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1 Introduction

In finance, there is a vast literature looking at the set of factors that are capable of explaining

the cross-section of expected stock returns. An important result of this literature is Fama and

French (1993). They find that a linear set of three factors, commonly referred to as market, size

and value, has the potential to explain most of the cross-sectional variation in stock returns. In

addition to these three factors, Jegadeesh and Titman (1993) and Carhart (1997) have established

the relevance of a momentum factor to explain the cross-section of stock returns.

Because these factors represent the exposure of the investors to priced risks, their use by aca-

demics and practitioners is widespread as they capture the principal risks of an investment in stocks.

For example, in portfolio management, these factors can simplify the allocation process involving a

large number of stocks. By estimating the stocks’ sensitivity to each factor, it is possible to express

the covariance matrix of the portfolio as a function of the factors and to assess its risk and expected

return.

Given the importance and widespread use of these factors, a clear understanding of their prop-

erties is an important issue, especially for risk measurement and portfolio management. In Christof-

fersen and Langlois (2013), an empirical investigation found that the Fama and French (1993) fac-

tors and Carhart (1997) momentum factor (hereafter FFC factors) contain key non-linear dependen-

cies requiring multivariate models to capture their joint dynamics. In such a context, characterizing

the risk of the portfolios exposed to these factors requires a multivariate approach. However, when

forecasting commonly used risk quantities of portfolios such as Value-at-Risk (VaR) or Expected

Shortfall (ES), in many cases, univariate methods can be exploited to simplify the computations.

In this paper, as a first contribution, we examine if a multivariate approach is better than a

more straightforward univariate approach when forecasting the joint risk of a portfolio of stocks.

More precisely, we consider the weekly returns of two portfolios. The first portfolio is directly

invested in the four FFC factors, as in Christoffersen and Langlois (2013). The second portfolio

is invested in ten large-capitalization stocks. For this stock portfolio, we project each individual

stock return on the FFC factors, thereby reducing the dimension of the portfolio from ten to four.

For both portfolios, we then examine if forecasting portfolio risk using a naive univariate dynamic

model provides forecasts equivalent to those of more sophisticated four-dimensional multivariate
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dynamic copula models for the FFC factors. Given the easier implementation and much smaller

computing efforts required for univariate models, many researchers recommend this direct approach

to risk measurement (Berkowitz and O’Brien (2002) and Christoffersen (2009)). However, a case

can also be made for multivariate models which integrate more information by characterizing the

dependencies between portfolio stock returns, via their dependence on the factors . Everything else

held constant, this additional information should improve risk forecasts compared with a univariate

model. The main difficulties with the multivariate approach are that, as the dimension of the

portfolio increases, there are more possibilities for estimation errors that might lead to forecasting

errors, and restrictions must be imposed to keep the model tractable.

As a second contribution, we examine the above issue with a focus on the Expected Shortfall

(ES) risk measure, also called Conditional Value-at-Risk (CVaR). With the recent shift from Value-

at-Risk (VaR) to ES sanctioned by the Basel Committee on Banking Supervision (BCBS, 2016,

2019) for market risk, there is a growing literature on backtesting ES as this risk measure is

becoming a serious alternative to VaR. See, for example, Deng and Qiu (2021). The change is

motivated by the fact that VaR does not capture adequately the conditional expected losses and

lacks subadditivity, whereas ES avoids these limitations. We focus on forecasting ES at the 1%

and 2.5% probability levels, the latter being the requirement under Basel III for measuring market

risk. Adding ES as a forecasting objective presents an interesting challenge in that, contrary to

VaR, there is no loss function for which ES is the minimizer. This lack of elicitability for ES limits

the relative comparison of univariate and multivariate models. However, as shown in Fissler et al.

(2016), the pair VaR/ES is jointly elicitable with respect to a class of loss functions. We use this

result and the loss function proposed in Patton et al. (2019) to compare our models based on their

ability to forecast VaR and ES jointly.

Our main finding is that, in most cases, there are no significant differences between the risk

forecasting accuracy of univariate and multivariate factor based models for both VaR and the

VaR/ES pair.

The univariate vs multivariate issue tackled in this paper has been studied many times in the

context of forecasting portfolio VaR (Nieto and Ruiz (2016)). Given that VaR is typically propor-

tional to the standard deviation of the portfolio return, the literature has focused on comparing

univariate and multivariate GARCH models. Brooks and Persand (2003) compare twelve univari-
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ate volatility models and the diagonal VEC model of Bollerslev et al. (1988) for forecasting the

VaR of a portfolio comprised of UK assets at 1, 5, 10 and 20-day horizons. They find no clear im-

provements from using a multivariate approach compared with a univariate approach and suggest

that, unless covariances are required, multivariate GARCH models are not worthwhile. Similarly,

McAleer and Da Veiga (2008) compare twelve univariate and sixteen multivariate GARCH models

to forecast the one-day-ahead volatility and VaR of an international equity portfolio. Although the

multivariate models offer better volatility forecasts, there is no clear preference between the two

approaches for VaR forecasting.

One aspect that makes these results hard to interpret is the fact that backtesting procedures

are only meant to evaluate a model in isolation, not against another model. To address this limi-

tation, Santos et al. (2013) rely instead on the asymmetric tick loss function, as in Giacomini and

Komunjer (2005), to compare the out-of-sample next day VaRs of different pairs of univariate vs

multivariate GARCH models. Using large and diversified US stock portfolios, they find that multi-

variate models with dynamic conditional correlations and Student t distributed errors outperform

univariate models. Further, multivariate models with constant correlations usually underperform

relative to univariate models.

Diks and Fang (2020) also compare the performance of multivariate and univariate approaches

to forecast VAR. Focusing on skew elliptical distributions with an application using daily returns,

they find that better multivariate forecasts do not necessarily correspond to better aggregate port-

folio return forecasts. In their study, they rely on multivariate models that are closed under affine

transformations. They are thus comparing models which produce the same univariate and mul-

tivariate portfolio return distributions when comparing the performance of the forecasts. In our

study, our univariate models are not necessarily available as a linear combination of the multi-

variate models. Although such theoretical considerations are important, we choose to favour a

practitioner’s point of view whose goal is to find the best risk forecasting model, and thereby not

restrain ourselves to a particular class of distributions.

Finally, Kole et al. (2017) examine the impact of different levels of temporal and portfolio

aggregation on forecasting the 10-day VaR for a diversified portfolio of eight indexes, related to

stocks, bonds and alternative investments. Also relying on the asymmetric tick loss function, they

find that lower levels of aggregation, i.e. multivariate models for index returns or asset class returns,
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provide better risk forecasts relative to complete portfolio aggregation, but the differences are not

large and often not significant.

As this short survey demonstrates, the literature to date offers mixed evidence, and, to the best

of our knowledge, has not yet examined the ES risk measure. Our contribution to this literature,

besides a close examination of a significant set of factors for financial managers, is thus to examine

in more detail the multivariate vs univariate issue in terms of the ES risk measure. Furthermore,

unlike papers that have examined the issue with symmetric distributions, we rely on the asymmetric

skewed t distribution in our univariate and multivariate models in order to better capture the

skewness of return distributions, just like Diks and Fang (2020).

Our VaR results are in direct contrast with those of Santos et al. (2013), but partly corroborate

the results of Kole et al. (2017) and Diks and Fang (2020), which are the three papers most closely

related to our study. Given the empirical nature of the question, this discrepancy is not incoherent.

One possible explanation for the divergence with Santos et al. (2013) is the fact that they do not

use univariate distributions allowing for skewness, an important feature to include, especially for

measuring tail risk. Another disparity with Santos et al. (2013) is the fact that we use weekly returns

whereas they use daily returns. Lower data frequency can hurt multivariate models by preventing

them from adequately capturing the assets’ cross-sectional and serial dependencies. Indeed, the

main conclusion of Kole et al. (2017) is that aggregation of daily returns into weekly or biweekly

returns leads to the loss of details in return dynamics. Despite this potential loss, our use of weekly

data (instead of daily) is interesting in a VaR and ES computation framework since it is close to the

ten-day horizon adopted by regulators. The weekly horizon is also more relevant in our case since

we rely on the results of Christoffersen and Langlois (2014), who also use weekly data to identify

the best times series model for the FFC factors.

The paper is organized as follows. Section 2 presents the framework and assumptions underlying

the models used to forecast VaR and ES. Sections 3 and 4 are devoted to multivariate and univariate

models respectively. In Section 5 we present the data and the parameter estimates of our models.

Section 6 explains the procedure employed to generate out-of-sample risk forecasts. Section 7 is

dedicated to VaR and ES backtests. Section 8 is devoted to our tests for comparative predictive

accuracy and Section 9 discusses the model confidence set (MCS) approach. Section 10 concludes

the paper.
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2 Framework

We will use the superscript s to denote variables related to individual stock returns, as opposed

to the factors. Let rst =
[
rs1,t, . . . , r

s
Ns,t

]′
and rt = [r1,t, . . . , rN,t]

′ denote respectively the random

vector of the N s stock and N factor log returns at time t. Let rsh,t and rh,t denote the vectors of

holding period returns for the stocks and factors defined by rsh,t = exp(rst )−1 and rh,t = exp(rt)−1

respectively. The random portfolio log return is rw,t = ln
(
w
′
t−1r

s
h,t + 1

)
, where wt−1 is the vector

of portfolio weights at time t− 1.

