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1. Introduction

The consumption-based capital asset pricing model (C-CAPM), developed by Rubinstein

(1976), Lucas (1978), and Breeden (1979) relates an asset’s risk premium to the covariance

between the return on this asset and an investor’s intertemporal marginal rate of substitution.

In this pricing framework, the quantity of risk is captured by the covariance of the marginal

utility of consumption with the asset return. Assuming a special case of power utility function

and joint normal distribution of observable covariates, this quantity of risk can be assessed

by the covariance of the asset return with aggregate consumption growth. However, power

utility does not combine well with non-normal distributions whereas there is strong evidence

that financial returns are non-normally distributed. This underscores the importance of

accurately assessing higher-order risks in the determination of asset prices and risk premia.

This study proposes a new representation of the C-CAPM pricing rule based on the con-

cept of expectation dependence that delivers an alternative measure of downside risk. While

the riskiness in the C-CAPM is driven by the covariance between the asset return and the

marginal utility of consumption, we typically do not have empirical access to the marginal

utility of consumption. Instead, consumption and asset return are empirically accessible.

A key insight of our contribution is that the covariance between an investor’s marginal

utility of consumption and an asset’s return can be re-expressed in terms of the expecta-

tion dependence between empirically accessible covariates, that is, asset return and aggre-

gate consumption growth. The proposed expectation dependence-based C-CAPM highlights

higher-order risk quantities and corresponding higher-order risk attitudes without imposing

restrictive assumptions on the functional forms of distributions and preferences (Eeckhoudt
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and Schlesinger 2006, Denuit and Eeckhoudt 2010). Our theoretical representation of the

pricing rule determines the optimal asset risk premium as a function of a relative risk aver-

sion index for the first-degree expectation dependence (FED) and a relative prudence index

for the second-degree expectation dependence (SED).

The adopted approach is related to the literature on the measurement of risk, which is

central to asset pricing. Closely related to our work are papers by Denuit et al. (2015) and

Wright (1987) who explore the theoretical foundations of expectation dependence in decision

theory. Li (2011) generalizes the concept of expectation dependence to higher orders to char-

acterize how background risks shape the demand for risky assets. Higher risk attitudes are

mapped to higher-oder risk quantities in Crainich and Eeckhoudt (2008), Denuit and Eeck-

houdt (2010), Eeckhoudt and Schlesinger (2006), and Gollier et al. (2013), among others.

Denuit and Scaillet (2004) and Zhu et al. (2016) develop inference frameworks and robust

empirical tests for expectation dependence. Another strand of the asset pricing literature

builds on the seminal work of Kraus and Litzenberger (1976) and subsequent contributions

by Harvey and Siddique (2000), Dittmar (2002), Ang et al. (2006), Martellini and Ziermann

(2010), and Lambert and Huebner (2013) to document empirical evidence of risk premia

associated with higher-order moments (coskewness and cokurtosis) of portfolio return distri-

butions. Recent asset pricing models with higher moments in consumption growth, driven by

left-skewed and fat-tailed shocks, yield realistic premia as argued in Martin (2013), Constan-

tinides and Gosh (2017), and Pohl et al. (2018). By specifying consumption and dividend

growth processes in a bad uncertainty-good uncertainty environment, Feunou et al. (2018)

extend Bollerslev et al.’s (2009) model and document empirically sound implications such as

countercyclical market compensations of risks and sizeable variance risk premia.
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This paper focuses on expectation dependence because a more restrictive measure of

dependence is not needed to obtain the results. While first-degree expectation dependence

and covariance are linked, there is not necessarily a one-to-one correspondence in the signs

of these two measures of dependence. For a risk-averse agent, a necessary and sufficient

condition for a positive risk premium is positive first-degree expectation dependence. Because

positive covariance does not necessarily imply positive first-degree expectation dependence,

by corollary, positive (negative) covariance is not sufficient to ensure a positive (negative)

risk premium for all return distributions.

Further, first-degree expectation dependence may not be sufficient to set the equilibrium

price of an asset. A prudent investor who saves for precautionary motives (Kimball 1990)

also cares about the downside risk (Menezes et al. 1980) or a related measure, the second-

degree expectation dependence. Lettau et al. (2014) argue that a downside risk-based

asset pricing model can successfully price the cross section of various asset classes including

equities, equity index options, commodities, sovereign bonds, and currencies. We show for a

prudent investor that a positive second-degree expectation dependence commands a higher

premium through the aversion to downside risk. Accounting for prudence and related SED

risk quantity may help better assess the premium implied by a given risk aversion level.

Using both simulations and international markets data from Campbell (2003), we imple-

ment the same estimation procedure to appraise the empirical performance of the expectation

dependence representation of the C-CAPM in matching observed equity and variance risk

premia. Our SED representation of the C-CAPM yields realistic empirical indexes of risk

aversion for equity and variance risk premia.

The paper proceeds as follows. Section 2 presents an alternative expectation dependence-
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based representation of the pricing rule for a risk-averse representative investor. Section 3

extends the analysis to a prudent investor. Section 4 compares theoretically and via sim-

ulations the standard pricing expression with the expectation dependence-based formula of

the C-CAPM. Section 5 shows empirically how the expectation dependence-based represen-

tation can help improve the empirical performance of the C-CAPM in matching the equity

risk premium on international markets and the variance risk premium in the U.S. market.

Section 6 concludes. The Appendix contains additional results.

2. C-CAPM for a Risk-Averse Representative Agent

Suppose an investor can freely buy or sell an asset with random payoff x̃t+1 at a price pt.

The asset’s gross return is 1 + R̃t+1 = x̃t+1/pt. The investor’s preference is represented by

a utility function u, with u′ > 0, u′′ < 0, and derivatives existing to all orders. Denote the

time discount factor by β, and the current consumption by ct. The Euler equation from the

investor’s utility maximization problem gives the well-known C-CAPM rule in return form

EtR̃t+1 −Rf
t = −covt[u

′(c̃t+1), R̃t+1]

Etu′(c̃t+1)
, (1)

where Et is the conditional expectation operator, c̃t+1 is the time t+1 consumption, 1+Rf
t =

(βEtu
′(c̃t+1)/u′(ct))

−1 is the gross return of the risk-free asset, u′ is the marginal utility

function, and EtR̃t+1 −Rf
t is the asset’s conditional equity risk premium.

A key challenge in the empirical literature is to reexpress the pricing formulas using the

dependence between observed variables, namely, consumption (not the marginal utility of

consumption) and the asset’s return. To circumvent this challenge, restrictions are commonly
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imposed on utility functions and distributions.1 By rewriting the covariance in (1) in terms

of expectation dependence measures between observed covariates, we propose an alternative

representation of the C-CAPM pricing rule.

2.1. Pricing with First-Order Expectation Dependence

The concept of first-degree expectation dependence (FED) is a stronger definition than

correlation (Wright 1987). Formally, consider two continuous random variables (x̃, ỹ) ∈

[x, x̄]× [y, ȳ]. Let F (x, y) denote the joint cumulative distribution, and Fx̃(x) and Fỹ(y) be

the marginal distributions of x̃ and ỹ.

Definition 2.1 If FED(x̃|y) = [Ex̃ − E(x̃|ỹ ≤ y)] ≥ 0 for all y ∈ R, then x̃ is positive

first-degree expectation dependent on ỹ.

Wright (1987, p. 113) interprets positive FED as follows: “When we discover ỹ is small,

in the precise sense that we are given the truncation ỹ ≤ y, our expectation of x̃ is revised

downward.” Here, we exploit a useful equivalence between the sign of cov (f (x̃) , ỹ) and

positive (or negative) FED for any monotone function f (Theorem 3.1 in Wright 1987).2

The consumption growth between time t and t + 1 is g̃t+1 = c̃t+1/ct and takes values

in [g, ḡ]. The second derivative of the utility function is negative (u′′ < 0) because a risk-

averse investor’s marginal utility is monotonically decreasing. Using integration by parts as

in Cuadras (2002) and results in Tesfatsion (1976) and Wright (1987), the covariance in the

pricing equality can be reexpressed in terms of the FED and a second-order preference index:

covt[u
′(ctg̃t+1), R̃t+1] =

∫ ḡ

g

FED(R̃t+1|gt+1)ctu
′′(ctgt+1)Fg̃t+1(gt+1)dgt+1. (2)
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Appendix A1 gives the proof of (2). Define RR2(ct+1) = −ct+1u
′′(ct+1)/u′(ct+1) as the Arrow-

Pratt relative risk aversion index, MRSct+1,ct = u′(ct+1)/u′(ct) as the intertemporal marginal

rate of substitution, and set [β(1 +Rf
t )]−1 = Etu

′(c̃t+1)/u′(ct). We use (2) to rewrite (1) as

EtR̃t+1 −Rf
t

β(1 +Rf
t )

=

∫ ḡ

g

FED(R̃t+1|gt+1)Fg̃t+1(gt+1)︸ ︷︷ ︸
FED risk

RR2(ctgt+1) MRSctgt+1,ct

1

gt+1

dgt+1. (3)

The quantity of consumption risk in (3) is measured by the FED of asset return with con-

sumption growth. The other terms reflect the price of risk for a risk-averse investor. An asset

commands a positive equity risk premium if and only if its return is positively first-degree

expectation dependent with consumption growth.3 Intuitively in the FED representation of

the C-CAPM, an asset bears a positive risk premium when its expected return is lowered

as we observe consumption growth g̃ below a reference level g (Wright 1987).4 Conversely,

an asset’s equity risk premium is negative if and only if its return is negatively first-degree

expectation dependent with consumption growth. In this case, the asset’s expected return

is revised up as consumption growth falls below a reference level, thus providing a digital

option hedge against a shortfall of g̃ below g (Denuit et al. 2015).

We stress that what matters for the C-CAPM pricing is the covariance between the

marginal utility of consumption u′(c̃) and the asset’s return R̃. However, we typically do not

have empirical access to u′(c̃). Instead, c̃ is empirically accessible along with R̃. We show in

(3) that the FED between asset return and consumption growth (which are both empirically

accessible) determines the asset’s riskiness for flexible distributions and preferences. Because

FED is a stronger dependence measure than correlation, a positive (negative) covariance

between asset return and consumption growth is a necessary but not sufficient condition for
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a risk-averse agent demanding a positive (negative) equity risk premium. The FED pricing

formula highlights the dependence of asset return with consumption growth rather than with

the marginal utility of consumption which is not readily observable from available data.

