume (@) # 0 and CRRA. Assume also that   = 0 for all x .1

Now suppose that F(x *x ,r) indergoes one of the following increases in risk: 1) a1 2

conditional Strong Increase in Risk (Meyer and Ormiston, 1985); 2) a conditional

Simple Increase in Risk (Dionne and Gollier, 1992); suppose also that the marginal

distribution of x  is unchanged. Then for m  = 0,2 2

a) when m  > 01

,   when z * > (#) 0, and  when .2

b) when m  # 01

,  when z * > (#) 0, and  when .2

Proof : Same as for Proposition 4 by using Lemma 6 instead of Lemma 5. �
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Notice that both propositions require strict alternance of derivatives as for proper risk

aversion (Pratt and Zeckhauser, 1987), risk vulnerability (Gollier and Pratt, 1996) and

proper risk behavior (Dionne, Eeckhoudt and Godfroid, 1997). Implicitly, we assume in

both propositions that  since CRRA implies decreasing absolute risk

aversion.

3.3 Examples

When the distribution is restricted to be a bivariate normal distribution, the results

corresponding to Propositions 4 and 5 are obtained directly by differentiating (19) and

(20) with respect to F  under the ceteris paribus condition and CARA. Notice however11

that we need only constant absolute risk aversion (CARA) to obtain the desired result.

Consequently:

Proposition 6: When the joint distribution is bivariate normal, under the ceteris paribus

assumption, a sufficient condition to obtain Sign

 =  is CARA.

Proof : By differentiating (19) and (20) under CARA and by considering the differents

cases for m .1

We now analyze the case of the quadratic utility function.  Here again the analysis is

direct since we have explicit values of z * and z * at the optimum.  1 2

Proposition 7 :  When U(W) is quadratic, under the ceteris paribus assumption, 

Sign(dz */dr) = !Sign(z *) and Sign(dz */dr) = !Sign(z *).1 1 2 2



1
2a

1
*
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The proof follows directly by differentiating (9') and (10') with respect to F  under the11

ceteris paribus assumption.

Notice that this result is obtained whatever both the nature of the initial distribution

and the definition of increase in risk used, since all of them increase F  without11

affecting F  under the cetaris paribus assumption. This means that all the definitions12

of increase in risk with two random parameters used in Dionne and Gollier (1996)

apply here.  The role of the quadratic utility function is to set the Sign of the Pseudo

Effect () ) at zero and to limit the analysis to the Direct Effect.1

We now study the mean variance approach.  As shown by Epstein (1985), when

U(W) is exponential, V(µ,F ) = µ!aF  implies positive linear indifference curves in the2 2

(µ,F ) space.   Consequently,2

Proposition 8 :  In the mean-variance model Sign(dz */dr) = !Sign(z *) and1 1

Sign(dz */dr) = !Sign(z *), under the ceteris paribus assumption.2 2

The proof is similar to that of Proposition 7 by substituting  to .

Turning now to the mean-standard deviation space, matters are more complicated.

But we can show the following result :

Proposition 9 :  Suppose that the agent utility function is V(µ,F) where µ and F

measure the mean and the standard deviation of the portfolio respectively. Then Sign

(dz */dr) = !Sign (z *) and Sign (dz */dr) = !Sign (z *), under the ceteris paribus1 1 2 2

assumption.

Proof :  See Appendix.
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Despite their differences, Propositions 4 to 9 share one common feature : they all lead

to the same comparative statics results (Sign(dz */dr) = ! Sign (z *)) and Sign (dz */dr)1 1 2

= !Sign (z *).  This suggests a relationship between the expected utility, the mean2

variance and the mean standard deviation frameworks.

4.  Ceteris paribus assumption and covariance

We must now discuss the ceteris paribus assumption.  From Meyer (1992), Meyer and

Ormiston (1994) and Dionne and Gollier (1992, 1996), we know that such assumption

permits to identify a class of distribution functions that isolate the effect of a mean

preserving spread on the optimal decision variables.  Gagnon (1995) showed that this

assumption implies that the covariance (F ) between the random variables is12

maintained constant.