We assume that all time series are stationary. Let F s
t , F t, and Fw,t denote, respectively, the

distribution function of rst , rt and rw,t, conditional on the information set available at time t− 1.

Also, let F si,t and Fj,t correspond respectively to the ith and jth marginal distribution function

of F s
t and F t, for i = 1, . . . , N s and j = 1, . . . , N . In this paper we assume that all distribution

functions are continuous, have densities and are strictly increasing. In particular, this implies that

the univariate inverse distribution function (quantile function) F−1(·) is well defined.

Given a probability level p = 1% or 2.5% at time t−1, we are interested in forecasting the next

period conditional VaR and ES defined by

V aRpt = F−1
w,t(p)

and

ESpt = Et−1 [rw,t | rw,t < V aRpt ] .

In order to estimate these risk measures, we need a statistical model for Fw,t.

For the univariate approach, this is done by directly making assumptions on Fw,t. Details about

these assumptions and how we compute the parameter estimates, and the VaR and ES, are given

in Sections 4, 5 and 6.

For the multivariate approach, when dealing with portfolios directly invested in the FFC factors,

we use multivariate copula models capturing the non-linearities and non-normalities documented

in the literature for these data series. We rely on simulation methods to derive Fw,t from F t, and

then compute the estimated VaR and ES. Details about the copula models and how we compute

the parameter estimates and risk measures are given in Sections 3, 5 and 6.
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For the multivariate approach, when dealing with portfolios of stocks, we take a practitioner’s

perspective and use the factors capturing the main risks in stock returns. More specifically, we take

an indirect path by first projecting each individual stock holding period return rsh,i,t on the vector

of holding period factor returns rh,t and a constant,

rsh,i,t − rf,t = ai + b′irh,t + εi,t for i = 1, . . . , N s, (1)

where rf,t is the weekly risk-free rate, and the intercept ai, and the vector of loadings bi, are

assumed to be constant over time. Moreover, we assume conditional independence between the

vector of error terms, εt = [ε1,t, . . . , εNs,t], and rh,t. In the second step we proceed by modeling the

joint conditional distribution of rh,t and εt. The previous equation shows that rsh,t is a function

of rh,t and εt. In turn, rw,t is a function of the vector of stock returns rsh,t, and the weights wt−1

which are part of the information set at time t − 1. In this paper, we rely on simulation methods

to derive Fw,t from the distributions of the factor returns and error terms, and then compute the

estimated VaR and ES. The distribution of the factor return is obtained with similar approaches

to those just described above for the case of factor portfolios. Details on the procedures are given

in Sections 3, 5 and 6.

3 Multivariate models for factor returns

In this section, we provide details about the models we use to characterize the joint dynamics of the

FFC factor returns. For the portfolio invested in FFC factors, these models will be used directly

to forecast the VaR and ES risk measures. For the portfolio invested in stocks, these models will

be used indirectly in the context of equation (1).

The multivariate models in this section are taken from Christoffersen and Langlois (2013),

who study the joint dynamics of the FFC factors. Analysis of the data reveals that each factor’s

marginal distribution is highly nonnormal and that the dependencies between each pair of factors

are nonlinear. This suggests multivariate nonnormality for the joint distribution of the four fac-

tors. Therefore, instead of relying on the multivariate normal distribution we use copulas to fit

the joint conditional distribution of the factor returns. Copulas are flexible because they enable
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modeling the marginal distributions separately via Sklar’s (1959) theorem. This theorem allows the

decomposition of the next period joint conditional distribution of the N factor returns into their

conditional marginal distributions and a conditional copula linking these marginals:

F t(rt) = Ct(F1,t(r1,t), . . . , FN,t(rN,t)). (2)

Given our assumptions in Section 2, the copula Ct is uniquely determined. Each of the marginals

Fj,t contains all the univariate information on the jth factor, while the copula Ct contains all the

dependence information between the factors. This decomposition shows that a model for F t can

be built in two steps. First, choose a model for each of the marginals Fj,t for j = 1, . . . , N and

second, choose a copula Ct to link them. We now address these two steps in turn.

As in Christoffersen and Langlois, each of the four factors next period conditional marginal

distribution is fitted with the following AR(3) model:

rj,t = µj,0 + µj,1rj,t−1 + µj,2rj,t−2 + µj,3rj,t−3 + σj,tzj,t with zj,t
i.i.d.∼ Fj(0, 1)

where µj,0 to µj,3 are the AR(3) parameters for the returns of factor j, σjt is the conditional standard

deviation, and zj,t is an error term. The error term zj,t is an independent and identically distributed

random variable following the unconditional standardized distribution Fj(0, 1). This model allows

for constant first moments with dynamic second moments as well as nonnormal distributions. For

each factor, the conditional variance is fitted using the NGARCH(1,1) model of Engle and Ng

(1993):

σ2
j,t = ωj + βjσ

2
j,t−1 + αj(zj,t−1 − θj)2

where ωj > 0, βj , αj ≥ 0 and αj(1 + θ2
j ) + βj < 1 for j = 1, . . . , N . A positive leverage parameter

(θj > 0) implies that negative shocks (zj,t−1 < 0) have a larger impact on the next period variance

than do positive shocks of the same magnitude.

The standardized distribution of each factor Fj(0, 1) is fitted using Hansen’s (1994) skewed t

distribution. This standardized distribution has two parameters, κj and υj , which determine the

skewness and kurtosis, and its density is given in Appendix A. Marginal skewness is an important

improvement from the symmetric Student distribution when measuring tail risk.
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To link the marginals we consider the skewed t copula of Demarta and McNeil (2005), which is

derived from the standardized multivariate skewed t distribution. This choice is motivated by the

asymmetric dependence between the factors reported in Christoffersen and Langlois (2013). The

skewed t copula, denoted Cst
νc,Υt,λ, is characterized by a N × 1 vector of asymmetry parameters λ,

a scalar degree of freedom parameter νc, and a copula correlation matrix Υt. Its density is given

in Appendix B.

We allow the copula correlation matrix Υt to evolve through time. More specifically, we assume

that the correlation matrix of the copula quantiles (which are defined in the appendix), denoted

Υ̇t, follows the cDCC model of Aielli (2013):

Qt = Q(1− βc − αc) + βcQt−1 + αcε
∗
t−1ε

∗′
t−1,

Υ̇t = Q
∗− 1

2
t QtQ

∗− 1
2

t

whereQ (without a time index) indicates the unconditional correlation matrix of the random shocks

ε∗t i.e. Q = E(Qt) = E(ε∗t ε
∗′
t ), while βc and αc are non-negative scalars with αc + βc < 1. Also,

ε∗t = Q
∗ 1
2
t εt where Q∗t = diag(dg(Qt)) and εt is a N × 1 vector containing the standardized copula

quantiles. Here, dg(·) is an operator taking in input a square matrix and that returns a vector

containing the diagonal elements of the square matrix, while diag(·) is an operator which takes a

vector as input and returns a square diagonal matrix as output.

Aielli’s (2013) cDCC model is a modification of Engle’s (2002) original Dynamic Conditional

Correlation (DCC) model and provides a consistent estimator for the matrix Q. See Appendix B.4

for details.

As benchmarks to the dynamic skewed t copula, we consider the dynamic normal copula and the

dynamic Student copula, i.e. both with a dynamic correlation matrix. We also implement the three

copula models with a constant correlation matrix and refer to these models as static copula models.

Note that in all six copula models the dynamics for the marginals stay the same. Finally, we add for

reference the multivariate normal distribution with a constant and a dynamic correlation matrix,

in which case each marginal follows a univariate normal distribution. That is, Fj(0, 1) corresponds
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to the univariate standard normal distribution for all j. This makes a total of eight multivariate

models.

4 Univariate models

For the univariate models, we adopt a specification similar to the one used for the marginals of the

multivariate models. We assume that the portfolio return dynamics is1 :

rw,t = µ+ σtzt with zt
i.i.d.∼ F (0, 1)

σ2
t = ω + βσ2

t−1 + α(zt−1 − θ)2

with the same parameter restrictions as before, and F (0, 1) corresponding to Hansen’s (1994) uni-

variate skewed t distribution with parameters κ and υ. As a reference, we also consider the

univariate standard normal distribution for F (0, 1) and its filtred historical simulation (FHS) ver-

sion, the latter meaning that we simulate innovation terms by drawing randomly into the estimated

residuals ẑt rather than from the standard normal distribution. This leads to a total of three uni-

variate models.

It is important to note that our univariate models are not necessarily obtainable as a linear

combination of the multivariate models in section 3. For example, Diks and Fang (2020) consider

elliptical distributions closed under affine transformations, so that their multivariate models can

produce the same univariate distributions as their univariate models. Although such theoretical

considerations are important, we choose to favour the point of view of a practitioner, whose goal is

to find the best risk forecasting model, and thereby not restrain ourselves to a particular class of

models.

5 Data sets and parameter estimates

In this section, we first describe the data used in our study. We then explain the parameter

estimation procedure for the univariate and multivariate approaches. Finally, we also provide some

1We initally considered an AR(3) for the conditional mean like in the multivariate models, but we found better
backtesting results using a constant mean.
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estimation results showing the fit of these modeling approaches when applied to our full data

sample.

5.1 Data sets

We study the weekly returns of the four FFC equity factors and ten large capitalization companies

from July 5, 1963, to December 31, 2019. This corresponds to T = 2, 948 observations. The factor

returns are from Kenneth French’s data library, where the details on how the FFC factors are

constructed can be found. The weekly returns are directly available in the data library for the

Market, Size and Value factors. For the Momentum factor, we aggregate daily returns into weekly

log returns from July 5, 1963, to December 31, 2019. Our sample of ten large capitalization

stocks consists of daily stock returns for the same period taken from CRSP. The daily returns are

aggregated into weekly log returns. Table 1 lists the names of the companies entering our portfolio

of stocks. For the rest of the paper, the term return will mean weekly log return unless otherwise

indicated. Because we are working with weekly log returns, our risk forecasts are the next week

log return VaR and ES.

The descriptive statistics for the factor and stock log returns are presented in Table 1. We see

that the Market, Size and Momentum factors have a longer left tail, as illustrated by the negative

skewness. Also, all factors display thicker tails than the normal distribution, as indicated by a

kurtosis values much higher than three. The nonnormality of each factor’s marginal distribution is

confirmed by the very large Jarque-Bera statistics in the last column, rejecting the null hypothesis

of a normal distribution in all cases. Similar remarks also hold for the stocks returns.

5.2 Parameter estimation for the univariate models

We estimate each univariate model by Maximum Likelihood (ML). Let θ denote the vector con-

taining the parameters. Given the sample of observations for the returns of individual elements

of our portfolio (factors or stocks), we construct a pseudo-sample of observations for a given set

of portfolio weights. More specifically, taking the portfolio of stocks as an example, we compute

the implied pseudo-sample of portfolio returns rw,t = ln
(
w
′
t−1r

s
h,t + 1

)
for t = 1, . . . , T . We then

estimate θ by maximizing the conditional log-likelihood lnL(θ) =
∑T

t=1 ln ft(rw,t), where ft is the

conditional probability density function of rw,t. To give an idea of the fit of this approach, Table
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2 presents the ML estimates for the normal and skewed t distribution for our whole sample from

1963 to 2019, for the case of an equally weighted portfolio. The left panel presents results for the

portfolio of factors, while the right panel is for the portfolio of ten stocks. For both portfolios, the

skewed t distribution improves the model’s fit, with much higher likelihood values obtained with

only two additional parameters that are both significant at the 1% level.

5.3 Parameter estimation for the copula models

For the copula models of the FFC factors, we use a two-step estimation procedure. Differentiating

both sides of equation (2) we get the conditional likelihood of rt:

f t(rt) = ct(F1,t(r1,t), . . . , FN,t(rN,t))

N∏
j=1

fj,t(rj,t),

where ct is the conditional copula density. Taking the log and summing over t we obtain the

conditional log-likelihood function for our sample,

lnf t(r1, . . . , rT ) =
T∑
t=1

ln ct(F1,t(r1,t), . . . , FN,t(rN,t)) +
N∑
j=1

T∑
t=1

ln fj,t(rj,t).

Assuming that the parameters of the marginals and the copula are all different, the last expression

implies that we can maximize the log-likelihood in two steps. First, we estimate the parameters

for each of the marginals Fj,t by maximizing lnLj(θj) =
∑T

t=1 ln fj,t(rj,t) for j = 1, . . . , N . Second,

using the estimated marginals F̂1,t, . . . , F̂N,t we construct a pseudo-sample of observations for the

copula2:

ût = (F̂1,t(r1,t), . . . , F̂N,t(rN,t))

for t = 1, . . . , T and estimate its parameters by maximizing

lnLc(θc) =
T∑
t=1

ln ct(ût). (3)

To give an idea of the fit of the copula models, Table 3 presents the parameter estimates for the

marginals under the normal and skewed t distribution for our whole data sample from 1963 to 2019.

2More specifically, because Fj,t(rj,t) = Fj(zj,t), we use the residuals ẑj,t from the first step to obtain the empirical
CDF estimate F̂j(x) = 1

T+1

∑T
t=1 1{ẑj,t≤x} and let ûj,t = F̂j(ẑj,t).
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The left panel presents the parameter estimates of the marginals under the normal distribution,

while the second panel shows the estimates for the skewed t. Again we see that the skewed t

improves the fit of the NGARCH model with a much higher likelihood than the normal case, and

only two additional parameters.

The parameter estimates for the copulas, obtained from the second step, are given in Table 4.

The left panel of the table presents the models with constant correlations, while the right panel

shows the estimates for the models with dynamic correlations. We obtain parameter estimates very

similar to those reported in Christoffersen and Langlois (2013)3. Coherently with their results, the

model which provides the best fit is the Skewed t copula with dynamic correlations.

5.4 Parameter estimation for the stock return model

For the stock return model given by equation (1), we obtain the parameter estimates for the

intercept âi and factor loadings b̂i of each stock by running a standard time series OLS regression.

Table 5 gives an idea of the fit of this model using our whole sample from 1963 to 2019. From this

table, we see that the model gives a reasonable fit. In most cases, three or four loadings estimates

are statistically different from zero, with R-squared around 30%. The model also captures well the

communalities of the stock returns that we can assess with the average of the absolute value of

the correlations between the stock returns, which is equal to 0.35. For the residuals filtered from

the model, this average is 0.06. Finally, the Jarque-Bera statistics for the residuals in the last

column indicates that the residuals are not well described by a normal distribution. As explained

in the next section, these non-normalities will be handled using filtered historical simulations when

computing the VaR and ES forecasts.

6 VaR and ES forecasts

The paper aims to compare the out-of-sample risk forecasting accuracy of the univariate and multi-

variate approaches. To do this, we need to generate out-of-sample forecasts for the one-week-ahead

VaR and ES with each of our ten models. We begin by estimating the parameters of each model

3To verify the validity of our implementation, using their original data set, we have verified that our estimated
parameters replicate their estimates up to the third digit.
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using the first 20 years of weekly returns. We then re-estimate every week using a rolling estimation

window of 20 years.

To avoid making too many stringent assumptions about the portfolios with which the VaR and

ES will be computed, we randomly choose our sets of portfolios weights. More specifically, for

each out of sample period in our study, we randomly generate one set of portfolio weight. For this

purpose, we use the procedure described in De Giorgi et al. (2007) and Rubinstein (1982), which

generates weights using a uniform distribution, with each weight between zero and one, and a sum

of weights equal to one. The same sets of portfolios weights are of course applied to the univariate

and multivariate models.

For the univariate models, when computing the VaR and ES, we rely on analytical formulas.

The formulas for these computations are available in, for example, Christoffersen (2013).

In the case of multivariate models, for the portfolio of factors, we rely on simulations to com-

pute the VaR and ES. More specifically, using the parameters of the one-week-ahead multivariate

conditional distribution of the vector of factor returns F t estimated at time t − 1, we simulate a

vector of factor returns r̃t from this distribution. The vector of simulated weekly log stock returns

r̃t is converted into a vector of holding period return r̃h,t. The simulated portfolio return for the

next period is then obtained using r̃w,t = ln
(
w
′
t−1r̃h,t + 1

)
, where wt−1 is the vector of portfolio

weights. We repeat this M = 200, 000 times and obtain a simulated sample
{
r̃lw,t
}M
l=1

.

In the case of multivariate models, for portfolios of stocks, using the OLS estimates from

equation (1) for the intercept âi and factor loadings b̂i, we extract the multivariate time series

ε̂t = [ε̂1,t, . . . , ε̂Ns,t] of OLS residuals. We simulate from the distribution F ε by drawing randomly

into the sample of residuals ε̃t, t = 1, . . . , T , i.e. we use a filtered historical simulation approach.

Once the parameters of one-week-ahead multivariate conditional distribution of the vector of factor

returns F t is estimated at time t−1, we simulate a vector of factor returns r̃t from this distribution,

and a vector of error terms ε̃t = [ε̃1,t, . . . , ε̃Ns,t] from F ε. The vector of simulated weekly log stock

returns r̃t is converted into a vector of holding period return r̃h,t. The simulated individual holding

period stock returns r̃sh,i,t are then computed using

r̃sh,i,t = rf,t + âi + b̂
′
ir̃h,t + ε̃i,t for i = 1, . . . , N s.
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The simulated portfolio return for the next period is then obtained using r̃w,t = ln
(
w
′
t−1r̃

s
h,t + 1

)
,

where wt−1 is the vector of portfolio weights. We repeat this M = 200, 000 times and obtain a

simulated sample
{
r̃lw,t
}M
l=1

.

The p · 100% one-week-ahead estimated VaR and ES, denoted V̂ aR
p

t and ÊS
p

t respectively, are

computed via the following formulas :

V̂ aR
p

t = −Percentile
{
{r̃lw,t}Ml=1, 100p

}
(4)

ÊS
p

t = − 1

p ·M

M∑
l=1

r̃lw,t · 1{r̃lw,t<−V̂ aR
p

t }
(5)

where 1{·} is an indicator function equal to 1 if the argument is true and 0 otherwise.

We consider two probability levels for the VaR and ES: p = 1% and p = 2.5%. Repeating the

previous steps each period, we obtain a time series of 1,905 out-of-sample forecasts for the one-

week-ahead VaR and ES at both levels of significance for each of the ten models. This out-of-sample

period range from the first week of July 1983 to the end of December 2019; we lose the first 1,043

observations from the first estimation. For the rest of the paper, t = 1, . . . , T = 1, 905 will denote

the out-of-sample period.

7 Backtest

7.1 VaR backtest

We begin model comparisons by looking at the number of VaR violations at the 1% and 2.5%

level. A VaR violation occurs when the portfolio return drops below the estimated VaR, i.e.

rw,t < −V̂ aR
p

t . Let It = 1{rw,t<−V̂ aR
p

t }
indicates whether a VaR violation occurred at time t and

T1 =
∑T

t=1 It be the total number of violations in the out-of-sample period, which is assumed

positive. The number T1 is shown for each model and for the portfolios of stocks and factors in

Table 6. Given our 1,905 observations, a correctly specified VaR model should produce around 19

and 48 violations at the 1% and 2.5% level respectively. At the 1% level, the univariate normal model

is particularly noticeable, producing more than 2 and 1.8 times the correct number of violations for

the factor and stock portfolios, respectively. The univariate skewed t shows 21 and 22 violations,
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and the results for the univariate normal filtered historical simulation (FHS) are similar. In the

same vein, the multivariate normal models produce two many violations at the 1% level, while the

copulas models produce significantly fewer violations. Our most sophisticated multivariate model,

the dynamic skewed t copula, produces a number violations comparable to the univariate skewed t

and univariate normal FHS. Similar remarks apply at the 2.5% level, although some models produce

too few violations for the portfolio of stocks.

We can test whether the observed fraction of violations is statistically different from p = 1%

or 2.5% using the unconditional coverage test introduced in Kupiec (1995). The p-values appear

under the UC columns of Table 6. For the 1% VaR using a significance level of 5% we reject all

models based on the normal distribution, while all other models show adequate coverage. When we

consider the 2.5% VaR, the result are the same, except that for the stock portfolio the multivariate

normal models now display adequate coverage.

Another property of a correctly specified VaR model is the independence of the violations

through time. We can test for first-order dependence of the violations using the independence

test of Christoffersen (1998). The p-values appear under the Ind columns of Table 6. For the

portfolio of factors, for the 1% VaR and 2.5% VaR , and using a 5% significance level, we see that

all models pass the tests, except the normal copula. For the portfolio of stocks, all models fail the

independence test. This failure can be traced back to two clusters of successive violations: a first

cluster of 3 successive violations during the market crash of October 1987, and a second cluster of

2 successive violations during the financial crisis of October 2008. Figure 1 plots the 1% VaR and

realized portfolio returns from 2007 to the end of 2009, showing the second cluster of violations

in October 2008. The univariate model is the skewed t distribution, while the multivariate model

is the dynamic skewed t copula. We can see that both models produce similar VaR computations

and produce violations at the same points in time.

— Figure 1 about here —–

We can jointly test for coverage and independence with the conditional coverage test of Christof-

fersen (1998). The p-values are displayed under the CC columns of Table 6. For both the 1% and

2.5% VaR, we see that the results are consistent with the conclusions of the two previous tests.

Indeed, only the models that passed both the UC and Ind tests display adequate conditional cov-
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erage.

We can summarize this section by saying that all models pass the VaR conditional and un-

conditional backtests for the portfolio of factors, except those involving the normal distribution.

Likewise, all models display adequate unconditional coverage for the portfolio of stocks, except

those involving the normal distribution. However, they all fail the conditional tests because of the

two clusters of successive violations identified above.

7.2 ES backtest

Contrary to VaR, there is no loss function for which ES is the unique minimizer. This important

result is shown in Gneiting (2011) and often goes under the name ”lack of elicitability”. This

finding sparked a debate over whether it is even possible to backtest ES. Fortunately, the recent

literature has answered the question by proposing many ES backtests that do not rely on the

elicitability property, although the procedures are not as straightforward as for VaR. Among the

growing literature in this area, we choose to implement the first two tests proposed by Acerbi and

Szekely (2014), a third test proposed in Acerbi and Szekely (2017), and the unconditional and

conditional ES tests of Du and Escanciano (2017). These tests do not make any assumptions about

the distribution of returns (nonparametric), and are computed by simulation. The details about

all of these backtests (assumptions and computations) are given in Appendix C. When computing

these tests, we use M = 50, 000 paths and simulate the M portfolio returns each week with the

predictive conditional distribution used for the VaR and ES forecasts.

The p-values of all five tests are shown in Table 6, in the columns Z1, Z2, Zes, (the three Acerbi

and Sczekely tests) and DEu and DEc (the two Du and Escanciano tests), for both the factor

and stock portfolios. We notice that the univariate models pass all backtests for the portfolio of

stocks, except for the normal case. The multivariate models, at the exceptions of those involving

the normal distribution, also pass the conditional and unconditional test. We also note that the

conclusions for the Acerbi and Szekely tests are not always coherent with those of the Du and

Escanciano tests. For example, for 2.5% case, the Dynamic Normal Copula model fails the Acerbi

and Szekely tests, but passes the conditional and unconditional Du and Escanciano tests. For the

stock portfolio, a picture similar to the one obtained for the VaR backtest emerges. Most models

pass the unconditional backtests and fail the conditional test.
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8 Testing for comparative predictive accuracy

8.1 Loss functions

As mentioned in the introduction, backtesting procedures are not necessarily the right tools to

compare models. These tests provide a binary outcome, i.e. reject or do not reject a model, whereas

we would like to rank models from worst to best. In other words, backtests are useful for absolute

evaluation, not relative evaluation.

We are interested in comparing the out-of-sample VaR and ES forecasting accuracy of our

models. The standard approach to this end is to use loss functions, which compare the risk forecasts,

here VaR and ES, to the realized portfolio return at each period. The idea is that a model with

a given average loss will be preferred to a model with a higher average loss over the out-of-sample

period. Therefore, in selecting a loss function we should make sure that our forecasting object

minimizes its expected value. The existence of such a loss function for a given statistic, referred to

as the elicitability property, is not automatic, since VaR is elicitable but ES is not. The V aRpt loss

function, also known as the “check” or “tick” loss function in quantile regressions, is defined by

LV (vt, rw,t) = (rw,t + vt)(p− 1{rw,t+vt<0})

where vt is a non-random real variable. This is an asymmetric function because the penalty given

when 1{rw,t+vt<0} = 1 is usually much higher than in the case where 1{rt+vt<0} = 0. Nonetheless,

this function penalizes risk overestimation because, conditional on 1{rw,t+vt<0} = 1, a higher value

for vt leads to a higher penalty. The function LV is the “right” loss function for VaR in the sense

that

V aRpt = arg min
vt

E[LV (vt, rw,t)]. (6)

Thus, computing L̄V = 1
T

∑T
t=1 LV (vt, rw,t) with vt = V̂ aR

p

t for each model and sorting the numbers

in increasing order allows us to rank models in descending order of VaR predictive accuracy. That

is, the model with the lowest value of L̄V is deemed the most accurate VaR model, the one with

the second-lowest value of L̄V is deemed the second best VaR model and so on, to the model with

the highest value of L̄V which is deemed the worst VaR model.

For both factor and stock portfolios, the VaR out-of-sample average loss L̄V of each model,
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in basis points, is shown in Table 7. For the stock portfolio we see that the univariate Skewed t

distribution displays the lowest average loss for the 1% VaR, while the dynamic skewd t copula

displays the lowest average loss for the 2.5% VaR. For the factor portfolio the univariate normal

FHS model displays the lowest average loss for both VaR levels.

We now turn to ES model comparison. As previously discussed, although we cannot compare

our models based on their ability to forecast ES alone, we can compare them based on their ability

to jointly forecast VaR and ES. We choose to use Patton et al. (2019)’s joint loss function given by

LV,E(vt, et, rw,t) = − 1

pet
1{rw,t+vt<0}(rw,t + vt) +

vt
et

+ ln(et)− 1.

Under the assumption of positive VaR and ES, Patton et al. (2019) show that

{V aRpt , ES
p
t } = arg min

vt,et
E[LV,E(vt, et, rw,t)], (7)

and that LV,E generates loss differences that are homogeneous of degree zero, a property that has

been associated to higher power for the Diebold and Mariano (1995) tests. See also Nolde and Ziegel

(2017). Therefore our criterion for VaR/ES model comparison is L̄V,E = 1
T

∑T
t=1 LV,E(vt, et, rw,t)

with vt = V̂ aR
p

t and et = ÊS
p

t .

The out-of-sample average joint loss L̄V,E for each model, in basis points, is shown in Table 7.

Note that the losses are negative. For the stock portfolio, the univariate FHS is the most accurate

model at the 1% and 2.5% levels. For the portfolio of stocks, the function values are, in general,

very close to each other. The lowest value is achieved by the static normal and symmetric t copula

models at the 1% level, while the dynamic normal distribution reaches the lowest value at the 2.5%

level.

In the next subsection, we examine if these differences in values are statistically significant with

tests of comparative predictive accuracy.

8.2 Comparative predictive accuracy

Although there are differences between models’ average losses, these differences may not be statis-

tically significant. We can test for pairwise differences in predictive accuracy using the conditional
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predictive ability (CPA) test of Giacomini and White (2006), which is a conditional version of the

Diebold and Mariano (1995) test.

Let L stands for either LV or LV,E and let

di,j,t = Li,t − Lj,t

represent the loss differential between model i and model j at time t. The null hypothesis of equal

conditional predictive ability between two models can be formulated as

H0 : E(di,j,t | Ft−1) = 0 for all t.

which is equivalent to saying that di,j,t is a martingale difference sequence. Giacomini and White

(2006) propose the following Wald statistic

GWi,j = TZ̄ ′Ω̂−1Z̄

where Z̄ = 1
T

∑T
t=2 Zt, Ω̂−1 = 1

T

∑T
t=2 ZtZ

′
t, Zt = ht−1di,j,t, and ht−1 is a vector with variables

measurable at time t−1. We use ht−1 = (1, di,j,t−1)
′
. Under some regularity conditions, Giacomini

and White (2006) show that the asymptotic distribution of the statistic GWi,j is χ2
q , where q is the

dimension of ht−1, here two. We compute p-values in the right-tail of this distribution and reject

when GWi,j is sufficiently large.

The p-values for the unilateral tests are displayed, for each pair of models4, in Tables 8 and

9. Table 8 corresponds to 1% VaR comparisons using the “tick” loss function, while Table 9

corresponds to 1% VaR/ES comparisons using Patton et al.’s (2019) joint loss function. An up (left)

arrow indicates that we reject the null hypothesis of equal predictive ability at the 5% significance

level and that the column (row) model outperforms the corresponding row (column) model.

Looking at the VaR loss function tests for the portfolio of factors (first panel of Table 8), we see

that the two univariate models show significantly lower function values when compared to the static

multivariate copula models (but not the dynamic ones). We also observe that the static multivariate

normal and static normal copula models tend to be dominated by the multivariate static and

4We exclude the univariate normal model from the comparison since it failed most backtests for both portfolios.
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dynamic models. However, other than these, the loss function values are not statistically different

from one another. Hence, there are no significant differences between the univariate approaches

and the dynamic multivariate approaches for portfolios of factors in terms of loss function values.

Looking at the VaR loss function tests for the portfolio of stocks (second panel of Table 8), we

don’t see any arrows indicating significant differences. Based on these, we also conclude that, in

the context of multivariate VaR calculations with FFC factors, there are no significant differences

between the univariate approaches and multivariate approaches for portfolios of stocks in terms of

loss function values.

The 1% VaR/ES comparisons in Table 9 are similar to those obtained from the VaR loss func-

tion. For the portfolio of factors (first panel), we again notice some significant differences between

the univariate and static multivariate models. However, the differences between the univariate ap-

proaches and the dynamic multivariate approaches are not significant. For the portfolio of stocks,

we again don’t find any significant differences between the models. Finally, although we don’t report

those here, similar calculations were made for the 2.5% case. The results from these calculations

are qualitatively similar to those obtained for the 1% case.

We can summarize this section by saying that, for both portfolios, there are, in general, no signif-

icant differences in the loss functions between the best multivariate models and the two univariate

models. This result is more striking for the ten stock portfolios. We don’t find any significant

differences between any multivariate factor-based models and our two univariate models. For the

portfolios of factors, we find that static models tend to be dominated by univariate and multivariate

dynamic models.

9 The model confidence set

We can summarize the results in Table 8 and 9 with the Model Confidence Set (MCS) procedure of

Hansen et al. (2011). The idea is to construct a set of models, the MCS, that will contain the best

model with a given level of confidence, analogous to a confidence interval for a parameter. This set

is obtained by a sequence of equal predictive ability (EPA) tests that, in case of rejection of the

null hypothesis, allow us to trim the set of candidate models by eliminating the worst performing

model according to an elimination rule. The steps are repeated until the EPA hypothesis fails to
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be rejected, in which case the set of surviving models constitute the MCS that contains the best

performing model with the desired level confidence.

Let M0 denote our initial set of ten models and let M ⊆ M0 be a nonempty subset of these

models. The EPA null hypothesis is

H0 : E(di,j,t) = 0 for all i, j ∈M.

Note that this null hypothesis is identical to the DM null hypothesis, except that we consider all

pairs of models in M instead of a single pair. As Hansen et al. (2011) discuss, a natural range

statistic for testing H0 is

TR = max
i,j∈M

|DMi,j |,

where DMi,j denotes the Diebold and Mariano (1995) test statistic. The EPA test statistic is thus

the absolute value of the DM statistic farthest away from zero among the pairs of models. Because

the asymptotic distribution of TR is unknown, Hansen et al. (2011) propose to estimate it via a

circular block bootstrap scheme. This allows the computation of a bootstrap p-value for the EPA

test.

The MCS procedure begins by settingM =M0. We then perform the EPA test on the models

inM. If we reject the null hypothesis at the chosen level of confidence, we identify the worst model

i∗, defined as the model with the highest loss relative to another model. In other words,

i∗ = arg max
i∈M

max
j∈M

DMi,j .

This model is then eliminated from M. We repeat this process until we fail to reject the EPA

hypothesis, in which case we set MCS =M. We implement the MCS approach at a 95% confidence

level 5. We use 10,000 bootstrap re-samples with a circular bootstrap scheme and a block of one.

The results for the portfolios of factors are presented in Table 10. For the 1% and 2.5% VaR, the

MCS consists of all models. This means that the first test did not reject the EPA null hypothesis.

It is thus not possible to rule out any of the models for the VaR. The MCS also consists of all

5We use the “mcs” MATLAB function from the MFE toolbox by Kevin Sheppard. See
https://www.kevinsheppard.com/MFE Toolbox.
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models for the 1% joint VaR/ES function, but without the static multivariate normal. Finally,

for the 2.5% joint VaR/ES loss function, the test rules out three models: the static multivariate

normal, the static normal copula, and the static symmetric t copula.

For the case of the portfolio of stocks, perhaps unsurprisingly given the results from the previous

section, the MCS consists of all models in all cases, i.e. for both VaR and Var/ES loss functions at

both levels of significance.

We can summarize this section by saying that the MCS set includes both univariate and multi-

variate models. This test thus indicates that, in the context of multivariate VaR and ES computa-

tions with the FFC models, risk forecasts from the univariate and multivariate approaches are not

different from a statistical point of view.

10 Conclusion

Using the Fama-French (1993) and Carhart (1997) stock market factors, we examine if a multivariate

modelling stock factor based approach is more effective than a simple univariate approach to forecast

the market risk of a random weighted portfolio of stocks and a portfolio comprised of the FFC

factors. Our contribution to this literature comparing univariate and multivariate approaches,

besides a close examination of a significant data set for financial managers, is to examine in more

detail the issue in terms of the expected shortfall risk measure. In total, three univariate models

are compared with eight multivariate models involving asymmetric distributions and asymmetric

copulas with dynamic correlations.

Using simulations, we generate 1,905 weekly out-of-sample VaR and ES for each model covering

the period from 1983 to 2019. We analyze the relative performance of our models in two stages.

In the first stage we backtest each model by comparing the ex-ante risk measures to the ex-post

portfolio returns. In the second stage we rely on loss functions based on the elicitability property of

VaR as well as the joint elicitability property of VaR and ES to rank models. We test for statistical

differences between the average loss of models with the CPA test of Giacomini and White (2006),

and with the MCS procedure of Hansen et al. (2011).

We find no significant differences between the risk forecasting accuracy of univariate models

and multivariate factor based models with dynamic correlations. Moreover, we find that the risk
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forecasting accuracy and multivariate models without dynamic correlations is significantly lower

that their dynamic counterparts, and also lower than the non-normal univariate models.
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A Hansen’s (1994) skewed t distribution

The density of Hansen’s (1994) skewed t distribution is given by

f(z;κ, ν) =


bc

(
1 + 1

ν−2

(
bz+a
1−k

)2
)− ν+1

2

if z < −a
b

bc

(
1 + 1

ν−2

(
bz+a
1+k

)2
)− ν+1

2

if z ≥ −a
b

where −1 < κ < 1 and 2 < ν <∞. The constants a, b and c are given by

a = 4κc
ν − 2

ν − 1
,

b2 = 1 + 3κ2 − a2,

and

c =
Γ((ν + 1)/2)√
π(ν − 2)Γ(ν/2)

.

The univariate skewed t distribution has a mean of zero and a unit variance.

B Demarta and McNeil’s (2005) skewed t copula

B.1 Multivariate skewed t distribution density

Demarta and McNeil’s (2005) skewed t copula is based on a version of the multivariate skewed t

distribution. We say that the N × 1 random vector x follows a multivariate skewed t distribution,
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denoted x ∼ F st
νc,µ,Σ,λ, if it has the following density function:

f st(x; νc,µ,Σ,λ) = c

K vc+N
2

(√(
vc + (x− µ)′Σ−1(x− µ)

)
λ
′
Σ−1λ

)
exp

(
x− µ)

′
Σ−1λ

)
(√(

vc + (x− µ)′Σ−1(x− µ)
)
λ
′
Σ−1λ

)− vc+N
2 (

1 + (x−µ)′Σ−1(x−µ)
vc

) vc+N
2

where K(·)(·) is the modified Bessel function of the third kind and c is a constant given by

c =
2

2−(vc+N)
2

Γ
(
vc
2

)
(πvc)

N
2 |Σ|

1
2

.

Also, νc is scalar degree of freedom parameter, µ is a N × 1 vector of location parameters, Σ is

a N × N symmetric positive definite dispersion matrix and λ is a N × 1 vector of asymmetry

parameters. The first two moments of x are given by

E (x) = µ+
vc

vc − 2
λ

and

Cov (x) =
vc

vc − 2
Σ +

2v2
c

(vc − 2)2(vc − 4)
λλ

′
. (8)

The multivariate skewed t distribution has the following stochastic representation

x
d
= µ+

√
wy + λw (9)

where w is an inverse gamma random variable, w ∼ IG(νc/2, νc/2), y a N × 1 vector of normal

variables, y ∼N (0,Σ), and y and w are independent.

B.2 Skewed t copula density

The skewed t copula is derived using the standardized multivariate skewed t distribution F :=

F st
νc,0,Υ,λ with jth marginal Fj and correlation matrix Υ :

Cst
νc,Υ,λ(u) = F (F−1

1 (u1), . . . , F−1
N (uN )). (10)
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Let f := f stνc,0,Υ,λ be the density of F with jth marginal fj . The copula density is obtained by

differentiating both sides of equation (10):

cst(u; νc,Υ,λ) =
f(F−1

1 (u1), . . . , F−1
N (uN ))∏N

j=1 fj(F
−1
j (uj))

=

2
(vc−2)(N−1)

2 K vc+N
2

(√(
vc + η′Υ−1η

)
λ
′
Υ−1λ

)
exp

(
η
′
Υ−1λ

)
Γ
(
vc
2

)1−N |Υ| 12 (√(vc + η′Υ−1η
)
λ
′
Υ−1λ

)− vc+N
2 (

1 + η′Υ−1η
vc

) vc+N
2

×
N∏
j=1

(√(
vc + η2

j

)
λ2
j

)− vc+1
2
(

1 +
η2j
vc

) vc+1
2

K vc+1
2

(√(
vc + η2

j

)
λ2
j

)
exp (ηjλj)

(11)

where ηj := F−1
j (uj) is defined as the jth copula quantile for j = 1, . . . , N . The density in equation

(11) is used to obtain the skewed t copula parameter estimates in the second step of the estimation,

i.e. when maximizing the log-likelihood in equation (3).

B.3 Copula quantiles

One difficulty in the second step of the skewed t copula ML estimation is obtaining the cop-

ula quantiles ηj,t = F−1
j (uj,t) because the inverse marginals F−1

j are not known in closed form.

Christoffersen and Langlois (2013) address this problem by using empirical quantiles from a large

number simulations with representation (9). Yoshiba (2018) simulation results suggest that using

a monotone interpolator is faster and more accurate than using empirical quantiles so we instead

choose this approach to compute the copula quantiles. We apply following procedure with m = 150

interpolating points:

1. Let umin = minj=1,...,T uj,t and umax = maxj=1,...,T uj,t .

2. Compute ηmin = F−1
j (umin) and ηmax = F−1

j (umax) using an accurate quantile function.

This is done by finding the quantile such that numerical integration of the univariate density

fj until that point equals umin or umax respectively. We use the bisection method for this.
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3. Calculate ηk = ηmin + (ηmax−ηmin)
m−1 and compute uk = Fj(ηk) by numerical integration of fj

for k = 2, . . . ,m− 1.

4. Use a monotone interpolator with the data points {(ηmin, umin), . . . , (ηmax, umax)} to obtain

ηjt = F−1
j (uj,t) for all other values of uj,t ∈ [umin, umax]. We apply MATLAB piecewise cubic

Hermite interpolating polynomial (“pchip”) to this end.

5. Repeat for j = 1, . . . , N .

B.4 Aielli’s (2013) cDCC

In the dynamic skewed t copula model we allow the copula correlation matrix Υ to evolve through

time. Let Υt be the copula correlation matrix at time t and let Υ̇t be the copula quantiles

correlation matrix at time t. Also, let

η̄j := E(ηj) =
vc

vc − 2
λj

and

sj := var(ηj) =
vc

vc − 2
+

2v2
c

(vc − 2)2(vc − 4)
λ2
j

be respectively the expectation and the standard deviation of the jth copula quantile. This allows

us to define the standardized copula quantiles εj,t =
ηj,t−η̄j
sj

for j = 1, . . . , N and the vector εt =

(εj,t, . . . , εNt)
′

containing them. The link between the two correlation matrices Υt and Υ̇t is given

by equation (8):

Υt =
νc − 2

νc

(
DΥ̇tD −

2ν2
c

(νc − 2)(νc − 4)
λλ

′
)

where D := diag(s1, . . . , sN ) is a N ×N diagonal matrix containing the standard deviations of the

copula quantiles. Thus the dynamic of Υt comes from the dynamic of Υ̇t, which we assume is the

cDCC model of Aielli (2013):

Qt = Q(1− βc − αc) + βcQt−1 + αcε
∗
t−1ε

∗′
t−1
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Υ̇t = Q
∗− 1

2
t QtQ

∗− 1
2

t

where Q = E(Qt) = E(ε∗t ε
∗′
t ) is a positive definite correlation matrix while βc and αc are non-

negative scalars with αc + βc < 1. Also, ε∗t = Q
∗ 1
2
t εt where Q∗t = diag(dg(Qt)) and dg(·) is

an operator that returns a vector containing the diagonal elements of a square matrix argument.

The matrix Q is obtained by targeting using the cDCC estimator proposed in Aielli (2013) (See

definition 3.3).

B.5 Simulation

The skewed t copula can be simulated with the following steps, where k represents the chosen

number of simulations:

1. SimulateM vectors {x̃l}Ml=1 using the stochastic representation (9) and the forecast correlation

matrix for the next period.

2. Compute
{
ũl
}M
l=1

=
{(
F1(x̃l1), . . . , FN (x̃lN )

)′}M
l=1

. Given a high number of simulations,

instead of using numerical integration we can use the empirical CDF estimate of Fj with the

simulated series {x̃lj}Ml=1 to calculate
{
Fj(x̃

l
j)
}M
l=1

for j = 1, . . . , N .

Once the copula uniform variables
{
ũl
}M
l=1

have been simulated, we can apply Hansen’s (1994)

inverse distribution function to obtain the next period simulated standardized returns {z̃lj}Ml=1 for

each factor j. We then compute the simulated jth factor returns by multiplying each element of

{z̃lj}Ml=1 by the jth factor forecast conditional volatility and adding to it the jth factor forecast

conditional mean.

C Expected Shortfall backtests

For the Acerbi and Szekely’s tests, we assume that, each period (week), the portfolio return rw,t

has an unknown distribution Ft and is forecasted using a predictive conditional distribution Pt.

Here, V aRpt and ESpt represent the true risk measures, i.e. when rw,t ∼ Ft, while V̂ aR
p

t and ÊS
p

t

represent the estimated risk measures, i.e. when rw,t ∼ Pt. Portfolio returns are assumed to be
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independent but not identically distributed. The null hypothesis for the three tests is

H0 : P
[p]
t = F

[p]
t for all t (12)

where P
[p]
t (·) = min

{
1, Pt(·)p

}
is the left tail of the distribution below the p quantile.

In the first test we assume that a preliminary VaR test has been done and consider the alternative

hypothesis

H1 : ÊS
p

t ≥ ES
p
t for all t and > for some t

V̂ aR
p

t = V aRpt for all t .

Note that the predicted VaRs are still adequate under H1. This means that we should first accept

the model for VaR before performing the test. We test H0 again H1 with the following statistic:

Z1 =

∑T
t=1

rw,t·It
ESpt

T1
+ 1.

As an average of VaR exceedances, the statistic is insensitive to an excessive number of violations.

It can be shown that the expected value of Z1 is zero under H0 and negative under H1. Therefore,

we expect a realized value of Z1 that is close to 0. The value signals a problem when it is negative.

The second test evaluates both the frequency and magnitude of VaR violations. That is, it

is a joint test for VaR and ES coverage. The null hypothesis (12) is tested against the following

alternative

H1 : ÊS
p

t ≥ ES
p
t for all t and > for some t

V̂ aR
p

t ≥ V aR
p
t for all t .

The test statistic is

Z2 =
1

T

T∑
t=1

rw,t · It
p · ESpt

+ 1.

Again, it can be shown that the expected value of Z2 is zero under H0 and negative under H1.

The third test evaluates both the frequency and magnitude of VaR violations. The null hypoth-
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esis (12) is tested against the same alternative as the second test. The test statistic is

Zes =
1

T

T∑
t=1

p · (ESpt − V aR
p
t ) + (rw,t + V aRpt ) · It
p · ESpt

.

and the expected value of Zes is zero under H0 and negative under H1.

The distributions of Z1, Z2 and Zes under the null hypothesis are unknown but can be approxi-

mated using simulations. For each of our models, the p-values of the three tests are obtained using

the following steps:

1. Simulate M random portfolio returns {r̃lw,t}Ml=1 for each t = 1, . . . , T .

2. Compute Z l1, Z l2 and Zes using {r̃lw,t}Tt=1 for each l = 1, . . . ,M .

3. Estimate pval1 =

∑M
l=1 1

(Zl1<Z1)

M , pval2 =

∑M
l=1 1

(Zl2<Z2)

M and pvales =

∑M
l=1 1

(Zles<Zes)

M .

We use M = 50, 000 and simulate the M portfolio returns each week with the predictive

conditional distribution Pt used for VaR and ES forecasts.

The last two tests are from Du and Escanciano (2017). The idea is to consider the cumulative

violation process

Ht(p) =
1

p
(p− ut)1{ut≤p} t = 1, . . . , T,

with ut = Ft(rw,t). The name cumulative violation process comes from the fact that, as shown in Du

and Escanciano (2017), Ht(p) = 1
p

∫ p
0 It(p)dp, where It(p) is the violation process at level p. Using

the fact that
{
It(p)− p

}T
t=1

is martingale difference sequence under correct specification of VaR at

level p, Du and Escanciano (2017) show that the process
{
Ht(p)−p/2

}T
t=1

, is a martingale difference

sequence under correct speficiation of the left p tail. This leads to the following unconditional and

conditional null hypotheses

H0u : E[Ht(p)] = p/2 for all t,

H0c : E[Ht(p) | Ft−1] = p/2 for all t.

For the unconditional test of ES at level p, Du and Escanciano (2017) propose the following
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t-test statistic

DEu =

√
T (H̄(p)− p/2)√
p(1/3− p/4)

,

where H̄ = 1
T

∑T
t=1 Ĥt(p), Ĥt(p) = 1

p(p − ût)1{ût≤p}, and ût = F̂t(rw,t). We estimate F̂t(rw,t) at

each date t by applying the emprical cdf computed from M = 50, 000 simulations of rw,t as in step

1 above. Under some regularity conditions, Du and Escanciano (2017) show that the asymptotic

distribution of DEu is N(0, σ2
DEu

), with the asymptotic variance σ2
DEu

depending on the estimation

error in F̂t. We estimate σ2
DEu

by simulaton methods. Specifically, from the simulations of the M

portfolio returns at each date t we are able to compute M statistics DEu as in step 2 above. The

estimated variance σ̂2
DEu

is then set equal to the sample variance of the M simulated statistics.

Once the standardized test statistic DEu/σ̂DEu is obtained, we perform a bilateral test based on

the standard normal distribution.

For the conditional test, Du and Escanciano (2017) propose the following the Box-Pierce test

statistic

DEc = T
R∑
r=1

ρ̂2
r ,

where ρ̂r = γ̂r
γ̂0

and γ̂r = 1
T−r

∑T
t=1+r

(
Ĥt(p) − p/2

)(
Ĥt−r(p) − p/2

)
. We reject H0c when DEc is

sufficiently large. Du and Escanciano (2017) show that DEc has a weighted-chi square asymptotic

distribution with weights depending on F̂t. We approximate the distribution of DEc and compute

the p-value of the test using M = 50, 000 as in step 1,2,3 above.
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Table 1: Descriptive Statistics of Weekly Factor and Stock Returns (1963-2019)

Mean Median Max Min SD Skew. Kurt. J-B

Factors

Market 11.82 28.00 13.46 -18.00 2.16 -0.46 8.25 3484

Size 3.32 4.50 6.99 -10.72 1.21 -0.32 8.62 3930

Value 7.08 3.00 9.94 -8.71 1.22 0.47 10.09 6280

Momentum 15.05 21.95 12.66 -16.00 1.81 -1.06 13.06 12995

Stocks

Coca-Cola 28.53 23.14 25.95 -27.90 3.18 -0.12 8.36 3536

Exxon 23.98 20.45 17.26 -19.99 2.75 -0.13 5.16 583

GE 21.14 12.93 36.26 -20.46 3.61 0.48 10.41 6861

IBM 20.04 13.93 19.37 -17.64 3.31 0.08 6.16 1227

Chevron 26.02 20.02 19.44 -27.15 3.39 0.06 6.01 1117

UTC 30.40 30.23 19.03 -36.18 3.78 -0.24 7.64 2679

Procter 25.29 14.78 14.77 -39.36 2.90 -0.76 16.68 23284

Caterpillar 28.53 22.60 30.90 -25.48 4.20 0.22 5.86 1030

Boeing 36.57 34.81 22.50 -30.74 4.48 0.07 5.59 824

Merck 29.70 18.59 19.04 -24.47 3.53 -0.08 5.93 1057

This table presents the descriptive statistics for the four factor returns using the sample from July 5, 1963 to

December 27, 2019. The mean and median are in basis points (BPS) while the maximum, the minimum and the

standard deviation (SD) are in percentages (%). The last column presents the Jarque-Bera satistic.
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Table 2: Parameter Estimates for the Univariate Models (1963-2019)

Port. of factors Port. of stocks

Normal Skewed t Normal Skewed t

Parameters distribution distribution distribution distribution

µ 1.05e-03 1.01e-03 2.31e-03 2.29e-03

(1.01e-04) (9.96e-05) (3.22e-04) (3.06e-04)

β 0.709 0.733 0.771 0.779

(0.015) (0.025) (0.017) (0.021)

α 0.219 0.202 0.109 0.104

(0.011) (0.018) (0.011) (0.013)

θ 0.076 -0.038 0.763 0.775

(0.038) (0.057) (0.097) (0.117)

ν - 6.352 - 13.355

(0.632) (3.015)

κ - -0.183 - -0.136

(0.025) (0.026)

Log-likelihood 10861 10973 7273 7304

This table presents the parameters estimates of the univariate models for the case of an equally weighted portfolio.

Standard errors in parentheses are computed with the outer product of gradients method. The parameter ω, the

constant in the NGARCH variance dynamics, is obtained by variance targeting.

35



Table 3: Parameter Estimates for the Marginals (1963-2019)

Normal Distribution Skewed t Distribution

Parameter Market Size Value Mom. Market Size Value Mom.

µ0 8.93e-04 1.52e-04 4.22e-04 1.50e-03 9.71e-04 1.39e-04 3.51e-04 1.55e-03
(3.09e-04) (1.95e-04) (1.71e-04) (1.73e-04) (2.69e-04) (1.92e-04) (1.73e-04) (2.08e-04)

µ1 0.012 0.076 0.111 0.091 -0.002 0.095 0.125 0.083
(0.019) (0.019) (0.018) (0.018) (0.019) (0.019) (0.019) (0.018)

µ2 0.053 0.092 0.029 0.014 0.043 0.111 0.039 0.017
(0.018) (0.019) (0.019) (0.018) (0.019) (0.019) (0.019) (0.018)

µ3 0.011 0.056 0.069 -0.020 0.017 0.060 0.073 -0.011
(0.017) (0.018) (0.019) (0.019) (0.018) (0.019) (0.019) (0.018)

β 0.707 0.849 0.876 0.844 0.730 0.860 0.889 0.839
(0.019) (0.015) (0.010) (0.010) (0.022) (0.020) (0.013) (0.015)

α 0.142 0.107 0.107 0.103 0.128 0.098 0.095 0.110
(0.012 ) (0.010) (0.008) (0.007) (0.015) (0.013) (0.011) (0.011)

θ 0.788 0.160 0.080 -0.659 0.831 0.185 0.042 -0.603
(0.083) (0.046) (0.044) (0.057) (0.115) (0.087) (0.071) (0.077)

ν - - - - 10.753 7.900 7.776 8.068
(1.684) (0.939) (1.017) (1.144)

κ - - - - -0.225 -0.059 0.036 -0.157
(0.025) (0.027) (0.027) (0.027)

Log-likelihood 7512 9083 9311 8418 7587 9140 9357 8489

This table presents the parameter estimates for the AR(3)-NGARCH(1,1) model with Skewed t distribution fitted on

each factor. Standard errors in parentheses are computed with the outer product of gradients method. The parameter

ω, the constant in the NGARCH variance dynamics, is fixed by variance targeting.
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Table 4: Parameter Estimates for the Copulas (1963-2019)

Constant Correlation Dynamic Correlation

Parameter Normal Student Skewed t Normal Student Skewed t
Copula Copula Copula Copula Copula Copula

νc 5.192 5.252 10.387 10.420
(0.270) (0.275) (0.844) (0.881)

λMarket -0.003 -0.077
(0.031) (0.056)

λSize -0.074 -0.180
(0.032) (0.058)

λValue 0.065 0.092
(0.031) (0.054)

λMomentum -0.156 -0.141
(0.038) (0.055)

αc 0.083 0.087 0.086
(0.003) (0.004) (0.004)

βc 0.891 0.888 0.888
(0.004) (0.005) (0.005)

ρMarket,Size 0.040 0.054 0.056 0.071 0.098 0.095

ρMarket,Momentum 0.064 0.075 0.079 0.033 0.043 0.041

ρSize,Value -0.068 -0.068 -0.062 -0.104 -0.122 -0.117

ρSize,Momentum 0.006 0.012 -0.007 0.024 0.034 0.025

ρValue,Momentum -0.139 -0.160 -0.147 -0.168 -0.197 -0.194

Log-likelihood 151.5 395.6 409.4 1107.1 1206.9 1215.6

This table presents the parameters estimates of each copula obtained in the second step of the estimation. Standard

errors in parentheses are computed with the outer product of gradients method. The copula unconditional correlation

matrix is fixed by correlation targeting (except for the normal copula).

37



Table 5: Parameter Estimates for the Stock Return Model (1963-2019)

a b1 b2 b3 b4 R2 J-B

Coca-Cola 1.26e-03 0.770 -0.613 -0.192 0.049 0.326 1574
(4.41e-04) (0.041) (0.065) (0.065) (0.051)

Exxon 2.89e-04 0.779 -0.411 0.288 0.117 0.368 258
(3.51e-04) (0.034) (0.045) (0.069) (0.042)

GE 5.06e-07 1.162 -0.379 0.183 -0.138 0.494 10187
(4.46e-04) (0.054) (0.057) (0.087) (0.042)

IBM 5.73e-04 0.867 -0.186 -0.359 -0.147 0.380 4718
(5.07e-04) (0.029) (0.047) (0.053) (0.043)

Chevron 3.15e-04 0.930 -0.374 0.356 0.077 0.338 716
(4.41e-04) (0.036) (0.051) (0.071) (0.054)

UTC 7.49e-04 1.081 -0.011 0.092 0.006 0.374 1461
(5.11e-04) (0.042) (0.070) (0.074) (0.054)

Procter 9.89e-04 0.637 -0.543 -0.104 0.065 0.266 57687
(4.04e-04) (0.028) (0.055) (0.060) (0.049)

Caterpillar 4.51e-04 1.173 0.041 0.434 -0.165 0.368 2000
(5.39e-04) (0.043) (0.076) (0.101) (0.067)

Boeing 1.35e-03 1.116 0.051 0.154 -0.054 0.287 813
(6.83e-04) (0.045) (0.090) (0.080) (0.069)

Merck 1.52e-03 0.808 -0.586 -0.293 -0.031 0.300 2656
(4.77e-04) (0.040) (0.053) (0.078) (0.056)

This table presents the ordinary least-squares (OLS) parameter estimates of the factor model on individual stock

returns with Newey West standard errors in parentheses. R2 is OLS R-squared, and J-B is the Jarque-Bera satistic

for the OLS residuals.
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Table 7: VaR and VaR/ES Average Loss (1983-2019)

Portfolios of factors Portfolios of stocks

Mean Loss VaR Mean Loss VaR/ES Mean Loss VaR Mean Loss VaR/ES

p = 1% p = 2.5% p = 1% p = 2.5% p = 1% p = 2.5% p = 1% p = 2.5%

Univariate Models

Normal Dist. 3.517 6.660 -3.443 -3.752 8.192 16.319 -2.576 -2.810

Skew. t Dist. 3.341 6.594 -3.561 -3.786 7.907 16.127 -2.636 -2.834

Filt. hist. simu. 3.240 6.493 -3.583 -3.807 7.989 16.189 -2.621 -2.831

Multivariate Models

Normal Dist. 3.772 6.938 -3.299 -3.669 7.905 16.046 -2.626 -2.836

Normal Cop. 3.564 6.853 -3.458 -3.718 7.699 15.950 -2.658 -2.844

Sym. t Cop. 3.524 6.849 -3.492 -3.727 7.701 15.949 -2.658 -2.844

Skew. t Cop. 3.500 6.826 -3.504 -3.735 7.715 15.957 -2.656 -2.843

Dyn. Normal Dist. 3.562 6.605 -3.428 -3.763 7.795 15.918 -2.644 -2.847

Dyn. Normal Cop. 3.437 6.536 -3.522 -3.790 7.942 16.082 -2.625 -2.836

Dyn. Sym. t Cop. 3.408 6.526 -3.546 -3.798 7.948 16.065 -2.624 -2.837

Dyn. Skew.t Cop. 3.397 6.518 -3.554 -3.802 7.941 16.063 -2.625 -2.837

This table presents each model’s average loss for VaR (L̄V ) and the for pair VaR/ES (L̄V,E) in the out-of-sample

period.
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Table 8: GW Test for 1% VaR loss function (1983-2019)
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ew
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Portfolio of factors

Uni. Skewed t 0.10 0.09 0.01← 0.02← 0.02← 0.14 0.34 0.26 0.30

Uni. filt. hist. sim. 0.06 0.01← 0.01← 0.01← 0.10 0.19 0.13 0.15

Multi. Normal 0.04↑ 0.04↑ 0.05↑ 0.15 0.02↑ 0.02↑ 0.02↑
Normal Cop. 0.21 0.27 0.59 0.04↑ 0.03↑ 0.03↑
Sym. t Cop. 0.06 0.89 0.38 0.07 0.05

Skew. t Cop. 0.89 0.75 0.10 0.08

Dyn. Multi. Normal 0.16 0.13 0.21

Dyn. Normal Cop. 0.15 0.32

Dyn. Sym. t cop. 0.06

Portfolios of stocks

Uni. Skew. t 0.10 0.48 0.61 0.61 0.62 0.36 0.27 0.28 0.29

Univ. filt. hist. sim. 0.43 0.50 0.51 0.52 0.29 0.27 0.27 0.27

Multi. Normal 0.32 0.31 0.33 0.23 0.93 0.87 0.83

Normal Cop. 0.57 0.49 0.47 0.26 0.26 0.30

Sym. t Cop. 0.47 0.47 0.27 0.26 0.30

Skew. t Cop. 0.48 0.28 0.27 0.32

Dyn. Multi. Normal 0.34 0.30 0.32

Dyn. Normal Cop. 0.55 0.17

Dyn. Sym. t cop. 0.60

This table presents the p-values of the GW test comparing each row model to a column model for the 1% VaR for

portfolios of factors. The loss function used for pairwise comparisons is LV , the VaR tick loss function defined in

Subsection 8.1. An up (left) arrow indicates that we reject the null hypothesis of equal predictive ability at the 5%

significance level and that the column (row) model outperforms the corresponding row (column) model.
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Table 9: GW test for 1% VaR and ES joint loss function (1983-2019)
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Portfolio of factors

Uni. Skewed t 0.39 0.06 0.01← 0.05← 0.06 0.12 0.21 0.10 0.15

Uni. filt. hist. sim. 0.05← 0.01← 0.02← 0.03← 0.11 0.17 0.07 0.14

Multi. Normal 0.01↑ 0.01↑ 0.02↑ 0.13 0.02↑ 0.01↑ 0.01↑
Normal Cop. 0.17 0.24 0.70 0.02↑ 0.02↑ 0.02↑
Sym. t Cop. 0.03↑ 0.62 0.45 0.05 0.04↑
Skew. t Cop. 0.56 0.77 0.05↑ 0.03↑
Dyn. Multi. Normal 0.05↑ 0.05↑ 0.08

Dyn. Normal Cop. 0.14 0.27

Dyn. Sym. t cop. 0.06

Portfolios of stocks

Uni. Skew. t 0.10 0.54 0.60 0.59 0.61 0.36 0.22 0.24 0.24

Univ. filt. hist. sim. 0.50 0.51 0.51 0.53 0.31 0.25 0.25 0.26

Multi. Normal 0.30 0.29 0.31 0.24 0.50 0.56 0.55

Normal Cop. 0.53 0.45 0.52 0.28 0.27 0.32

Sym. t Cop. 0.39 0.52 0.29 0.28 0.32

Skew. t Cop. 0.54 0.32 0.31 0.35

Dyn. Multi. Normal 0.52 0.51 0.52

Dyn. Normal Cop. 0.29 0.17

Dyn. Sym. t cop. 0.94

This table presents the p-values of the GW test comparing each row model to a column model for the 1% pair VaR/ES

for portfolios of factors. The loss function used for pairwise comparisons is LV,E , Patton et al. (2019)’s VaR/ES joint

loss function defined in Subsection 8.1. An up (left) arrow indicates that we reject the null hypothesis of equal

predictive ability at the 5% significance level and that the column (row) model outperforms the corresponding row

(column) model.
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Table 10: MCS Results (1983-2019) for portfolios of factors

MCS

p = 1% p = 2.5%

VaR All models All models

All models except All models except

VaR/ES Multivariate Normal Multivariate Normal

Normal Copula

Sym. t Copula

This table presents the Model Confidence Set obtained using the procedure of Hansen et al. (2011) at a 95% level

of confidence. The first row corresponds to VaR model comparisons with the loss function LV and the second

corresponds to VaR/ES model comparisons with the loss function LV,E . The first column is at the 1% level while the

second column is at the 2.5% level. All models refers to the initial set of all models examined in the MCS testing

procedure.

43



Figure 1: 1% VaR and out-of-sample portfolio returns for univariate and multivariate models from
(2007-2009)
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