3. C-CAPM for a Risk-Averse and Prudent Representative Agent

Now, consider a representative agent that is not only risk-averse (u′′ < 0) but also prudent

(u′′′ > 0), where u′′′ denotes the third derivative of the utility function. The concept of

prudence and its relationship to precautionary savings (Kimball 1990) is a well-established

behavior in the risk literature (Gollier 2001, Keenan and Snow 2002). Gollier et al. (2013)

provide a careful review of analytical developments on prudence. All prudent agents dislike

any increase in downside risk in the sense of Menezes et al. (1980), as argued by Chiu

(2005) and Crainich and Eeckhoudt (2008). This section discusses expectation dependence

conditions for asset prices and equity premia when the agent is risk-averse and prudent.

3.1. Pricing with Second-Order Expectation Dependence

To characterize the impact of prudence in the expectation dependence representation of the

C-CAPM, we can integrate the right-hand term of (2) by parts. We get

covt[u
′(ctg̃t+1), R̃t+1] = ctu

′′(ctḡ) covt(R̃t+1, g̃t+1)−
∫ ḡ

g

SED(R̃t+1|gt+1)c2
tu
′′′(ctgt+1)dgt+1, (4)

where SED is the second-order expectation dependence between asset return and consump-

tion growth, a concept formally discussed in Li (2011). See Appendix A1 for the proof.5

Definition 3.1 If SED(x̃|y) =
∫ y
y

[Ex̃ − E(x̃|ỹ ≤ t)]Fỹ(t)dt =
∫ y
y

FED(x̃|t)Fỹ(t)dt ≥ 0 for
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all y, then x̃ is positive second-degree expectation dependent on ỹ.

The pricing formula in (3) can then be restated as

EtR̃t+1 −Rf
t

β(1 +Rf
t )

= covt(R̃t+1, g̃t+1)︸ ︷︷ ︸
covariance risk

RR2(ctḡ) MRSctḡ,ct
1

ḡ

+

∫ ḡ

g

SED(R̃t+1|gt+1)︸ ︷︷ ︸
SED risk

RR3(ctgt+1) MRSctgt+1,ct

1

g2
t+1

dgt+1, (5)

where RR3(ct+1) = c2
t+1u

′′′(ct+1)/u′(ct+1) defines a relative downside risk aversion index as

in Modica and Scarsini (2005).6 The representation in (5) suggests that covt(R̃t+1, g̃t+1) > 0

is only a necessary condition for all non-satiable, risk-averse and prudent agents to ask for

a positive risk premium. Using only the covariance of asset return and consumption growth

introduces a distortion in the pricing formula when the third derivative of the utility function

is different from zero—or when the utility function is not quadratic. The last term on the

right-hand side of (5) reflects how the SED risk affects the asset price through the intensity

of downside risk aversion (Hogan and Warren 1974, Bawa and Lindenberg 1977, Price et al.

1982). Appendix A3 presents the pricing equations in (3) and (5) in price form.

To further provide an intuitive link between SED and downside risk, we follow Denuit et

al. (2015) who establish that the kth order expectation dependence can be reexpressed as

kthED(R̃|g) = − 1

(k − 1)!
cov((g − g̃)k−1

+ , R̃), (6)

where k ≥ 2, ! denotes the factorial function, and (•)+ is equal to the positive part of

its argument. For k = 2, the equivalence in (6) clearly shows that SED(R̃|g) is minus

the covariance between the asset’s return R̃ and the payoff of a put option written on
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consumption growth g̃, protecting against its shortfall below a reference level (or strike

price) g. Thus, SED(R̃|g) is related to the second-order lower partial cross-moment of R̃

and g̃, and can be intuitively interpreted as a measure of downside risk computed below

a benchmark level of consumption growth g. As the benchmark level g grows to infinity,

SED(R̃|g → +∞) approaches cov(R̃, g̃). This equivalence is empirically appealing, as it

facilitates the computation of SED with actual data.

Thus, a positive integrated consumption SED in (5) is obtained when there are more

positive lower partial covariances between asset return and consumption growth, that is,

when stock market portfolio returns are more positively tied to consumption growth in the

left part of the joint distribution. A positive SED reinforces the effect of a positive covariance

between asset return and consumption growth to obtain a positive risk premium. In that

case, the stock market portfolio does not offer a hedge against the downside consumption risk,

and a prudent representative investor demands a higher premium for bearing that downside

risk. Note that for simplicity, we label the pricing expression in (5) as the SED C-CAPM

representation, even though this equation also involves a covariance term.

The expectation dependence-based pricing formulas in (3) and (5) can also be stated

in terms of absolute rather than relative risk index—see Appendix A4. However, while an

absolute risk index is theoretically useful to make some qualitative statements, it might

be challenging to assess with actual data. Specifically, assuming a constant absolute risk

aversion utility function is not empirically grounded, as it entails an increasing relative risk

aversion—absolute risk aversion times consumption—with a growing economy. An agent

with increasing relative risk aversion will invest less in the risky asset as he becomes richer,

which is quite nonintuitive with respect to the large empirical evidence suggesting otherwise.

10



Using data on portfolio holdings of U.S. households, Bucciol and Miniaci (2011) document

that the rich tend to invest more of their relative wealth in stocks.

4. Comparison of Alternative Representations of the C-CAPM

In this section, we compare the standard (STD) formula of the C-CAPM in (1) with the first-

and the second-order expectation dependence representations of the pricing rule in (3) and

(5). To this end, we compute an nth order Taylor expansion of the alternative representations

discussed above—see Appendix A5 for derivations. We stress that all three (STD, FED,

SED) representations of the C-CAPM are theoretically equivalent in the limit (n→∞). For

a given finite order Taylor approximation, we compare these alternative representations of

the C-CAPM analytically and empirically using simulations. This comparison is intended

to assess potential differences in the measurements of various risk quantities associated with

higher risk attitudes in the alternative formulations.

4.1. Analytical Approximation

Following Modica and Scarsini (2005), we define the kth order relative risk index as RRk(c) =

ck−1(−1)k−1u(k)/u′, with u(k) denoting the kth derivative of the utility function and k ≥ 2.

Note that for an investor equipped with a power utility function u(c) = c1−γ−1
1−γ , the (i+ 1)th

order relative risk index is given by RRi+1(c) =
∏i

j=1(γ + j − 1), with i ≥ 1. Moreover, the

conditional expectation of the intertemporal marginal rate of substitution EtMRSc̃t+1,ct =

[β(1 +Rf )]−1 becomes Etg̃
−γ
t+1.

It is worth stressing that the alternative representations of the C-CAPM and related
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Taylor approximations do not only hold for constant relative risk aversion preferences. While

the analytical formulas are stated in terms of relative risk aversion indexes, the pricing

expressions and Taylor approximations can be rewritten in terms of absolute risk aversion

indexes, as discussed in Appendix A4. In that case, the kth order absolute risk intensity is

measured by ARk(c) = (−1)k−1u(k)/u′, as in Crainich and Eeckhoudt (2008).7

4.1.1. STD Representation

For the analytical assessment, we follow Dittmar (2002) and perform a Taylor expansion at

the order n of the standard representation of the C-CAPM in (1). The Taylor approximation

details are presented in Appendix A5. We have

EtR̃t+1 −Rf
t

β(1 +Rf
t )

= − 1

u′(ct)
covt(u

′(ctg̃t+1), R̃t+1),

=
n∑
i=1

(−1)i+1

i!
RRi+1(ct) covt((g̃t+1 − 1)i, R̃t+1) + o(gn). (7)

In this representation, the first derivative of the utility function is approximated.

4.1.2. FED Representation

We now turn to the FED representation of the C-CAPM in (3) that features the second

derivative of the utility function. Here, we compute nth order Taylor polynomials of u′′ (not

u′ as in the standard representation). This expansion, detailed in Appendix A5, yields

EtR̃t+1 −Rft
β(1 +Rft )

=

∫ ḡ

g
FED(R̃t+1|gt+1)Fg̃t+1(gt+1)[−ct

u′′(ctgt+1)

u′(ct)
]dgt+1

=
n+1∑
i=1

(−1)i+1

i!
RRi+1(ct) cov((g̃t+1 − 1)i, R̃t+1) + o(gn+1). (8)
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We observe that, for the same expansion order n, the FED representation adds an extra

(n+ 2)th degree of risk (−1)n+2

(n+1)!
RRn+2(ct) cov((g̃t+1 − 1)n+1, R̃t+1).

4.1.3. SED Representation

We also expand the SED representation of the C-CAPM in (5) at the order n using Taylor

series. By exploiting the equivalence in (6), we get

EtR̃t+1 −Rft
β(1 +Rft )

= covt(g̃t+1, R̃t+1)(−ct
u′′(ctḡ)

u′(ct)
) +

∫ ḡ

g

SED(R̃t+1|gt+1)(−c2t
u′′′(ctgt+1)

u′(ct)
)dgt+1

= covt(g̃t+1, R̃t+1)[
n+1∑
i=1

(−1)i+1

(i− 1)!
RRi+1(ct)(ḡ − 1)i−1]

+

∫ ḡ

g

covt(−(gt+1 − g̃t+1)+, R̃t+1)[

n+1∑
i=1

(−1)i+2

(i− 1)!
RRi+2(ct)(gt+1 − 1)i−1]dgt+1

+o(gn+2). (9)

Appendix A5 contains step-by-step derivations. For the same order of approximation n,

the SED representation includes an additional effect of the (n+ 3)th degree of risk aversion

(−1)n+3

n!
RRn+3(ct). Higher-order risk quantities are also measured differently in the SED rep-

resentation compared to the STD and FED approaches. Namely, risk quantities in the SED

representation (9) involve
∫ ḡ
g

covt(−(gt+1 − g̃t+1)+, R̃t+1)(gt+1 − 1)idgt+1, for i = 1, · · · , n.

This integrated ith power weighted SED of asset return on consumption growth captures

downside risk patterns through the negative covariance between the asset’s return and the

payoff of a put option written on consumption growth, scaled by higher powers of consump-

tion growth. The empirical assessment below shows that, for a given order of approximation,

the SED representation outperforms the STD and FED representations of the C-CAPM.
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4.1.4. Illustrative example: third-order Taylor approximation

To provide a more intuitive illustration of the alternative representations, we present the

approximations of the pricing formulas using a third-order Taylor expansion. Following

Dittmar (2002), among others, we truncate the Taylor series expansion after the third order

to illustrate intuitively the role of higher-order risk preferences—beyond the standard risk

aversion—and related higher-order risk quantities in asset pricing.

By setting n = 3 for the approximated STD representation in (7), we obtain

EtR̃t+1 −Rf
t

β(1 +Rf
t )

= RR2(ct) covt(g̃t+1, R̃t+1)− 1

2
RR3(ct) covt((g̃t+1 − 1)2, R̃t+1)

+
1

6
RR4(ct) covt((g̃t+1 − 1)3, R̃t+1) + o(g3), (10)

which highlights, beyond the second-order risk aversion, the role of prudence (RR3) and

temperance (RR4) in the valuation of a risky asset. Eeckhoudt and Schlesinger (2006)

rely on behavioral characteristics of risk apportionment—preference for disaggregating the

harms—to provide intuitive definitions of these higher-order risk attitudes. In Eeckhoudt

and Schlesinger’s (2006) framework, harms represent detrimental changes to wealth. Using

simple lottery pairs, the authors show that a prudent investor with a given wealth, facing

two distinct harms (a sure loss and a zero-mean risk), prefers to apportion them by placing

one in each state. This echoes, Kimball’s (1990) interpretation of prudence as the propensity

to prepare and forearm oneself in the face of uncertainty or as the intensity of precautionary

saving motives. Similarly, a temperate investor with a given wealth, facing two distinct

harms (two independent zero-mean risks), prefers attaching one in each state rather than
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receiving both in one state. The quantities of risk related to prudence and temperance in the

standard representation of C-CAPM are captured by the coskewness (covt((g̃t+1−1)2, R̃t+1))

and the cokurtosis (covt((g̃t+1−1)3, R̃t+1)) of the consumption growth with the asset’s return.

For n = 3, the approximate FED pricing relation in (8) writes

EtR̃t+1 −Rft
β(1 +Rft )

= RR2(ct) covt(g̃t+1, R̃t+1)− 1

2
RR3(ct) covt((g̃t+1 − 1)2, R̃t+1)

+
1

6
RR4(ct) covt((g̃t+1 − 1)3, R̃t+1)

− 1

24
RR5(ct) covt((g̃t+1 − 1)4, R̃t+1) + o(g4). (11)

This shows the contribution of the fifth-order preference for risk apportionment (RR5),

also known as edginess or reactivity to multiple risks from precautionary motives (Lajeri-

Chaherli 2004). The associated risk quantity in the FED approach is measured by the hyper

coskewness (covt((g̃t+1 − 1)4, R̃t+1)) of the consumption growth and asset return.

When n = 3, the SED representation in (9) implies

EtR̃t+1 −Rft
β(1 +Rft )

= RR2(ct) covt(g̃t+1, R̃t+1)

−RR3(ct)

[∫ ḡ

g

covt(−(gt+1 − g̃t+1)+, R̃t+1)dgt+1 + (ḡ − 1) covt(g̃t+1, R̃t+1)

]

+ RR4(ct)

[∫ ḡ

g

covt(−(gt+1 − g̃t+1)+, R̃t+1)(gt+1 − 1)dgt+1 +
1

2
(ḡ − 1)2 covt(g̃t+1, R̃t+1)

]

−RR5(ct)

[
1

2

∫ ḡ

g

covt(−(gt+1 − g̃t+1)+, R̃t+1)(gt+1 − 1)2dgt+1 +
1

6
(ḡ − 1)3 covt(g̃t+1, R̃t+1)

]

+
1

6
RR6(ct)

∫ ḡ

g

covt(−(gt+1 − g̃t+1)+, R̃t+1)(gt+1 − 1)3dgt+1 + o(g5), (12)

which shows that the sixth-order risk attitude (RR6) is also relevant for the pricing of a risky

asset (Deck and Schlesinger 2014). In addition, we notice for the same order of approximation
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that risk quantities are measured differently in the SED representation as compared to the

STD and FED representations. Namely, risk quantities in the SED representation of the

pricing rule (12) involve
∫ ḡ
g

covt(−(gt+1 − g̃t+1)+, R̃t+1)(gt+1 − 1)ndgt+1. This integrated nth

power weighted SED of asset return on consumption growth captures finer information about

downside risk patterns and helps improve the empirical performance of the C-CAPM.

4.2. Monte Carlo Experiments

We run various simulations to assess the empirical performance of the alternative represen-

tations (STD, FED, SED) of the C-CAPM. Specifically, we simulate the joint distribution

of consumption growth and return for a wide range of dependence structures.

4.2.1. Modelling the Joint Distribution of Return and Consumption Growth

We start from

R̃t+1 = E(R̃) + φR̃(R̃t − E(R̃)) +
√

(1− φ2
R̃

)σ(R̃)R̃∗t+1, (13)

g̃t+1 = E(g̃) + φg̃(g̃t − E(g̃)) +
√

(1− φ2
g̃)σ(g̃)g̃∗t+1,

where R̃∗ and g̃∗ are demeaned and standardized return and consumption growth variables,

referred to as standardized innovations. To form the joint distribution of asset return and

consumption growth we use a copula (Sklar 1959) to assemble the univariate marginal dis-

tributions. The joint density is cast as

fR̃,g̃(R, g) = fR̃ (R)× fg̃(g)× c(FR̃(R), Fg̃(g)), (14)

16



where c is the density of a copula C characterizing the dependence structure of the bi-

variate distribution. The density of the copula is computed as c(v1, v2) = ∂2C(v1,v2)
∂v1∂v2

, where

(v1, v2) ∈ [0, 1]2. Moreover, fR̃(R) and fg̃(g) denote the marginal densities of return and

consumption growth, while FR̃(R) and Fg̃(g) are the corresponding marginal cumulative

distribution functions.

4.2.2. Modelling the Marginal Distributions

We model the marginal distributions of return and consumption growth, by fitting observed

U.S. quarterly series (1947.2-2011.3). A complete description of the data set is provided in

Section 5. We employ Hansen’s (1994) skew t distribution, a generalization of the Student’s

t law that has been shown to deliver a good fit for marginal distributions in several financial

applications (Jondeau and Rockinger 2003, Patton 2004). Beyond location and scale, the

skew t distribution allows for a parsimonious and flexible specification of asymmetry as

well as fat-tailedness.8 The skew t distribution is characterized by a set of two parameters.

The first (degree of freedoom) parameter 2 < ν < ∞ controls the thickness of the tails,

while the second parameter −1 < λ < 1 drives the level of asymmetry in the distribution.

For λ = 0, this distribution collapses to the (symmetric) Student’s t. With other specific

parameter values, well-known nested distributions such as skew Gaussian (ν → ∞) and

standard Gaussian (ν → ∞, λ = 0) are obtained. We refer the reader to Hansen (1994) for

further details on the skew t distribution.

Table 1 reports the summary statistics for return and consumption growth series which

display negative skweness and excess kurtosis. This observation is further supported by the

(maximum likelihood) parameter estimates of a skew t distribution fitted on these series, as
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displayed in the last four columns of Table 1.

The top panel in Figure 1 shows that the skew t density offers a good fit to the empirical

histogram. The bottom panel reveals that the parametric specification of the marginal

distributions fits well the tails of each series. Next, we turn to modeling the dependence

structure between return and consumption growth series.

4.2.3. Modeling the Dependence Structure with the Symmetrized Joe-Clayton Copula

To provide a rich description of the dependence structure between return and consumption

growth, we consider the quantile dependence that measures the strength of association in

the joint lower and upper tails of any bivariate distribution. A quantile dependence at a

level q ∈ (0, 1) is defined as

τ(q) =


τD(q) = P (FR̃ (R) ≤ q|Fg̃ (g) ≤ q) = C(q,q)

q
, if 0 < q ≤ 0.5

τU(q) = P (FR̃ (R) > q|Fg̃ (g) > q) = 1−2q+C(q,q)
1−q , if 0.5 < q < 1.

(15)

Thus, instead of summarizing the association between two covariates by a single number

such as the linear correlation, the quantile dependence offers a finer information on the

dependence structure of the joint distribution. This measure can reveal potential dependence

asymmetries as we move from the middle of the distribution (q = 0.5) towards the left tail

(q < 0.5) or the right tail (q > 0.5).9

We choose the symmetrized Joe-Clayton (SJC) copula (CSJC) discussed in Patton (2006)

to model the dependence between return and consumption growth series.10 This copula

allows to specify a wide range of dependence patterns in the joint distribution. Following

18



Patton (2006), we parameterize the SJC copula using the coefficient of upper tail dependence

τU = lim
q→1

τU(q), (16)

and lower tail dependence

τD = lim
q→0

τD(q), (17)

where (τU , τD) ∈ (0, 1)2. Thus, tail dependence parameters of the SJC copula are simply

quantile dependence measures computed in the limits (both ends) of the support of the

bivariate distribution. Intuitively, τD > τU (resp. τU > τD) induces a higher probability

of the two covariates taking extreme values in the lower (resp. upper) than in the upper

(resp. lower) quadrant of their joint distribution, thus reflecting downside risk (resp. upside

potential).11 The estimated tail parameter values for the SJC copula fitted to U.S. quarterly

return and consumption growth series (1947.2-2011.3) are τU = 5.150× 10−5 and τD = 0.173

with the corresponding standard errors SE(τU) = 1.264×10−3 and SE(τD) = 0.073. Clearly,

the estimated left tail dependence is stronger than the right tail dependence.

Figure 2 illustrates the joint distribution of return and consumption growth. The top

left panel shows the scatter plot of standardized innovations in return and consumption

growth, with a linear correlation of 0.265. The top right panel in Figure 2 exhibits the

isoprobability contour of the fitted SJC copula with skew t marginals estimated in Table 1.

We observe that the copula density contours are more tightly clustered around the lower left

than the upper right quadrant. Consistent with the tail parameter estimates, this empirical

observation suggests that the strength of dependence conditional on downside movements
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or “bad” times – driven by a contraction of consumption – is higher than the strength of

dependence conditional on upside movements or “good” times – driven by a expansion of

consumption. Such an asymmetric dependence suggests that the U.S. market portfolio is

exposed to downside consumption risk.12

4.2.4. Simulation scheme

Assume that the investor’s preference is characterized by a power utility function, and

consider that the dependence of the random vector (R̃, g̃) is fully described by a copula

CSJC(FR̃ (R) , Fg̃ (g) ; τU , τD). For a given dependence structure (fixed values of τU and τD),

we implement the following algorithm to draw Nsim pairs of return and consumption growth:

Step 1 Generate (xR∗ , xg∗)T0 using the copula quantile function C−1
SJC(FR̃ (R∗) , Fg̃ (g∗) ; τU , τD);

Step 2 Use the univariate cumulative distribution function ΦC associated with the copula to

evaluate vR∗ = ΦCSJC (xR∗) and vg∗ = ΦCSJC (xg∗);

Step 3 Compute R∗ = F−1

R̃
(vR∗) and g∗ = F−1

g̃ (vg∗) using the quantile functions of the

marginal distributions FR̃ and Fg̃ with parameters estimated in Table 1;

Step 4 Build (R, g)T0 from simulated zero mean standardized pairs (R∗, g∗)T0 using (13), where

T = 250 is set close to the sample size of observed quarterly series;

Step 5 Repeat steps 1 to 4 Nsim = 1000 times;

Step 6 For a given utility function u and a fixed level of risk aversion, calculate the ex-

pected excess return E(eR) = − cov(u′(cg), R)/E(u′(cg)) in the population (of size
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TNsim) from which samples are drawn; with the power utility function, E(eR) =

− cov(g−γsim , R)/E(g−γsim), where γsim is a chosen value of relative risk aversion;

Step 7 For each simulation in Nsim, assume (as in Campbell and Viceira 2002) that the excess

return follows an AR(1) process, and construct a time series eRt+1 = E(eR)+φeR(eRt−

E(eR))+
√

(1− φ2
eR)σ(eR)ηt+1, where E(eR) is calculated in Step 6, and ηt+1 has a zero

mean standardized skew t (ν = 8.149, λ = −0.194) distribution as R∗; the remaining

parameters σ(eR) = 0.1, and φeR = 0.1 are set close to their empirical values;

Step 8 Calibrate the relative risk aversion from the simulated data; solve for the relative risk

aversion parameter by computing a numerical root of the nonlinear pricing functions

in the STD, FED, and SED formulas of the C-CAPM in (10-12) with power utility;13

4.2.5. Simulation results with different tail dependence parameters

Table 2 contains the simulation results assuming relative risk aversion values of γsim = 5

(Panels A, B, C), and γsim = 10 (Panels D, E, F). Simulations are performed for various

dependence structures between asset return and consumption growth series: (1) stronger left

tail dependence (τU < τD), (2) stronger right tail dependence (τU > τD), and (3) symmetric

tail dependence (τU = τD). In each panel, tail dependence parameters are chosen to imply

the same level of linear correlation for ease of comparison. We consider different simulation

scenarios featuring high (Panels A, D), medium (Panels B, E), and low (Panels C, F) linear

correlation values between the series. For the simulation simL1 in Panels C and F, tail

dependence parameters are set close to the fitted values in the data.

For each set of simulations, we compute the bias = N−1
sim

∑Nsim
i=1 (γcalibratedi − γsim) and
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the root-mean-squared error denoted by rmse =
√
N−1
sim

∑Nsim
i=1 (γcalibratedi − γsim)2 of the

calibrated relative risk aversion coefficients from the alternative (STD, FED, SED) repre-

sentations of the pricing relation. These are shown in columns 5-10 of Table 2. Looking at

the last four columns in Table 2, our simulations reveal that the SED representation delivers

more accurate relative risk aversion values across the board and markedly improves upon

the FED and the STD representations. For a relative risk aversion γsim = 10, we observe on

average across our simulations about 50% and 70% reduction in bias and rmse for the SED

approach relative to the STD representation; whereas the improvement in bias and rmse

for the FED approach is about 42% and 60%, respectively. When the relative risk aver-

sion value is fixed at γsim = 5, the improvement in accuracy for the SED representation is

larger, with 70% and 80% reduction in bias and rmse compared to the STD representation.

Note that γcalibrated for the SED representation is upward-biased—though the SED bias is

lower than FED and STD biases. This upward bias is in line with the findings in Kocher-

lakota (1996) and the generalized method of moments estimates of the relative risk aversion

in Martin (2013)’s simulated disaster C-CAPM with higher order cumulants. Focusing on

the tail dependence, the simulation results also show that relative risk aversion values for

the SED representation tend to be more accurate when the left tail dependence is stronger

(simH1, simM1, SimL1) than for symmetric (simH3, simM3, SimL3) and stronger right tail

dependence structures (simH2, simM2, SimL2).14

4.2.6. Simulation results with different autocorrelation, skewness, and kurtosis parameters

To further assess the performance of the SED representation, we turn to Table 3 which in-

vestigates the effects of autocorrelation, skewness, and kurtosis in the distributions of asset
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return and consumption growth on the calibrated relative risk aversion. This simulation

exercise is carried out for a relative risk aversion γsim = 5. In the simulation simP1, the

chosen parameters imply the following vectors of skewness (sR, sg) = (−0.6,−0.3) and kur-

tosis (kR, kg) = (5.4, 7.3).15 simP2 reports the simulations when there is no autocorrelation,

(φR, φg) = (0, 0). Setting the autocorrelation to zero in simP2 entails slightly more negative

skewness (sR, sg) = (−0.6,−0.5) and higher kurtosis (kR, kg) = (5.6, 12.1) than in simP1 as

expected. We see that the accuracy of the SED representation improves compared to the

standard approach when the return and consumption growth series become more negatively

skewed and fat-tailed. The bias and rmse reduction for the SED representation increases

from 72% and 82% in simP1 to 81% and 87% in simP2. When we assume zero skewness

(sR, sg) = (0, 0) and positive excess kurtosis (kR, kg) = (5.0, 7.0) in simP3, the SED approach

improves moderately over the standard representation, as the bias and rmse decline by 10%

and 15%. simP4 investigates the case of weakly negative skewness (sR, sg) = (−0.3,−0.1)

and almost no excess kurtosis (kR, kg) = (3.1, 3.0). In simP4, the improvement in accu-

racy for the SED representation is also relatively modest, with 18% and 26% reduction

in bias and rmse compared to the STD representation. Finally, simP5 assumes no auto-

correlation (φR, φg) = (0, 0), no skewness (sR, sg) = (0, 0), and almost no excess kurtosis

(kR, kg) = (3.0, 3.1). We see that the SED approach has a similar precision as the FED

and STD representations when the return and consumption growth distributions are nearly

Gaussian. Overall, the accuracy improvement in the simulation exercise supports the SED

representation of the pricing equation, especially in the presence of downside risk.
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5. Empirical Analysis for International Markets

For our empirical analysis, we use the same data set as Campbell (2003) for comparability

and implement the same numerical estimation procedure as in the simulation exercise. The

data can be downloaded from the author’s website.16 This international data set combines

Morgan Stanley Capital International stock market data with macroeconomic data on con-

sumption, interest rates, and the price index from the International Financial Statistics of

the International Monetary Fund. We refer the reader to Campbell (2003) for a detailed

description of the data. We construct quarterly series of stock market returns, risk-free

rates, and per capita consumption growth spanning the early 1970s through the late 1990s

for 11 developed countries: Australia, Canada, France, Germany, Italy, Japan, the Nether-

lands, Sweden, Switzerland, the U.K., and the U.S.. Annual series are available for Sweden

(1920-1997), the U.K. (1919-1997) and the U.S. (1891-1997). We also use longer quarterly

(1947.2-2019.3) and annual (1891-2018) U.S. data which yield consistent empirical findings.

5.1. Equity Risk Premium

In the finance literature, a large discrepancy between the C-CAPM prediction and the empir-

ical reality is often referred to as a “puzzle”. The well-documented equity premium puzzle

implies that the observed equity premium can be matched only by assuming a very high

coefficient of risk aversion (Mehra and Prescott 1985). Using our international data set,

we calibrate the relative risk aversion index for the alternative (STD, FED, SED) represen-

tations of the C-CAPM. Our empirical investigation hinges on the computation of sample

statistics for return and consumption growth. For each market in our international data
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set, we present in Table 4 the annualized mean, annualized standard deviation, skewness,

kurtosis, and first-order autocorrelation for the net return on the stock index (Re), the net

return on the risk-free asset (Rf
t ), and the per capita consumption growth (g).17

The third column in Table 5 shows the equity risk premium proxied by the annual-

ized average excess return (E(eRe)). The fourth column gives the covariance (cov (g,Re))

between return and consumption growth. The fifth column presents the integrated SED

between return and consumption growth (
∫ ḡ
g

cov (−(ξ − g)+, Re) dξ), a measure of downside

risk quantity discussed in Sections 3 and 4. The sixth column contains the relative risk

aversion calibrated values assuming power utility and joint normal distribution for log re-

turn and log consumption growth, as per equation (16) in Campbell (2003). The last three

columns report the calibrated relative risk aversion (γcalibrated) for the STD, FED, and SED

representations of the C-CAPM in (10-12). For nearly all countries, the computed relative

risk aversion values are positive. As argued by Campbell (2003), negative distortions in the

calibrated relative risk aversion values for France, Italy, and Switzerland may stem from

short-term measurement errors in the corresponding consumption series.

The relative risk aversion values from Campbell’s (2003) approach in column 6 of Table

5 are much larger than the ones calibrated from the expectation dependence-based repre-

sentations. This is expected because the joint normal distribution assumption in Campbell

(2003) implies that the pricing equation only depends on the first two moments and co-

moment. Focusing on columns 7-9 in Table 5, we see a sharp reduction in the calibrated

relative risk aversion values when the C-CAPM representation includes the consumption

second-degree expectation dependence effect. For quarterly data, the relative risk aversion

coefficients implied by the SED representation are roughly 2 to 10 (5 to 95, respectively)
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times smaller than their FED-implied (STD-implied, respectively) counterparts. For annual

data, the reduction ratio for γcalibrated ranges from 2 to 6 for the SED representation relative

to the FED representation; and 4 to 10 for the SED representation relative to the STD

representation. Specifically for quarterly U.S. series, the calibrated risk aversion coefficients

from the SED-based formulation of the pricing rule are 19.9 (1947.2–1998.3), 19.3 (1970.1–

1998.3), and 16.5 (1947.2–2019.3). The corresponding relative risk aversion values computed

from annual data for the U.S. (2.7 for 1891–1997, and 2.8 for 1891–2018) are in line with

the numbers often proposed in the asset pricing theory. This also holds for the U.K. (3.6 for

1919–1997) and Sweden (14.6 for 1920–1997).

In a nutshell, the SED representation improves the C-CAPM calibration and delivers

reasonable relative risk aversion coefficients. Beyond its theoretical appeal, the concept of

expectation dependence can help refine the assessment of risk and bridge the gap between

real-world data and the C-CAPM prediction.

5.2. Variance Risk Premium

The variance risk premium (VRP) reflects the premium accrued to bearing the uncertainty

surrounding future variance. For a given horizon τ , the VRP is commonly defined as the

spread between the realized variance (Ṽt,τ ) expected under the risk-neutral probability mea-

sure (EQ
t (Ṽt,τ ) ≡ V Q

t,τ ) and its physical counterpart (EP
t (Ṽt,τ ) ≡ V P

t,τ ). The stochastic discount

factor maps the physical probability measure (P ) to the risk-neutral probability measure (Q),

by assigning more weight to “bad” states of the economy characterized by high marginal util-
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ity of consumption. Formally,

V RPt,τ = V Q
t,τ − V P

t,τ . (18)

Bollerslev et al. (2009), and Feunou et al. (2018), among others, build successful models to

explain the VRP dynamics. At maturity and under no arbitrage, the spread in (18) equals

the terminal payoff to the short leg of a variance swap contract, as discussed in Carr and

Wu (2009).18 The valuation formula of this variance swap contract implies

V RPt,τ =
covt[u

′(c̃t+τ ), Ṽt+τ ]

Etu′(c̃t+τ )
. (19)

Given that the risk-neutral expectation of a risky asset return is equal to the risk-free rate

(EQ
t (R̃t,τ ) = Rf

t ), the variance risk premium formula in (19) appears as the opposite of the

equity risk premium relation in (1), where the return is replaced with the realized variance.

Thus, the FED representation of the variance risk premium formula is

V RPt,τ

β(1 +Rf
t )

= −
∫ ḡ

g

FED(Ṽt+τ |gt+τ )Fg̃t+τ (gt+τ ) RR2(ctgt+τ ) MRSctgt+τ ,ct
1

gt+τ
dgt+τ , (20)

and the SED representation is

V RPt,τ

β(1 +Rf
t )

= − covt(Ṽt+τ , g̃t+τ ) RR2(ctḡ) MRSctḡ,ct
1

ḡ

−
∫ ḡ

g

SED(Ṽt+τ |gt+τ ) RR3(ctgt+τ ) MRSctgt+τ ,ct
1

g2
t+τ

dgt+τ . (21)

From an empirical perspective, constructing VRP series from actual data requires both
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physical and risk-neutral forecasts of the realized variance. The physical forecast of the

realized variance V P
t,τ can be obtained from high frequency stock data as in Andersen et al.

(2003), using for instance Corsi’s (2009) projections. Following Bakshi and Madan (2000),

Bakshi et al. (2003), and Carr et al. (2012), the risk-neutral expectation of the realized

variance V Q
t,τ can be extracted from a panel of European options written on the stock.19

Further details on the construction of these series are presented in Appendix A7.

Because asset price series are monthly, we sample these variables at quarter ends to align

them with quarterly consumption series. For the U.S. market, the resulting VRP series

spans 1996.3 to 2015.3.20 To match the most recent quarter in Campbell’s (2003) study, we

also consider a shorter period ending in 2011.3. Using the alternative representations of the

pricing formula (19), (20), and (21) in turn, we calibrate the relative risk aversion coefficient

to match the observed VRP in the U.S. market. Table 6 reports summary statistics for the

relevant series along with the calibration results. We observe a negative correlation between

consumption growth and realized variance, which is in line with the empirical evidence

documented by Bollerslev et al. (2009). Looking at the calibrated relative risk aversion, we

notice that the SED representation of the consumption-based variance risk pricing formula

delivers a realistic value below 10 in the full sample as well as in the shorter sample.

6. Conclusion

We rely on the concept of expectation dependence to derive an alternative representation

of the C-CAPM. The proposed alternative formulation of the pricing formula underscores

the importance of refining the assessment of the dependence between consumption and asset
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return. We provide theoretical and empirical arguments to support general measures of risk

dependence in the valuation of financial assets. Using both simulated and observed data, we

show that accounting for higher degrees of risk dependence and higher orders of risk attitude

is key to understanding the variations in asset returns and corresponding premia.

Notes

1When (c̃t+1, R̃t+1) is jointly normally distributed, Stein’s (1973) lemma can be applied to compute

covt[u
′(c̃t+1), R̃t+1] = covt(c̃t+1, R̃t+1)Et(u

′′(c̃t+1)) = covt(g̃t+1, R̃t+1)Et(ctu
′′(c̃t+1)).

2Pellerey and Semeraro (2005), and Dachraoui and Dionne (2007) explore portfolio selection problems

using quadrant dependence, a concept that is stronger than expectation dependence.

3The necessary and sufficient conditions are proven in Appendix A2.

4Here, time subscripts are dropped to ease notation without loss of generality.

5Theoretically, when the upper bound of the consumption growth is infinite, u′′(ctḡ → +∞) in the first

term of (4) converges to a finite quantity because u′′ is an up-bounded (u′′ < 0) and monotone increasing

function (u′′′ > 0).

6A relative prudence index −ct+1u
′′′(ct+1)/u′′(ct+1) is consistent with Kimball’s (1990) definition.

7Alternatively, one can use higher order generalizations of the Arrow-Pratt absolute risk aversion measure,

−u(k)/u(k−1).

8Alternative specifications of the marginal distributions of financial series include Harvey and Siddique’s

(1999) non-central Student’s t.

9For negatively dependent covariates, C (q, 1− q) and C (1− q, q) are used in the definition of quantile

dependence.

10The Joe-Clayton copula is labelled as the family BB7 in Joe (1997).

11 The upper (τU ) and lower (τD) tail dependence measures are identical for the copula of an elliptically

symmetric distribution. For instance, τU = τD > 0 for a Student’s t copula. By contrast, τU = τD = 0 for

a Gaussian copula, implying that the variables are independent in the extreme tails of the joint distribution
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(Embrechts, McNeil, and Straumann 2002).

12 Using exceedance correlation measures, Longin and Solnik 2001, Ang and Chen 2002 document that

equity returns are more dependent in bear markets than in bull markets.

13Following Campbell (2003), we use a numerical calibration to compute the implied relative risk aversion

values, although a generalized method of moments estimation could also be used as in Martin (2013). The

computation of integrals are presented at the end of Appendix A5.

14As expected, the stronger the correlation ρ, the more accurate the calibrated relative risk aversion value.

15The analytical expressions for the skewness and kurtosis of the Hansen’s (1994) skew t distribution are

given in Appendix A6.

16http://scholar.harvard.edu/campbell/data.

17The average net returns in Table 4 are slightly higher than the average log returns in Campbell’s (2003)

study due to Jensen’s inequality.

18The terminal profit and loss from a long variance swap contract that is held to maturity is given by

V Pt,τ − V
Q
t,τ .

19 We apply the same filters as in Chang et al. (2013). To get a dense set of observations, option prices

are mapped into Black and Scholes’ (1973) implied volatilities that then are interpolated.

20We use OptionMetrics S&P 500 index option data from September 03, 1996 to August 31, 2015 to

construct the variance risk premium series.
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Table 1 Descriptive Statistics and skew t marginal distribution parameter esti-
mates (U.S. 1947.2-2019.3)

Descriptive Statistics Skew t Parameter Estimates
Mean Std. Dev. Skewness Kurtosis Autocorr. ν SE(ν) λ SE(λ)

R 0.021 0.077 -0.584 4.030 0.072 6.824 2.363 -0.179 0.085
g 1.005 0.005 -0.466 4.385 0.314 4.715 0.956 -0.110 0.074

Notes: This table presents the nonannualized quarterly descriptive statistics for the return (R) and con-
sumption growth series (g). The last columns present parameter estimates and standard errors (SE) from
skew t models for marginal distributions of standardized innovations in return (R∗ = (R−E(R))/σ(R)) and
consumption growth (g∗ = (g − E(g))/σ(g)).
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Table 2 Simulations with Different Dependence Structures

Dependence structure for simulation γcalibrated Reduction
Tail Corr STD FED SED 1-FED/STD 1-SED/STD

τU τD ρ bias rmse bias rmse bias rmse bias rmse bias rmse

Relative risk aversion γsim = 5
Panel A: High correlation
simH1 0.20 0.75 0.75 0.67 1.11 0.30 0.35 0.16 0.19 0.56 0.69 0.76 0.83
simH2 0.75 0.20 0.75 0.66 1.06 0.46 0.54 0.25 0.29 0.31 0.49 0.63 0.72
simH3 0.55 0.55 0.75 0.64 1.07 0.37 0.43 0.22 0.27 0.43 0.60 0.65 0.75
Panel B: Medium correlation
simM1 0.20 0.45 0.50 0.75 1.38 0.33 0.39 0.16 0.21 0.57 0.72 0.78 0.85
simM2 0.45 0.20 0.50 0.92 1.67 0.61 0.74 0.32 0.41 0.34 0.56 0.65 0.75
simM3 0.30 0.30 0.50 0.74 1.35 0.40 0.49 0.23 0.31 0.45 0.64 0.68 0.77
Panel C: Low correlation
simL1 5.15× 10−5 0.20 0.25 1.00 2.34 0.54 0.79 0.24 0.35 0.46 0.66 0.76 0.85
simL2 0.20 5.15× 10−5 0.25 1.02 2.89 0.92 1.66 0.29 0.44 0.10 0.43 0.71 0.85
simL3 0.10 0.10 0.25 0.79 2.12 0.61 1.24 0.26 0.38 0.22 0.41 0.68 0.82

Relative risk aversion γsim = 10
Panel D: High correlation
simH1 0.20 0.75 0.75 1.39 2.34 0.59 0.70 0.34 0.37 0.58 0.70 0.76 0.84
simH2 0.75 0.20 0.75 1.96 3.12 0.89 1.07 1.45 1.54 0.54 0.66 0.26 0.51
simH3 0.55 0.55 0.75 1.29 2.21 0.73 0.88 0.71 0.77 0.43 0.60 0.45 0.65
Panel E: Medium correlation
simM1 0.20 0.45 0.50 1.61 2.92 0.65 0.79 0.40 0.46 0.60 0.73 0.75 0.84
simM2 0.45 0.20 0.50 1.85 3.38 1.24 1.48 1.53 1.70 0.33 0.56 0.17 0.50
simM3 0.30 0.30 0.50 1.51 2.79 0.82 1.00 0.83 0.93 0.45 0.64 0.45 0.67
Panel F: Low correlation
simL1 5.15× 10−5 0.20 0.25 1.92 4.07 0.99 1.37 0.53 0.68 0.48 0.66 0.72 0.83
simL2 0.20 5.15× 10−5 0.25 2.09 5.02 1.77 2.66 0.77 1.11 0.15 0.47 0.63 0.78
simL3 0.10 0.10 0.25 1.55 3.37 1.16 1.59 0.87 1.06 0.25 0.53 0.44 0.68

Notes: This table presents the results for simulated return and consumption growth series. We conduct two
sets of simulations assuming relative risk aversion values of γsim = 5 (Panels A, B, C) and γsim = 10 (Panels
D, E, F). The upper and lower tail dependence measures are τU and τD, and ρ is the corresponding coefficient
of linear correlation (Corr) as in Patton (2013). Larger values of τU (resp. τD) induce a stronger upper
(resp. lower) tail dependence. We consider various dependence structures for the simulations. Specifically,
simulations are performed assuming (1) a stronger left tail dependence (τU < τD), (2) a stronger right tail
dependence (τU > τD), and (3) a symmetric tail dependence (τU = τD). For comparability, tail dependence
parameters in each panel are chosen to imply the same level of linear correlation. Tail dependence parameter
values in Panels A and D (resp. B and E, and C and F) imply a high (resp. medium, and low) linear
correlation between the series. Note that tail dependence parameters for the simulation simL1 in Panels C
and F are set close to the estimated values in the data. We use skew t distributions estimated in Table 1 for
the marginals. Equity risk premium series are generated from joint asset return and consumption growth
simulated series using a fixed value of relative risk aversion γsim. For each simulated series of T = 250
observations, we perform Nsim = 1000 replications. Simulated series (equity risk premium, asset return,
and consumption growth) are then used to calibrate the relative risk aversion level using the standard
(STD), the first-order expectation dependence (FED), and the second-order expectation dependence (SED)

representations in (10), (11), and (12). We report the bias = N−1
sim

∑Nsim

i=1 (γcalibratedi − γsim) and the

root-mean-squared error denoted by rmse =
√
N−1
sim

∑Nsim

i=1 (γcalibratedi − γsim)2 as performance metrics for

the different representations. The last columns show the reduction in bias and rmse of FED and SED
representations relative to the standard representation.

35



Table 3 Simulations with Different Autocorrelation, Skewness, and Kurtosis
Parameters

Distribution parameters γcalibrated Reduction
Autocorr Skewness Kurtosis STD FED SED 1-FED/STD 1-SED/STD
(φR, φg) (λR, λg) (νR, νg) bias rmse bias rmse bias rmse bias rmse bias rmse

Relative risk aversion γsim = 5
simP1 (0.2, 0.6) (−0.2,−0.1) (6.8, 4.7) 1.79 4.60 0.89 1.50 0.51 0.83 0.50 0.67 0.72 0.82
simP2 (0.0, 0.0) (−0.2,−0.1) (6.8, 4.7) 1.79 3.89 0.74 1.01 0.33 0.50 0.59 0.74 0.81 0.87
simP3 (0.2, 0.6) (0.0, 0.0) (6.8, 4.7) 1.91 8.92 1.83 8.08 1.72 7.61 0.04 0.09 0.10 0.15
simP4 (0.2, 0.6) (−0.2,−0.1) (150, 100) 1.10 4.20 0.98 3.52 0.90 3.12 0.11 0.16 0.18 0.26
simP5 (0.0, 0.0) (0.0, 0.0) (150, 100) 1.20 2.97 1.25 3.05 1.24 2.92 -0.05 -0.03 -0.03 0.02

Notes: We use skew t parameters estimated in Table 1 to simulate the distributions of return and consumption
growth, as in (13). The joint distribution dependence is built using SJC copula parameters set to their
empirical estimates τU = 5.15 × 10−5, τD = 0.20, implying ρ = 0.25. Equity risk premium series are
generated from joint asset return and consumption growth simulated series using a fixed value of relative
risk aversion γsim = 5. For each simulated series of T = 250 observations, we perform Nsim = 1000
replications. In simP1, the skewness and kurtosis parameters are set to match their empirical estimates.
The chosen parameter values (φR, φg) = (0.2, 0.6), (λR, λg) = (−0.2,−0.1) and (νR, νg) = (6.8, 4.7) imply
the following skewness (sR, sg) = (−0.6,−0.3) and kurtosis (kR, kg) = (5.4, 7.3). See Appendix A6 for the
skewness and kurtosis formulas of the Hansen’s (1994) skew t distribution. simP2 reports the simulations
when there is no autocorrelation, (φR, φg) = (0, 0). The implied skewness (sR, sg) = (−0.6,−0.5) and
kurtosis (kR, kg) = (5.6, 12.1) in simP2 are slightly more pronounced than in simP1 because the positive
empirical autocorrelations are weak. simP2 presents the simulations assuming zero skewness. In simP3, the
implied skewness and kurtosis are (sR, sg) = (0, 0) and (kR, kg) = (5.0, 7.0). simP4 investigates the case with
almost no excess kurtosis, that is when we set high values for the parameters (νR, νg) = (150, 100), implying
(sR, sg) = (−0.3,−0.1) and (kR, kg) = (3.1, 3.0). Note that the kurtosis gets closer to 3, as ν → ∞. simP5
assumes no autocorrelation (φR, φg) = (0, 0), no skewness (sR, sg) = (0, 0), and almost no excess kurtosis
(kR, kg) = (3.0, 3.1). The simulated series (equity risk premium, asset return, and consumption growth)
are used to calibrate the relative risk aversion level using the standard (STD), the first-order expectation
dependence (FED), and the second-order expectation dependence (SED) representations in (10), (11), and

(12). We report the bias = N−1
sim

∑Nsim

i=1 (γcalibratedi − γsim) and the root-mean-squared error denoted by

rmse =
√
N−1
sim

∑Nsim

i=1 (γcalibratedi − γsim)2 as performance metrics for the different representations. The

last columns show the reduction in bias and rmse of FED and SED representations relative to the standard
representation.
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Figure 1 Marginal distributions (U.S. 1947.2-2019.3)
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The top panel shows the histograms of the standardized innovations in return and consumption growth along with the corre-
sponding fitted skew t densities. The bottom panel presents the QQ plots.
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Figure 2 Joint distribution (U.S. 1947.2-2019.3)
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The top left panel shows the scatter plot of the standardized innovations in return and consumption growth. The top right
panel exhibits the fitted symmetrized Joe-Clayton copula with skew t marginal distributions estimated in Table 1. The bottom
panel presents the tail dependence estimates along with the difference between upper and lower tail dependence estimates. The
dotted lines represents the 90% confidence intervals.
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A. Appendix

A1. Derivation of Equations (2) and (4)

We start with the proof of (2). From Theorem 1 in Cuadras (2002), we have

covt[u
′(c̃t+1), R̃t+1] (22)

=

∫ +∞

−∞

∫ +∞

−∞
[F (ct+1, Rt+1)− Fc̃t+1(ct+1)FR̃t+1

(Rt+1)]u′′(ct+1)dRt+1dct+1

=

∫ +∞

−∞

[∫ +∞

−∞
[FR̃t+1

(Rt+1|c̃t+1 ≤ ct+1)− FR̃t+1
(Rt+1)]dRt+1

]
Fc̃t+1(ct+1)u′′(ct+1)dct+1

From Lemma 1 in Tesfatsion (1976), we can write

∫ +∞

−∞
[FR̃t+1

(Rt+1|c̃t+1 ≤ ct+1)− FR̃t+1
(Rt+1)]dRt+1 = ER̃t+1 − E(R̃t+1|c̃t+1 ≤ ct+1). (23)

By definition, the random future consumption c̃t+1 equals ctg̃t+1, where g̃t+1 denotes the

consumption growth and ct > 0 is the current consumption. Similarly, for a given realization

of future consumption, we have ct+1 = ctgt+1. Because ct > 0, c̃t+1 ≤ ct+1 is equivalent

to g̃t+1 ≤ gt+1. Thus, the marginal distribution of consumption Fc̃t+1(ct+1) = Prob(c̃t+1 ≤

ct+1) = Prob(g̃t+1 ≤ gt+1) = Fg̃t+1(gt+1). Substituting (23) in (22), we get (2) from Theorem

3.1 in Wright (1987):

covt[u
′(ctg̃t+1), R̃t+1] ≡ covt[u

′(c̃t+1), R̃t+1] (24)

=

∫ +∞

−∞
[ER̃t+1 − E(R̃t+1|c̃t+1 ≤ ct+1)]Fc̃t+1(ct+1)u′′(ct+1)dct+1

=

∫ +∞

−∞
[ER̃t+1 − E(R̃t+1|g̃t+1 ≤ gt+1)]Fg̃t+1(gt+1)u′′(ctgt+1)(ctdgt+1)

=

∫ ḡ

g

FED(R̃t+1|gt+1)ctu
′′(ctgt+1)Fg̃t+1(gt+1)dgt+1.
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Next, we derive (4). From (24) have the following equivalence:

covt[u
′(ctg̃t+1), R̃t+1] =

∫ ḡ

g

FED(R̃t+1|gt+1)ctu
′′(ctgt+1)Fg̃t+1

(gt+1)dgt+1, (25)

=

∫ +∞

−∞
ctu
′′(ctgt+1)[ER̃t+1 − E(R̃t+1|g̃t+1 ≤ gt+1)]Fg̃t+1

(gt+1)dgt+1

≡
∫ +∞

−∞
ctu
′′(ctgt+1)d

(∫ gt+1

−∞
[ER̃t+1 − E(R̃t+1|g̃t+1 ≤ s)]Fg̃t+1

(s)ds

)
,

= ctu
′′(ctgt+1)

∫ gt+1

g

[ER̃t+1 − E(R̃t+1|g̃t+1 ≤ s)]Fg̃t+1
(s)ds|ḡg

Following Li (2011), we apply integration by parts to the right-hand side term in (25). We

obtain

covt[u
′(ctg̃t+1), R̃t+1] = ctu

′′(ctḡ)

∫ ḡ

g

[ER̃t+1 − E(R̃t+1|g̃t+1 ≤ s)]Fg̃t+1
(s)ds

−
∫ ḡ

g

∫ gt+1

g

[ER̃t+1 − E(R̃t+1|g̃t+1 ≤ s)]Fg̃t+1
(s)dsc2tu

′′′(ctgt+1)dgt+1,

= ctu
′′(ctḡ) covt(R̃t+1, g̃t+1)−

∫ ḡ

g

SED(R̃t+1|gt+1)c2tu
′′′(ctgt+1)dgt+1.

A2. Proof of EtR̃t+1 −Rf
t > 0 ⇐⇒ FED(R̃t+1|gt+1) > 0

Note that the risk premium EtR̃t+1 −Rf
t and (EtR̃t+1 −Rf

t )/β(1 +Rf
t ) have the same sign

because β(1+Rf
t ) > 0. Thus, the sufficient condition EtR̃t+1−Rf

t > 0⇐ FED(R̃t+1|gt+1) > 0

is directly obtained from (3).

We prove the necessary condition EtR̃t+1 − Rf
t > 0 ⇒ FED(R̃t+1|gt+1) > 0 by contra-

diction. Assume, for sake of contradiction, that FED(R̃t+1|gt+1) < 0 for g0
t+1. Given that

ct > 0, this assumption is equivalent to FED(R̃t+1|ct+1) < 0 for c0
t+1, where ct+1 = ctgt+1 and

c0
t+1 = ctg

0
t+1. Because of the continuity of the first-order expectation dependence, we have
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FED(R̃t+1|c0
t+1) < 0 in an interval [a,b]. We choose the utility function

ū(c) =


αc− e−a c < a

αc− e−c a ≤ c ≤ b

αc− e−b c > b,

(26)

where α > 0. Then

ū′(c) =


α c < a

α + e−c a ≤ c ≤ b

α c > b

(27)

and

ū′′(c) =


0 c < a

−e−c a ≤ c ≤ b

0 c > b.

(28)

Therefore,

EtR̃t+1 −Rf
t

β(1 +Rf
t )

=

∫ b

a

FED(R̃t+1|gt+1)Fg̃t+1(gt+1)
e−ctgt+1

ū′(ct)
(ctdgt+1) (29)

=

∫ b

a

FED(R̃t+1|gt+1)Fg̃t+1(gt+1)
e−ct+1

ū′(ct)
dct+1

< 0.

This is a contradiction.
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A3. C-CAPM in Price Form

Alternatively, the C-CAPM pricing rule in (1) can be cast in price form

pt =
Etx̃t+1

1 +Rf
t

+ β
covt[u

′(c̃t+1), x̃t+1]

u′(ct)
, (30)

where the asset’s price pt is determined by the dependence between the marginal utility of

consumption u′(c̃t+1) and the asset’s payoff x̃t+1. By exploiting the formula of first-order

expectation dependence (FED) in (2), we can rewrite (1) in price form as

pt =
Etx̃t+1

1 +Rft
− β

∫ ḡ

g

FED(x̃t+1|gt+1)Fg̃t+1
(gt+1)

(
−ct

u′′(ctgt+1)

u′(ct)

)
dgt+1

=
Etx̃t+1

1 +Rft︸ ︷︷ ︸
risk-free present value effect

−β
∫ ḡ

g

FED(x̃t+1|gt+1)Fg̃t+1(gt+1) RR2(ctgt+1) MRSctgt+1,ct

1

gt+1
dgt+1.︸ ︷︷ ︸

first-degree expectation dependence effect

(31)

The asset price formula in (31) involves two terms. The first term on the right-hand

side measures the risk-free present value effect. This term captures the direct effect of

the risk-free present expected payoff, which characterizes the asset’s price for a risk-neutral

representative agent. In line with (3), the second term on the right-hand side of (31) reflects

the first-degree expectation dependence effect or the FED effect. This term involves the

time discount factor, the first-degree expectation dependence between the asset’s payoff and

consumption, the Arrow–Pratt relative risk aversion index, and the intertemporal marginal

rate of substitution. The sign of the first-degree expectation dependence indicates whether

changes in consumption tend to reinforce (positive FED) or counteract (negative FED) the

random fluctuations of the asset’s payoff. In this representation, an asset’s price is lowered

(raised) if and only if its payoff is positively (negatively) first-degree expectation dependent

with consumption.

Using integration by parts and second-order expectation dependence (SED) as in Li
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(2011), (31) can be restated as

pt =
Etx̃t+1

1 +Rft
− β covt(x̃t+1, g̃t+1)

(
−ct

u′′(ctḡ)

u′(ct)

)
− β

∫ ḡ

g

SED(x̃t+1|gt+1)

(
c2t
u′′′(ctgt+1)

u′(ct)

)
dgt+1

=
Etx̃t+1

1 +Rft
− β covt(x̃t+1, g̃t+1) RR2(ctḡ) MRSctḡ,ct

1

ḡ︸ ︷︷ ︸
covariance effect

−β
∫ ḡ

g

SED(x̃t+1|gt+1) RR3(ctgt+1) MRSctgt+1,ct

1

g2
t+1

dgt+1︸ ︷︷ ︸
second-degree expectation dependence effect

, (32)

where RR3(ct+1) = c2
t+1u

′′′(ct+1)/u′(ct+1) is an index of relative downside risk aversion (Mod-

ica and Scarsini, 2005). The last term on the right-hand side of (32) shows the SED effect,

which involves the SED risk, the intensity of downside risk aversion, and the marginal rate

of intertemporal substitution, integrated over the support of the consumption distribution.

A4. Expectation Dependence-based Pricing with Absolute Risk Indexes

We rewrite the expectation dependence-based pricing formulas in terms of absolute risk

indexes assuming that the representative investor is equipped with a constant absolute risk

aversion (CARA) utility function. The CARA utility assumption may be theoretically useful

to make some qualitative statements. It is straightforward to restate (31) and (3) as

pt =
Etx̃t+1

1 +Rft
− β

∫ c̄

c

FED(x̃t+1|ct+1)Fc̃t+1
(ct+1)[−u

′′(ct+1)

u′(ct)
]dct+1,

=
Etx̃t+1

1 +Rft︸ ︷︷ ︸
risk-free present value effect

−β
∫ c̄

c

FED(x̃t+1|ct+1)Fc̃t+1
(ct+1) AR2(ct+1) MRSct+1,ct dct+1︸ ︷︷ ︸

first-degree expectation dependence effect

, (33)

and

EtR̃t+1 −Rft
β(1 +Rft )

=

∫ c̄

c

FED(R̃t+1|ct+1)Fc̃t+1
(ct+1)︸ ︷︷ ︸

consumption risk effect

AR2(ct+1) MRSct+1,ct dct+1, (34)
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where AR2(ct+1) = −u′′(ct+1)/u′(ct+1) refers to the Arrow–Pratt measure of absolute risk

aversion. Similarly, we can rewrite (32) and (5) as

pt =
Etx̃t+1

1 +Rft
− β covt(x̃t+1, c̃t+1)

(
− u
′′(c̄)

u′(ct)

)
− β

∫ c̄

c

SED(x̃t+1|ct+1)

(
u′′′(ct+1)

u′(ct)

)
dct+1,

=
Etx̃t+1

1 +Rft
− β covt(x̃t+1, c̃t+1) AR2(c̄) MRSc̄,ct︸ ︷︷ ︸

covariance effect

−β
∫ c̄

c

SED(x̃t+1|ct+1) AR3(ct+1) MRSct+1,ct dct+1︸ ︷︷ ︸
second-degree expectation dependence effect

, (35)

and

EtR̃t+1 −Rft
β(1 +Rft )

= covt(R̃t+1, c̃t+1)︸ ︷︷ ︸
covariance risk

AR2(c̄) MRSc̄,ct

+

∫ c̄

c

SED(R̃t+1|ct+1)︸ ︷︷ ︸
SED risk

AR3(ct+1) MRSct+1,ct dct+1, (36)

where AR3(ct+1) = u′′′(ct+1)/u′(ct+1) denotes an absolute index of prudence as in Modica

and Scarsini (2005), Crainich and Eeckhoudt (2008), and Denuit and Eeckhoudt (2010).

Kimball (1990) uses −u′′′(ct+1)/u′′(ct+1) as an alternative definition of absolute prudence.

A5. Details on the Comparison of Alternative Representations

A5.1. Marginal Rate of Substitution

The reciprocal of the conditional expectation of the intertemporal marginal rate of substi-

tution (EtMRSc̃t+1,ct)
−1 yields β(1 +Rf

t ). The nth order Taylor approximation of u′(c̃t+1) at

ct yields

EtMRSc̃t+1,ct =
Etu

′(c̃t+1)

u′(ct)
,

=
1

u′(ct)
Et(u

′(ct) +
n∑
i=1

cit
i!
u(i+1)(ct)(g̃t+1 − 1)i + o((g̃t+1 − 1)n)),

= 1 +
n∑
i=1

(−1)i

i!
RRi+1(ct)Et[(g̃t+1 − 1)i] + o(gn),

= A(n) + o(gn), (37)
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where c̃t+1 = ctg̃t+1, A(n) = 1 +
∑n

i=1
(−1)i

i!
RRi+1(ct)Et[(g̃t+1− 1)i], n ≥ 1, and g = max{ḡ−

1, 1−g}. Thus, the commonly maintained assumption EtMRSc̃t+1,ct = 1 implies that A(n)−1

is negligible. For instance, this assumption might hold for a very smooth consumption growth

process.

A5.2. Standard Representation

The nth order Taylor expansion of u′(c̃t+1) at ct in the standard representation of the C-

CAPM in (1) gives

EtR̃t+1 −Rft
β(1 +Rft )

= − 1

u′(ct)
covt(u

′(ctg̃t+1), R̃t+1),

= − 1

u′(ct)
covt(u

′(ct) +

n∑
i=1

cit
i!
u(i+1)(ct)(g̃t+1 − 1)i + o((g̃t+1 − 1)n), R̃t+1),

=
n∑
i=1

(−1)i+1

i!
RRi+1(ct) covt((g̃t+1 − 1)i, R̃t+1) + covt(o((g̃t+1 − 1)n), R̃t+1),

=
n∑
i=1

(−1)i+1

i!
RRi+1(ct) covt((g̃t+1 − 1)i, R̃t+1) + o(gn). (38)

This approximation can be rewritten in terms of an absolute risk index ARk(c) =

(−1)k−1u(k)/u′, by replacing RRi+1(c) with ARi+1(c)ci.

A5.3. FED Representation

The nth order Taylor expansion of u′′(c̃t+1) at ct in the FED representation of the C-CAPM

in (3) gives

EtR̃t+1 −Rft
β(1 +Rft )

=

∫ ḡ

g

FED(R̃t+1|gt+1)Fg̃t+1(gt+1)[−ct
u′′(ctgt+1)

u′(ct)
]dgt+1

=

∫ ḡ

g

FED(R̃t+1|gt+1)Fg̃t+1(gt+1)[−ct
u′′(ct) +

∑n
i=1

cit
i! u

(i+2)(ct)(gt+1 − 1)i + o((gt+1 − 1)n)

u′(ct)
]dgt+1

= RR2(ct) cov(g̃t+1, R̃t+1) +

n∑
i=1

(−1)i+2 RRi+2(ct)
1

(i+ 1)!
cov((g̃t+1 − 1)i+1, R̃t+1) + o(gn+1)

=

n+1∑
i=1

(−1)i+1

i!
RRi+1(ct) cov((g̃t+1 − 1)i, R̃t+1) + o(gn+1). (39)
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It is straightforward to restate the above approximation in terms of an absolute risk index

ARk(c) = (−1)k−1u(k)/u′, by using the equality RRi+1(c) = ARi+1(c)ci.

A5.4. SED Representation

The nth order Taylor expansion of u′′(c̃t+1) and u′′′(c̃t+1) at ct in the SED representation of

the C-CAPM in (5) gives

EtR̃t+1 −Rft
β(1 +Rft )

= covt(g̃t+1, R̃t+1)(−ct
u′′(ctḡ)

u′(ct)
) +

∫ ḡ

g

SED(R̃t+1|gt+1)(−c2t
u′′′(ctgt+1)

u′(ct)
)dgt+1

= covt(g̃t+1, R̃t+1)(−ct
u′′(ct) +

∑n
i=1

cit
i! u

(i+2)(ct)(ḡ − 1)i + o((ḡ − 1)n)

u′(ct)
)

+

∫ ḡ

g

SED(R̃t+1|gt+1)(−c2t
u′′′(ct) +

∑n
i=1

cit
i! u

(i+3)(ct)(gt+1 − 1)i + o((gt+1 − 1)n)

u′(ct)
)dgt+1

= covt(g̃t+1, R̃t+1)[RR2(ct) +

n∑
i=1

(−1)i+2

i!
RRi+2(ct)(ḡ − 1)i]

+

∫ ḡ

g

SED(R̃t+1|gt+1)[−RR3(ct) +

n∑
i=1

(−1)i+3

i!
RRi+3(ct)(gt+1 − 1)i]dgt+1 + o(gn+2)

= covt(g̃t+1, R̃t+1)[

n+1∑
i=1

(−1)i+1

(i− 1)!
RRi+1(ct)(ḡ − 1)i−1]

+

∫ ḡ

g

SED(R̃t+1|gt+1)[

n+1∑
i=1

(−1)i+2

(i− 1)!
RRi+2(ct)(gt+1 − 1)i−1]dgt+1 + o(gn+2), (40)

where SED(R̃t+1|gt+1) = covt(−(gt+1 − g̃t+1)+, R̃t+1) from (6). One can use RRi+1(c) =

ARi+1(c)ci to rewrite this expression in terms of an absolute risk index ARk(c) = (−1)k−1u(k)/u′.

Empirically, one can assess the integrated SED quantity as

∫ ḡ

g

SED(R̃|g)dg ≈
Q∑
l=1

covt(−(g(l) − g̃)+, R̃)× (g(l) − g(l−1)) (41)

where g = g(0) ≤ · · · ≤ g(l) ≤ · · · ≤ g(Q) = g are quantiles values that partition the

consumption growth sample into Q subsets of equal sizes. We set Q = Nobs/2 for our

calculations.
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A5.5. Generalization to kth-Degree Expectation Dependence C-CAPM

Recall that there is a recursive relationship between consecutive orders of expectation depen-

dence, that is, KthED(R̃t+1|gt+1) =
∫ gt+1

g
(K−1)thED(R̃t+1|s)ds. Using iterated integrations

by parts, one can generalize the theoretical results of Sections 3 and 4 to higher-degree ex-

pectation dependence risks – 3rd-degree, 4th-degree, . . . , kth-degree – and corresponding

higher-order risk attitudes – 4th-order or temperance, 5th-order or edginess, . . . , (k + 1)th-

order – of representative agents, with k ≥ 3.

A KthED representation of the C-CAPM pricing relation, for K ≥ 3, writes

EtR̃t+1 −Rf
t

β(1 +Rf
t )

=
K∑
k=2

kthED(R̃t+1|g)[(−1)k−1ck−1
t

u(k)(ctg)

u′(ct)
]

+

∫ g

g

KthED(R̃t+1|gt+1)[(−1)KcKt
u(K+1)(ctgt+1)

u′(ct)
]dgt+1. (42)

A6. The Hansen’s (1994) skew t distribution

The likelihood function for the skew t distribution proposed by Hansen (1994) is:

f(z|ν, λ) =

 bc
(

1 + 1
ν−2

(
bz+a
1−λ

)2
)−(ν+1)/2

, if z < −a/b,

bc
(

1 + 1
ν−2

(
bz+a
1+λ

)2
)−(ν+1)/2

, if z ≥ −a/b,

where the degree of freedom or fat-tailedness parameter is bounded as 2 < ν <∞, and the

skewness parameter is bounded as −1 < λ < 1. The other constants are given by:

a = 4λc

(
ν − 2

ν − 1

)
,

b2 = 1 + 3λ2 − a2,
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and

c =
Γ
(
ν+1

2

)√
π (ν − 2)Γ

(
ν
2

) .
Hansen (1994) shows that the mean, mode, and variance of this density function are

Ez = 0, Mz = −a/b, and V z = 1. When λ = 0, the distribution reduces to the (standard)

symmetric Sudent’s t distribution. When λ < 0 or λ > 0, the distribution is skewed to the

left or right, respectively. Setting ν → ∞ (in practice to a number higher than 30) and

λ = 0 yields a standard normal distribution.

Now consider the transformed random variable y∗ = bz + a. Let µn ≡ E [(y∗ − Ey∗)n]

and mn ≡ E [y∗n] denote the nth central and noncentral moments. It is straightforward to

see that the mean is m1 = a and the variance is µ2 = m2 −m2
1 = b2. The skewness is

Sy∗ = Sz ≡ µ3

µ
3/2
2

=
m3 − 3m1m2 + 2m3

1

b3
,

and kurtosis is

Ky∗ = Kz ≡ µ4

µ2
2

=
m4 − 4m1m3 + 6m2

1m2 − 3m4
1

b4
,

where

m1 = 4λc

(
ν − 2

ν − 1

)
= a,

m2 = 1 + 3λ2 = b2 + a2,

m3 = 16cλ
(
1 + λ2

) (ν − 2)2

(ν − 1) (ν − 3)
, if ν > 3,

m4 = 3
(
1 + 10λ2 + 5λ4

) (ν − 2)

(ν − 4)
, if ν > 4.

For an AR(1) process yt+1 = Ey+φy (yt − Ey)+
√(

1− φ2
y

)
V y zt+1, with skew t innovations

zt+1, unconditional mean Ey, and variance V y as in (13), the skewness is given by

Sy = Sz
(1− φ2)

3/2

1− φ3
,
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and kurtosis is

Ky =
Kz (1− φ2) + 6φ2

1 + φ2
.

When φ tends to 1, the unconditional skewness Sy tends to 0 and the unconditional kurtosis

Ky tends to 3 (no excess kurotsis). When φ tends to 0, Sy and Ky tends to the skewness

and kurtosis of the skew t innovation zt+1.

A7. Details on the Construction of Variance Risk Premium

A7.1. Building Physical Variances from High Frequency Returns

To empirically build the realized variance series, we employ high frequency observations

on S&P 500 index. On a given day, we use the last record in each five-minute interval

to construct a grid of five-minute equity index log-returns. As in Andersen et al. (2003),

the realized variance on each transaction day t is given by Ṽt =
∑nt

j=1 r̃
2
j,t, where r̃2

j,t is the

jth intraday squared log-return and nt denotes the number of intraday records. Note that

we observe nt = 78 five-minute returns on a typical transaction day. We add the squared

overnight log-return (the close-to-open change in log price) and apply the standard scaling,

thus ensuring that the sample average of the realized variance matches the sample variance

of daily log-returns. The cumulative realized variance for a given horizon τ is given by the

aggregation daily realized variances, Ṽt,τ =
∑τ

d=1 Ṽt+d. In our empirical analysis we consider

τ = 1-month horizon to get monthly series.

To get genuine conditional expectation of the realized variance under the physical prob-

ability measure (P ), we use Corsi’s (2009) heteroscedastic autoregressive realized variance

(HAR-RV) specification. Even though various econometric frameworks exist, the HAR-RV

model allows to generate reliable forecasts. Alternatively, on may use a random walk model

as in Bollerslev et al. (2009). The HAR-RV model, which features multi-frequency (daily,

weekly, monthly) predictors, is cast as

Ṽt+1 = EP
t [Ṽt+1] + ζ̃t+1, (43)
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where EP
t [Ṽt+1] = α0 + αdVt + αwVt,w + αmVt,m, w = 5 days (resp. m = 20 days) denotes

one week (resp. one month) trading period, and ζ̃t+1 is an innovation term.

A7.2. Extracting Risk-Neutral Variances from Options

To extract model-free variance series under the risk-neutral probability measure (Q), we use

daily European options written on the S&P 500 index. Our option panel from OptionMetrics

runs from September 03, 1996 to August 31, 2015. Call and put contracts are sorted by

maturity and strike price. We use mid-quotes and apply the standard filters as in Chang

et al. (2013). Namely, we discard options with zero transaction volume, options with mid-

quotes less than $3/8, and options which do not satisfy basic no-arbitrage bounds.

It is important to mention that actual option data are available for a discontinuous and

limited set of strike prices whereas the construction of risk-neutral moments requires to

compute integrals (or weighted portfolios of) option contracts over a compact set of strike

prices. Thus, on each day and for any given maturity, we map option prices into Black and

Scholes’ (1973) implied volatilities. We employ a cubic spline to interpolate the observed

implied volatilities over a finely-discretized moneyness grid and generate a continuum of

implied volatilities. The interpolation is performed only for dates where at least two OTM

call prices and two OTM put prices are available. In addition, we extrapolate the implied

volatility of the lowest or highest available strike price outside (below or above) the observed

moneyness range of any given contract, as implemented in Chang et al. (2013). We then

map these interpolated-extrapolated implied volatilities back into call and put prices using

the Black and Scholes (1973) equation.

The squared VIX can be used to proxy the one-month ahead risk-neutral variance as in

Bollerslev et al. (2009), though it might induce some biases (Carr et al. 2012). To build risk-

neutral variance series for a generic horizon τ , we rely on the nonparametric methodology

implemented in Bakshi et al. (2003). A key insight of this approach is that one can replicate

any desired payoff by designing a portfolio of OTM European call and put options over a
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continuum of strike prices. To outline this approach, let r̃t,τ = log(x̃t+τ )− log(x̃t) denote the

log-return on the underlying asset between time t and t+τ . Moreover, consider the payoff at

maturity of a contingent claim A[x̃] = r̃nt,τ that describes a power (n = 2-quadratic, 3-cubic,

4-quartic, etc.) contract. As shown in Bakshi and Madan (2000), any twice-continuously

differentiable payoff with bounded expectation can be spanned as

A[x̃] = A[x] + (x̃− x)Ax[x] +

∫ ∞
x

Axx[K](x̃−K)+dK

+

∫ x

0

Axx[K](K − x̃)+dK. (44)

This spanning expression entails positions in the slope (first derivative Ax[•] evaluated at

some x) and the curvature (second derivative Axx[•] evaluated at the strike price K) of the

payoff function. By discounting the risk-neutral conditional expectation of the contingent

claim at the log risk-free rate rf = log(1 +Rf ), we obtain its price

EQ
t {e−r

f τA[x̃]} = e−r
f τ (A[x]− xAx[x]) +Ax[x]xt +

∫ ∞
x

Axx[K]C(t, τ ;K)dK

+

∫ x

0

Axx[K]P (t, τ ;K)dK, (45)

which corresponds to a portfolio including the risk-free bond, the underlying asset, and

OTM calls and puts. We implement numerical approximations of the integrals in (45). The

risk-neutral variance (n = 2) is computed as

V Q
t,τ = EQ

t [(r̃t,τ − EQ
t [r̃t,τ ])

2]. (46)
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