As an illustration, we provide an example. Suppose that the random variables x  and1

x  have the following realizations in a situation with two states of the world :2

Initial situation (less risky)

X S S1i

X 20 402i

1 2

S 10 0.3 0.11

S 30 0.2 0.42

Final situation (more risky)

X S S1i

X 15 452i

1 2

S 10 0.2666 0.13331

S 30 0.2333 0.36662

Table 1

Each entry is a joint probability.  The marginal probability f(x ) is the sum of each entry1i

in the column S  and the marginal probability g(x ) is the sum of each entry in the rowi 2i

S.  The conditional probability is illustrated as follows :j



f(X1 ' 20*X2 ' 10) '
f(X1 ' 20, X2 ' 10)

f(X2 ' 10)
'

0.3
0.4

' 0.75
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We can verify that the means of X  and X , and their conditional means, are identical1 2

under both risky situations.  The covariance remains unchanged with a value of 40 as

expected under the ceteris paribus assumption. Moreover, the ceretis paribus

assumption is verified because the cumulative distribution of X  is unchanged. Only2

the variance of X  increases from 50 to 112.50.  Finally, one can verify that for every1

value of X , the random variable X  undergoes an increase in risk as defined by2 1

Rothschild and Stiglitz (1970).

5. Extensions and conclusions

This article has proposed a framework to extend the analysis of increasing risk to

models with two decision variables and two dependent random parameters. This

extension permitted the comparative statics analysis of standard optimal portfolio with

two random assets and one safe asset. We have proposed general conditions on the

set of vNM utility functions and on the set of distribution functions to obtain intuitive

comparative statics results. Suprisingly, when appropriate relationships are well

identified between the random parameters, the restrictions are not more stringent than

those in models with one decision variable with two dependent random parameters.

However we need restrictions on both the utility function and the returns distributions.

The separation of conditions either on utility or on distributions was not obtained even

with the presence of a safe asset which is contrary to the two-fund separation

theorem. A similar conclusion was derived by Gouriéroux and Monfort (1997) in the

study of the econometrics of efficient frontiers and by Dachraoui and Dionne (1998) in

the analysis of a first order shift on an optimal portfolio.
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Many extensions of this contribution are possible. One would be to find conditions on

changes in risk that involve less restrictions on U(@) to sign both the pseudo increase

in risk effect (or the background risk effect) and the interaction effect. Kimball (1993)

did a first step in that direction for the background risk effect by showing how a

patently riskier change in background risk may yield the desired result on the demand

for a risky asset but his model was limited to one decision variable (see also Gollier

and Schlee, 1997).

Another extension would be to consider different assumptions about m = E(x !x ). In2 2 0

our analysis, the value of m  was constrained to be nil. To see how this type of2

extension is not trivial, consider again the quadratic example. When m  … 0, the first2

order conditions are given by (9) and (10). Differentiating these two conditions with

respect to F  under the ceteris paribus assumption yields :11

and is independent of m2

It is easy to see that the last expression is a function of both m  and m  even if a1 2

simple mean preserving speed is applied to the portfolio. Additional assumptions on

the relative magnitudes of m  and m  would be necessary to yield intuitive results.1 2
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A third extension would be to consider n random assets instead of two. This extension

would be tractable if appropriate assumptions are made on both the different

covariance relationships and the respective expected values. It would be also of

interest to know how the recent extension of the Rothschild-Stiglitz model made by

Machina and Pratt (1997) would extend the results. In particular, how an increase in

risk on x  would affect an optimal portfolio when the initial cantor distribution of x  has1 1

no mass points nor a density. Finally, non-expected utility models may also be

analysed with respect to this more general portfolio model. The new tools reviewed in

Chateauneuf et al. (1997) seem to be a natural starting point. See also Levy and

Wiener (1998).
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APPENDIX

Bivariate normal distribution and monotoricity of F(x **x )1 2

Let’s consider the bivariate normal distribution:

where:

and

.

The conditional p.d.f. of  given , is itself normal with mean

and variance

.

Thus, with a bivariate normal distribution, the conditional distribution function of 

given  is given by
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Taking the derivative with respect to x  gives2

Simple calculus show that

and

Then we have

As we can see, the monotonicity of the conditional distribution function is verified and

this monotonicity is determined by the sign of the correlation between  and .

O

Lemma 2 : If (z *z *) = 0 and (z *, z *) … (0,0), then under CRRA we have that1 2 1 2

) = 0.2 
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Proof : Without loss of generality we can suppose that z  = 0. Under the CRRA1

assumption we can write )  as2

) = 2 

The above equation is nil by the first order condition (3). The case (z ,z ) = (0,0) is not1 2

of particular interest and can be analyzed easily. O

Lemma 3 : If x  and x  follow a bivariate normal distribution or if U is quadratic,1 2

then Sign () ) = Sign . 2

Proof :  When the utility function is quadratic, U“(@) = 0 which implies that UO(@) is

constant.  Therefore

.

Using the definition of the covariance, the right hand side of the above equation can

be written as

UO(@)m m  + UO(@) cov(x !x , x !x ) (36)1 2 1 0 2 0

which, under the assumption that m  = 0, is equal to UO(@) cov(x , x ) since x  is a2 1 2 0

constant.  Consequently, with the quadratic utility function, the Interaction Effect term

() ) has a Sign equal to (!Sign cov(x , x )) wich is equal to Sign (z *z *).2 1 2 1 2

We may also assume that x  and x  follow a bivariate normal distribution and obtain1 2

the same result.  Let us use as a starting point the first order condition for z *.  By2
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symmetry the same result can be obtained from the other first order condition.  As

already discussed, (6) can be rewritten by using the Stein Lemma when m  / 0 as :2

(37)

which is (17).  Differentiating this expression with respect to z  yields )  :1 2

(38)

which is reduced to EUO(@)F  since [z F +z F ] = 0 from the first order condition (37). 12 1 12 2 22

Therefore, under the assumption that the two random variables follow a bivariate

normal distribution, we also obtain that the Sign of )  is equal to that of2

(!Sign cov (x , x )) or to Sign (z *z *). O1 2 1 2

Proof of Lemma 4: By definition of an increase in risk, 2(x ) can be rewritten as2

.

Integrating by parts and applying the Leibnitz rule

or
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  When U(@) is quadratic, 2(x ) = 0 and the Pseudo increase in risk is nul.  When U“(@) > 0, 2(x ) is positive.6
2 2
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since a conditional increase in risk requires that

.

Integrating by parts again

or (41)

where

by the integral definition of a mean preserving spread (Rothschild and Stiglitz, 1970) .6

Note that .

Differentiating (41) with respect to x  yields2

. (42)
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Finally, since by assumption and < 0, by (42) Sign ( (x )) = !Sign2

(z *) which implies that 2(x ) is monotone. Consequently,2 2

 O

An example of  = 0 without independance of the two random variables.

Let us suppose that two discrete distributions of x  conditional on two values of x  =1 2

2,4 are as follows:

x  (x  = 2) p (x  (x  = 2)) x  (x  = 4) p (x  (x  = 4))1 2 1 2 1 2 1 2

!4 0,09 !4 0,09

+4 0,30 +4 0,30

+10 0,40 +12 0,40

+18 0,21 +18 0,21

Both have different moments. Now assume that we introduce the same white noise

structure in both distributions. As already discussed in the example presented in the

introduction, the ceteris paribus assumption implies that E (d*x , x ) = 0. Let us now1 2

introduce the following white noises: replace in both distribution +4 by the random

variable:

+3 with probability ½
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+5 with probability ½

and replace the random variable +18 by the random variable:

+14 with probability a

+20 with probability b.

Clearly, the expected values of the two initial conditional distributions do not change

and both are more risky. However, the structure of increase in risk is independent of

x  in the sence that both increases in risk are identical. We can verify that  = 0 or2

 in this example.

Lemma 5 :  Assume that . Assume also that  = 0 for all x . Now introduce1

 F(x *x ,r ) as a mean preserving spread of  F(x *x ,r ) in the sence of Rothschild and1 2 2 1 2 1

Stiglitz and suppose that G(x ) is not changed. Then Sign () ) = !Sign (z *) if2 3 1

(W(z )). (W(z )) is concave in W.1 1

Proof :   By a double integration by parts of (43) with respect to x , we can write )  as:1 3
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or

Since here, contrarily to Meyer and Ormiston (1994), both z  and (x -x ) can be either2 2 0

positive or negative, one cannot sign directly the above expression by using only the

fact that (W)W is concave and  is positive. Integrating the second term by

parts with respect to x  one obtains for the above expression :2

which has a sign opposite to that of z  under the condition of the lemma. �1

Proof of Proposition 9: The maximization of V (µ, F) yields (13) and (14) as first

order conditions.
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Taking the total differentiation of (13) with respect to F  gives after some11

simplifications:

(A1)

From (14) we can show that:

(A2)

Substituting (A2) in (A1) yields:

(A3)

Since the Hessian matrix corresponding to V (µ, F) is negative definite, we have in

particular:

which is equivalent to:



m 2
1 V11 % 2m1

z (

1 D

F22 F
V12 %

z (

1 D

F22 F

2

V22 < 0.

dz (

1

dF11

(z (

1 ).

z (

1 ' &
F22

F12

z (

2 and
dz (

1

dF11

' &
F22

F12

dz (

2

dF11

.

dz (

2

dF11

(z (

2 )

A - 10

The last inequality and the fact that V  < 0 imply from (A3) that:2

Sign  = !Sign 

From (14) we have, under the ceteris paribus assumption, that:

Substituting these two expressions in (A3) and using the same analysis gives:

Sign  = !Sign 

which completes the proof. �


